1
|
Fei K, Shen L, Gao XD, Nakanishi H, Li Z. Multienzyme Cascade Synthesis of Rare Sugars From Glycerol in Bacillus subtilis. Biotechnol J 2024; 19:e202400539. [PMID: 39726022 DOI: 10.1002/biot.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Rare sugars are valuable and unique monosaccharides extensively utilized in the food, cosmetics, and pharmaceutical industries. Considering the high purification costs and the complex processes of enzymatic synthesis, whole-cell conversion has emerged as a significantly important alternative. The Escherichia coli strain was initially used in whole-cell synthesis of rare sugars. However, its pathogenic nature poses limitations to its widespread applications. Consequently, there is an urgent need to explore biologically safe strains for the efficient production of rare sugars. RESULTS In this study, the generally regarded as safe (GRAS) strain Bacillus subtilis was employed as the chassis cells to produce rare sugars via whole-cell conversion. Three genes encoding alditol oxidase (AldO), L-rhamnulose-1-phosphate aldolase (RhaD), and fructose-1-phosphatase (YqaB) involved in rare sugars biosynthesis were heterogeneously expressed in B. subtilis to convert the only substrate glycerol into rare sugars. To enhance the expression levels of the relevant enzymes in B. subtilis, different promoters for aldO, rhaD, and yqaB were investigated and optimized in this system. Under the optimized reaction conditions, the maximum total production titer was 16.96 g/L of D-allulose and D-sorbose with a conversion yield of 33.9% from glycerol. Furthermore, the engineered strain produced 26.68 g/L of D-allulose and D-sorbose through fed-batch for the whole-cell conversion, representing the highest titer from glycerol reported to date. CONCLUSION This study demonstrated an efficient and cost-effective method for the synthesis of rare sugars, providing a food-grade platform with the potential to meet the growing demand for rare sugars in industries.
Collapse
Affiliation(s)
- Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Liqun Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024; 65:2785-2812. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Wang Z, Wang H, Feng T, Li N, Sun Q, Liu J. Simultaneous Enhancement of the Thermostability and Catalytic Activity of D-Allulose 3-Epimerase from Clostridium bolteae ATTC BAA-613 Based on the "Back to Consensus Mutations" Hypothesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38603782 DOI: 10.1021/acs.jafc.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
D-Allulose is a high value rare sugar with multiple physiological functions and commercial potential that can be enzymatically synthesized from D-fructose by D-allulose 3-epimerase (DAEase). Poor catalytic activity and thermostability of DAEase prevent the industrial production of D-allulose. In this work, rational design was applied to a previously identified DAEase from Clostridium bolteae ATCC BAA-613 based on the "back to consensus mutations" hypothesis, and the catalytic activity of the Cb-I265 V variant was enhanced 2.5-fold. Furthermore, the Cb-I265 V/E268D double-site variant displayed 2.0-fold higher specific catalytic activity and 1.4-fold higher thermostability than the wild-type enzyme. Molecular docking and kinetic simulation results indicated increased hydrogen bonds between the active pocket and substrate, possibly contributing to the improved thermal stability and catalytic activity of the double-site mutant. The findings outlined a feasible approach for the rational design of multiple preset functions of target enzymes simultaneously.
Collapse
Affiliation(s)
- Zhiqi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Huiyi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Tingting Feng
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Ning Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qinju Sun
- Guangxi Vocational University of Agriculture, 176 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
4
|
Xu H, Yin T, Wei B, Su M, Liang H. Turning waste into treasure: Biosynthesis of value-added 2-O-α-glucosyl glycerol and d-allulose from waste cane molasses through an in vitro synthetic biology platform. BIORESOURCE TECHNOLOGY 2024; 391:129982. [PMID: 37926357 DOI: 10.1016/j.biortech.2023.129982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The efficient and economical conversion of agricultural waste into glycosides and rare sugars is challenging. Herein, an in vitro synthetic bienzyme system consisting of sucrose phosphorylase and d-allulose 3-epimerase was constructed to produce 2-O-α-glucosyl glycerol and d-allulose from cane molasses. Lactic acid in the cane molasses significantly induced sucrose phosphorylase to hydrolyze sucrose instead of glycosylation. Notably, lactic acid significantly inhibited the catalytic performance of d-allulose 3-epimerase only in the presence of Na+ and K+, with an inhibition rate of 75%. After removing lactic acid and metal ions, 116 g/L 2-O-α-glucosyl glycerol and 51 g/L d-allulose were synthesized from 500 mM sucrose in the treated cane molasses with a sucrose consumption rate of 97%. Our findings offer an economically efficient and environmentally friendly pathway for the industrial production of glycosides and rare sugars from food industry waste.
Collapse
Affiliation(s)
- Haichang Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Taian Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, PR China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
5
|
Gao Y, Li F, Wang Y, Chen Z, Li Z. An artificial multienzyme cascade for the whole-cell synthesis of rare ketoses from glycerol. Biotechnol Lett 2023; 45:1355-1364. [PMID: 37486554 DOI: 10.1007/s10529-023-03415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE In our previous study, we constructed a one-pot multi-enzyme system for rare ketoses synthesis based on L-rhamnulose-1-phosphate aldolase (RhaD) from accessible glycerol in vitro. To eliminate tedious purification of enzymes, a facile Escherichia coli whole-cell cascade platform was established in this study. METHODS To enhance the conversion rate, the reaction conditions, substrate concentrations and expressions of related enzymes were extensively optimized. RESULTS The biosynthetic route for the cascade synthesis of rare ketoses in whole cells was successfully constructed and three rare ketoses including D-allulose, D-sorbose and L-fructose were produced using glycerol and D/L-glyceraldehyde (GA). Under optimized conditions, the conversion rates of rare ketoses were 85.0% and 93.0% using D-GA and L-GA as the receptor, respectively. Furthermore, alditol oxidase (AldO) was introduced to the whole-cell system to generate D-GA from glycerol, and the total production yield of D-sorbose and D-allulose was 8.2 g l-1 only from the sole carbon source glycerol. CONCLUSION This study demonstrates a feasible and cost-efficient method for rare sugars synthesis and can also be applied to the green synthesis of other value-added chemicals from glycerol.
Collapse
Affiliation(s)
- Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Fen Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yulu Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
7
|
Gao Y, Chen Z, Nakanishi H, Li Z. Highly Efficient Synthesis of Rare Sugars from Glycerol in Endotoxin-Free ClearColi by Fermentation. Foods 2023; 12:3078. [PMID: 37628077 PMCID: PMC10453619 DOI: 10.3390/foods12163078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Rare sugars possess potential applications as low-calorie sweeteners, especially for anti-obesity and anti-diabetes. In this study, a fermentation biosystem based on the "DHAP-dependent aldolases strategy" was established for D-allulose and D-sorbose production from glycerol in endotoxin-free ClearColi BL21 (DE3). Several engineering strategies were adopted to enhance rare sugar production. Firstly, the combination of different plasmids for aldO, rhaD, and yqaB expression was optimized. Then, the artificially constructed ribosomal binding site (RBS) libraries of aldO, rhaD, and yqaB genes were assembled individually and combinatorially. In addition, a peroxidase was overexpressed to eliminate the damage or toxicity from hydrogen peroxide generated by alditol oxidase (AldO). Finally, stepwise improvements in rare sugar synthesis were elevated to 15.01 g/L with a high yield of 0.75 g/g glycerol in a 3 L fermenter. This research enables the effective production of rare sugars from raw glycerol in high yields.
Collapse
Affiliation(s)
- Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Li J, Dai Q, Zhu Y, Xu W, Zhang W, Chen Y, Mu W. Low-calorie bulk sweeteners: Recent advances in physical benefits, applications, and bioproduction. Crit Rev Food Sci Nutr 2023; 64:6581-6595. [PMID: 36705477 DOI: 10.1080/10408398.2023.2171362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
At present, with the continuous improvement of living standards, people are paying increasing attention to dietary nutrition and health. Low sugar and low energy consumption have become important dietary trends. In terms of sugar control, more and more countries have implemented sugar taxes in recent years. Hence, as the substitute for sugar, low-calorie sweeteners have been widely used in beverage, bakery, and confectionary industries. In general, low-calorie sweeteners consist of high-intensity and low-calorie bulk sweeteners (some rare sugars and sugar alcohols). In this review, recent advances and challenges in low-calorie bulk sweeteners are explored. Bioproduction of low-calorie bulk sweeteners has become the focus of many researches, because it has the potential to replace the current industrial scale production through chemical synthesis. A comprehensive summary of the physicochemical properties, physiological functions, applications, bioproduction, and regulation of typical low-calorie bulk sweeteners, such as D-allulose, D-tagatose, D-mannitol, sorbitol, and erythritol, is provided.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Li Z, Feng L, Chen Z, Hu Y, Fei K, Xu H, Gao XD. Efficient enzymatic synthesis of d-allulose using a novel d-allulose-3-epimerase from Caballeronia insecticola. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:339-348. [PMID: 35871484 DOI: 10.1002/jsfa.12147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rare sugars have become promising 'sugar alternatives' because of their low calories and unique physiological functions. Among the family of rare sugars, d-allulose is one of the sugars attracting interest. Ketose 3-epimerases (KEase), including d-tagatose 3-epimerase (DTEase) and d-allulose 3-epimerase (DAEase), are mainly used for d-allulose production. RESULTS In this study, a putative xylose isomerase from Caballeronia insecticola was characterized and identified as a novel DAEase. Caballeronia insecticola DAEase displayed prominent enzymatic properties, and 150 g L-1 d-allulose was produced from 500 g L-1 d-fructose in 45 min with a conversion rate of 30% and high productivity of 200 g L-1 h-1 . Furthermore, DAEase was employed in a phosphorylation-dephosphorylation cascade reaction, which significantly increased the conversion rate of d-allulose. Under optimized conditions, the conversion rate of d-allulose was approximately 100% when the concentration of d-fructose was 50 mmol L-1 . CONCLUSION This research described a very beneficial and facile approach for d-allulose production based on C. insecticola DAEase. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linxue Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yangfan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Huilin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Co-Immobilization of D-Amino Acid Oxidase, Catalase, and Transketolase for One-Pot, Two-Step Synthesis of L-Erythrulose. Catalysts 2023. [DOI: 10.3390/catal13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Here, we present an immobilized enzyme cascade in a basket-type reactor allowing a one-pot, two-step enzymatic synthesis of L-erythrulose from D-serine and glycolaldehyde. Three enzymes, D-amino acid oxidase from Rhodotorula gracilis (DAAORg), catalase from bovine liver (CAT), and transketolase from Geobacillus stearothermophilus (TKgst) were covalently immobilized on silica monolithic pellets, characterized by an open structure of interconnected macropores and a specific surface area of up to 300 m2/g. Three strategies were considered: (i) separate immobilization of enzymes on silica supports ([DAAO][CAT][TK]), (ii) co-immobilization of two of the three enzymes followed by the third ([DAAO+CAT][TK]), and (iii) co-immobilization of all three enzymes ([DAAO+CAT+TK]). The highest L-erythrulose concentrations were observed for the co-immobilization protocols (ii) and (iii) (30.7 mM and 29.1 mM, respectively). The reusability study showed that the best combination was [DAAO + CAT][TK], which led to the same level of L-erythrulose formation after two reuse cycles. The described process paves the way for the effective synthesis of a wide range of α-hydroxyketones from D-serine and suitable aldehydes.
Collapse
|
11
|
Chen Z, Gao XD, Li Z. Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose. Front Microbiol 2022; 13:881037. [PMID: 35495640 PMCID: PMC9048046 DOI: 10.3389/fmicb.2022.881037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 01/11/2023] Open
Abstract
D-Allulose, a generally regarded as safe (GRAS) sugar, is rare in nature. It is among the most promising sweeteners for future use due to its low caloric content, sucrose-like taste, and unique functions. D-Allulose has many physiological effects, such as antiobesity, antihyperglycemia, antidiabetes, anti-inflammatory, antioxidant, and neuroprotective effects. Therefore, D-allulose has important application value in the food, pharmaceutical, and healthcare industries. However, the high cost of D-allulose production limits its large-scale application. Currently, biotransformation is very attractive for D-allulose synthesis, with the two main methods of biosynthesis being the Izumoring strategy and the DHAP-dependent aldolase strategy. This article reviews recent advances regarding the physiological functions and biosynthesis of D-allulose. In addition, future perspectives on the production of D-allulose are presented.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Chen J, Chen D, Chen Q, Xu W, Zhang W, Mu W. Computer-Aided Targeted Mutagenesis of Thermoclostridium caenicola d-Allulose 3-Epimerase for Improved Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1943-1951. [PMID: 35107285 DOI: 10.1021/acs.jafc.1c07256] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
d-Allulose 3-epimerase (DAEase) is a key enzyme in d-allulose bioproduction. DAEase from Thermoclostridium caenicola suffers from poor thermostability, hampering its large-scale applications in industry. In this study, mutants A70P, G107P, F155Y, and D162T with increased melting point temperature (Tm) were obtained by targeted mutagenesis based on the calculation of the free energy of folding. The optimal single-point mutant G107P showed 11.08 h, 5, and 5.70 °C increases in the values of half-life (t1/2) at 60 °C, the optimum temperature (Topt), and Tm, respectively. Beneficial mutations were combined by ordered recombination mutagenesis, and the combinational mutant Var3 (G107P/F155Y/D162T/A70P) was generated with ΔTopt of 10 °C and ΔTm of 12.25 °C. Its t1/2 value at 65 °C was more than 140 times higher than that of the wild-type enzyme. Molecular dynamics simulations and homology modeling analysis indicated that the enhanced overall rigidity, increased hydrogen bonds between subunits, and redistributed surface electrostatic charges might be responsible for the improved thermostability of the mutant Var3.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Chen Z, Fei K, Hu Y, Xu X, Gao XD, Li Z. Identification of a Novel Alditol Oxidase from Thermopolyspora flexuosa with Potential Application in D-Glyceric Acid Production. Mol Biotechnol 2022; 64:804-813. [PMID: 35129810 DOI: 10.1007/s12033-022-00459-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
Glycerol is a potential sustainable feedstock, and biorefining processes to convert glycerol into value-added chemicals have been developed over the past decade. Alditol oxidase (AldO) is capable of selectively oxidizing the primary hydroxyl groups of alditols such as glycerol. In this study, a new FAD-binding protein from Thermopolyspora flexuosa was expressed and identified as a novel alditol oxidase (AldOT. fle). AldOT. fle displayed the optimal activity at pH 8.0 and 25 °C. AldOT. fle was not metal-dependent, but the activity was completely inhibited by Fe3+. AldOT. fle had a wide substrate specificity and high catalytic efficiency for glycerol. Furthermore, the recombinant AldOT. fle could produce D-glyceric acid from glycerol with a conversion rate ranging from 86.6% (5 mM glycerol) to 20.5% (500 mM glycerol). The recombinant E. coli with AldOT. fle could also produce 23.8 mM D-glyceric acid from 100 mM glycerol. The recombinant AldOT. fle had the potential to produce other aldehyde products by selectively oxidizing the hydroxyl groups of alditols and many other commodity chemicals by redesigning glycerol metabolism.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yangfan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiangyang Xu
- Zaozhuang Jienuo Enzyme Co., Ltd, Zaozhuang, 277100, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Cai L. Meet the Editorial Board Member. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x19666220104233003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Li Cai
- Department of Chemistry
University of South Carolina Lancaster
Lancaster, SC 29720
USA
| |
Collapse
|
15
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Hélaine V, Gastaldi C, Lemaire M, Clapés P, Guérard-Hélaine C. Recent Advances in the Substrate Selectivity of Aldolases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Cédric Gastaldi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC−CSIC, 08034 Barcelona, Spain
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
18
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
19
|
Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts 2021. [DOI: 10.3390/catal11101183] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro enzyme cascades possess great benefits, such as their synthetic capabilities for complex molecules, no need for intermediate isolation, and the shift of unfavorable equilibria towards the products. Their performance, however, can be impaired by, for example, destabilizing or inhibitory interactions between the cascade components or incongruous reaction conditions. The optimization of such systems is therefore often inevitable but not an easy task. Many parameters such as the design of the synthesis route, the choice of enzymes, reaction conditions, or process design can alter the performance of an in vitro enzymatic cascade. Many strategies to tackle this complex task exist, ranging from experimental to in silico approaches and combinations of both. This review collates examples of various optimization strategies and their success. The feasibility of optimization goals, the influence of certain parameters and the usage of algorithm-based optimizations are discussed.
Collapse
|
20
|
Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv 2021; 47:107694. [PMID: 33388370 DOI: 10.1016/j.biotechadv.2020.107694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
Food additives and colorants are extensively used in the food industry to improve food quality and safety during processing, storage and packing. Sourcing of these molecules is predominately through three means: extraction from natural sources, chemical synthesis, and bio-production, with the first two being the most utilized. However, growing demands for sustainability, safety and "natural" products have renewed interest in using bio-based production methods. Likewise, the move to more cultured foods and meat alternatives requires the production of new additives and colorants. The production of bio-based food additives and colorants is an interdisciplinary research endeavor and represents a growing trend in future food. To highlight the potential of microbial hosts for food additive and colorant production, we focus on current advances for example molecules based on their utilization stage and bio-production yield as follows: (I) approved and industrially produced with high titers; (II) approved and produced with decent titers (in the g/L range), but requiring further engineering to reduce production costs; (III) approved and produced with very early stage titers (in the mg/L range); and (IV) new/potential candidates that have not been approved but can be sourced through microbes. Promising approaches, as well as current challenges and future directions will also be thoroughly discussed for the bioproduction of these food additives and colorants.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States.
| |
Collapse
|
21
|
Abstract
Cascade reactions have been described as efficient and universal tools, and are of substantial interest in synthetic organic chemistry. This review article provides an overview of the novel and recent achievements in enzyme cascade processes catalyzed by multi-enzymatic or chemoenzymatic systems. The examples here selected collect the advances related to the application of the sequential use of enzymes in natural or genetically modified combination; second, the important combination of enzymes and metal complex systems, and finally we described the application of biocatalytic biohybrid systems on in situ catalytic solid-phase as a novel strategy. Examples of efficient and interesting enzymatic catalytic cascade processes in organic chemistry, in the production of important industrial products, such as the designing of novel biosensors or bio-chemocatalytic systems for medicinal chemistry application, are discussed
Collapse
|
22
|
Savino S, Fraaije MW. The vast repertoire of carbohydrate oxidases: An overview. Biotechnol Adv 2020; 51:107634. [PMID: 32961251 DOI: 10.1016/j.biotechadv.2020.107634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
Carbohydrates are widely abundant molecules present in a variety of forms. For their biosynthesis and modification, nature has evolved a plethora of carbohydrate-acting enzymes. Many of these enzymes are of particular interest for biotechnological applications, where they can be used as biocatalysts or biosensors. Among the enzymes catalysing conversions of carbohydrates are the carbohydrate oxidases. These oxidative enzymes belong to different structural families and use different cofactors to perform the oxidation reaction of CH-OH bonds in carbohydrates. The variety of carbohydrate oxidases available in nature reflects their specificity towards different sugars and selectivity of the oxidation site. Thanks to their properties, carbohydrate oxidases have received a lot of attention in basic and applied research, such that nowadays their role in biotechnological processes is of paramount importance. In this review we provide an overview of the available knowledge concerning the known carbohydrate oxidases. The oxidases are first classified according to their structural features. After a description on their mechanism of action, substrate acceptance and characterisation, we report on the engineering of the different carbohydrate oxidases to enhance their employment in biocatalysis and biotechnology. In the last part of the review we highlight some practical applications for which such enzymes have been exploited.
Collapse
Affiliation(s)
- Simone Savino
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| |
Collapse
|
23
|
Li Z, Liu X, Nakanishi H, Gao XD. Encapsulation of Mannose-6-phosphate Isomerase in Yeast Spores and Its Application in l-Ribose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6892-6899. [PMID: 32486647 DOI: 10.1021/acs.jafc.0c02399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A mannose-6-phosphate isomerase (MPI) from Geobacillus thermodenitrificans was expressed and successfully encapsulated into the Saccharomyces cerevisiae spores. Our results demonstrated that compared to the free enzyme, the MPI triple mutant encapsulated in osw2Δ spores exhibited much preferred enzymatic properties, such as enhanced catalytic activity, excellent reusability, thermostability, and tolerance to various harsh conditions. In combination with an l-arabinose isomerase (AI) also from G. thermodenitrificans, this technique of spore encapsulation was applied for producing a high-value rare sugar l-ribose from biomass-derived l-arabinose. Using a 10 mL reaction system, 350 mg of l-ribose was produced from 1 g of l-arabinose with a conversion yield of 35% by repeatedly reacting with 200 mg of AI-encapsulated spores and 300 mg of MPI-encapsulated spores. This study provides a very useful and concise approach for the synthesis of rare sugars and other useful compounds.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoxiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|