1
|
Wang Y, Deng C, Zhao L, Dimkpa CO, Elmer WH, Wang B, Sharma S, Wang Z, Dhankher OP, Xing B, White JC. Reply to the Letter to the Editor: Nanotechnology Papers with an Agricultural Focus Are Too Frequently Published with a Superficial or Poor Understanding of Basic Plant and Soil Science─A Critical Comment to Recent Papers in ACS Nano. ACS NANO 2024; 18:33771-33774. [PMID: 39686797 DOI: 10.1021/acsnano.4c14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Bofei Wang
- Computational Sciences, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, Texas 79968, United States
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Xie Y, An L, Wang X, Ma Y, Bayoude A, Fan X, Yu B, Li R. Protection effect of Dioscoreae Rhizoma against ethanol-induced gastric injury in vitro and in vivo: A phytochemical and pharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118427. [PMID: 38844251 DOI: 10.1016/j.jep.2024.118427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscoreae Rhizoma, a kind of Chinese yam, is a medicinal and edible plant used in China for strengthening the spleen and stomach. However, there is a lack of modern pharmacology studies regarding its anti-gastric injury activity. AIM OF THE STUDY This study aimed to investigate the phytochemical composition of Chinese yam aqueous extract (CYW) and evaluate its gastroprotective effects against ethanol-induced gastric injury in vitro and in vivo. MATERIALS AND METHODS The active components of CYW were identified using HPLC-QTOF-MS/MS in combination with the GNPS molecular networking and network pharmacology. In vitro studies were performed in the RAW264.7/GES-1 cell coculture system. In vivo study, mice were treated with CYW (0.31, 0.63, and 3.14 g/kg BW, orally) for 14 days, followed by a single oral dose of ethanol (10 mL/kg BW) to induce gastric injury. The biochemical, inflammation and oxidative stress markers were analyzed using commercial kits. Histopathology was used to assess the degree of gastric injury. Gene and protein expressions were studied using RT-qPCR and western blotting, respectively. RESULTS CYW significantly restored the levels of SOD, GPx and CAT, and reduced the MDA content. Further analyses showed that CYW significantly alleviated the gastric oxidative stress by inhibiting the inflammation via decreasing p-NF-κB and p-IκB-α expression levels and inhibiting the generation of IL-6, TNF-α, and IL-1β. At the same time, the fraction remarkably upregulated Bcl-2, downregulated Bax and increased growth factor secretion, thereby prevented gastric mucous cell. Besides, The combination of HPLC-QTOF-MS/MS, GNPS molecular networking analysis, and network pharmacology demonstrated that linoleic acid, 3-acetyl-11-keto-beta-boswellic acid, adenosine, aminocaproic acid, tyramine, DL-tryptophan, cycloleucine, lactulose, melibiose, alpha-beta-trehalose, and sucrose would be the main active compounds of CYW against ethanol-induced gastric injury. CONCLUSION This study showed that CYW is potentially rich source of anti-oxidant and anti-inflammatory bioactive compounds. It showed efficacy against ethanol-induced gastric injury by inhibiting inflammation, oxidative stress, and apoptosis in the stomach. The results of the current work indicate that Dioscoreae Rhizoma could be utilized as a type of natural resource for production of new medicine and functional foods to prevent and/or ameliorate ethanol-induced gastric injury.
Collapse
Affiliation(s)
- Yujun Xie
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Luyao An
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyan Wang
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yajie Ma
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Alamusi Bayoude
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xinxin Fan
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Renshi Li
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate? NANOIMPACT 2024; 34:100502. [PMID: 38508516 DOI: 10.1016/j.impact.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.
Collapse
Affiliation(s)
- Shital Vaidya
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Chaoyi Deng
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Yi Wang
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Christian Dimkpa
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jason C White
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States.
| |
Collapse
|
4
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Giri VP, Pandey S, Srivastava S, Shukla P, Kumar N, Kumari M, Katiyar R, Singh S, Mishra A. Chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) protectively modulate the defense mechanism of tomato during bacterial leaf spot (BLS) disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107637. [PMID: 36933507 DOI: 10.1016/j.plaphy.2023.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Herein, the impact of chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) has been evaluated for the protective management of bacterial leaf spot (BLS) disease in tomatoes caused by Xanthomonas campestris (NCIM5028). The Ch@BSNP originated by the Trichoderma viride (MTCC5661) derived extracellular compounds and subsequent chitosan hybridization. Spherical-shaped Ch@BSNP (30-35 nm) treated diseased plants were able to combat the biotic stress, as evidenced by the decreased elevated response of stress markers viz; anthocyanin (34.02%), proline (45.00%), flavonoids (20.26%), lipid peroxidation (10.00%), guaiacol peroxidase (36.58%), ascorbate peroxidase (41.50%), polyphenol oxidase (25.34%) and phenylalanine ammonia-lyase (2.10 fold) as compared to untreated diseased plants. Increased biochemical content specifically sugar (15.43%), phenolics (49.10%), chlorophyll, and carotenoids were measured in Ch@BSNP-treated diseased plants compared to untreated X. campestris-infested plants. The Ch@BSNP considerably reduced stress by increasing net photosynthetic rate and water use efficiency along with decreased transpiration rate and stomatal conductance in comparison to infected plants. Additionally, the expression of defense-regulatory genes viz; growth responsive (AUX, GH3, SAUR), early defense responsive (WRKYTF22, WRKY33, NOS1), defense responsive (PR1, NHO1, NPR1), hypersensitivity responsive (Pti, RbohD, OXI1) and stress hormones responsive (MYC2, JAR1, ERF1) were found to be upregulated in diseased plants while being significantly downregulated in Ch@BSNP-treated diseased plants. Furthermore, fruits obtained from pathogen-compromised plants treated with Ch@BSNP had higher levels of health-promoting compounds including lycopene and beta-carotene than infected plant fruits. This nano-enabled and environmentally safer crop protection strategy may encourage a sustainable agri-system towards the world's growing food demand and promote food security.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, India
| | - Shipra Pandey
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Navinit Kumar
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhuree Kumari
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Ratna Katiyar
- Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Luo X, Wang Z, Wang C, Yue L, Tao M, Elmer WH, White JC, Cao X, Xing B. Nanomaterial Size and Surface Modification Mediate Disease Resistance Activation in Cucumber ( Cucumis sativus). ACS NANO 2023; 17:4871-4885. [PMID: 36871293 DOI: 10.1021/acsnano.2c11790] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Crop disease represents a serious and increasing threat to global food security. Lanthanum oxide nanomaterials (La2O3 NMs) with different sizes (10 and 20 nm) and surface modifications (citrate, polyvinylpyrrolidone [PVP], and poly(ethylene glycol)) were investigated for their control of the fungal pathogen Fusarium oxysporum (Schl.) f. sp cucumerinum Owen on six-week-old cucumber (Cucumis sativus) in soil. Seed treatment and foliar application of the La2O3 NMs at 20-200 mg/kg (mg/L) significantly suppressed cucumber wilt (decreased by 12.50-52.11%), although the disease control efficacy was concentration-, size-, and surface modification-dependent. The best pathogen control was achieved by foliar application of 200 mg/L PVP-coated La2O3 NMs (10 nm); disease severity was decreased by 67.6%, and fresh shoot biomass was increased by 49.9% as compared with pathogen-infected control. Importantly, disease control efficacy was 1.97- and 3.61-fold greater than that of La2O3 bulk particles and a commercial fungicide (Hymexazol), respectively. Additionally, La2O3 NMs application enhanced cucumber yield by 350-461%, increased fruit total amino acids by 295-344%, and improved fruit vitamin content by 65-169% as compared with infected controls. Transcriptomic and metabolomic analyses revealed that La2O3 NMs: (1) interacted with calmodulin, subsequently activating salicylic acid-dependent systemic acquired resistance; (2) increased the activity and expression of antioxidant and related genes, thereby alleviating pathogen-induced oxidative stress; and (3) directly inhibited in vivo pathogen growth. The findings highlight the significant potential of La2O3 NMs for suppressing plant disease in sustainable agriculture.
Collapse
Affiliation(s)
- Xing Luo
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst 01003, Massachusetts, United States
| |
Collapse
|
7
|
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159639. [PMID: 36283520 DOI: 10.1016/j.scitotenv.2022.159639] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
The potential of nanotechnology for the development of sustainable agriculture has been promising. The initiatives to meet the rising food needs of the rapidly growing world population are mainly powered by sustainable agriculture. Nanoparticles are used in agriculture due to their distinct physicochemical characteristics. The interaction of nanomaterials with soil components is strongly determined in terms of soil quality and plant growth. Numerous research has been carried out to investigate how nanoparticles affect the growth and development of plants. Nanotechnology has been applied to improve the quality and reduce post-harvest loss of agricultural products by extending their shelf life, particularly for fruits and vegetables. This review assesses the latest literature on nanotechnology, which is used as a nano-biofertilizer as seen in the agricultural field for high productivity and better growth of plants, an important source of balanced nutrition for the crop, seed germination, and quality enrichment. Additionally, post-harvest food processing and packaging can benefit greatly from the use of nanotechnology to cut down on food waste and contamination. It also critically discusses the mechanisms involved in nanoparticle absorption and translocation within the plants and the synthesis of green nanoparticles.
Collapse
Affiliation(s)
- Mohammad Haris
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Division. of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Moh Sajid Ansari
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Atirah Tauseef
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia
| |
Collapse
|
8
|
Sharma S, Kumari P, Thakur P, Brar GS, Bouqellah NA, Hesham AEL. Synthesis and characterization of Ni 0.5Al 0.5Fe 2O 4 nanoparticles for potent antifungal activity against dry rot of ginger (Fusarium oxysporum). Sci Rep 2022; 12:20092. [PMID: 36418392 PMCID: PMC9684562 DOI: 10.1038/s41598-022-22620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Current study signifies the use of nanoparticles as alternative in plant disease management to avoid harmful effect of pesticide and fungicide residue. Synthesis of nanoparticles (Ni0.5Al0.5Fe2O4) by hydrothermal method and studied their X-ray diffraction analysis (XRD), Raman spectra, and UV spectra and further successfully evaluated for antifungal activity against a soil and seed borne pathogenic fungus (Fusarium oxysporum).Among various pests, fungal pathogens are the main cause of crop destruction and we developed nanoparticles (Ni0.5Al0.5Fe2O4) which is successfully evaluated for antimycotic activity against dry rot (F. oxysporum) of ginger which causes 50-70% losses in the ginger plant. In vitro and in vivo analysis designated that the nanoparticles (Ni0.5Al0.5Fe2O4) has shown an excellent antifungal activity against F. oxysporum at 0.5 mg/ml concentration. Similarly, no disease incidence was recorded when Ni0.5Al0.5Fe2O4 nanoparticles used at 0.5 mg/ml concentration under in vivo conditions. In plants various environmental stresses (biotic and abiotic) leads to excessive production of reactive oxygen species (ROS) causing progressive oxidative damage and ultimately leads to cell death. The role of ROS in nanoparticles (Ni0.5Al0.5Fe2O4) represents by reduction in the growth inhibition of F. oxysporum. We speculated in light of these results that the cytotoxic effect of Ni0.5Al0.5Fe2O4 nanoparticles on F. oxysporum may be mediated through ROS. We can suggest the role of nanoparticles (Ni0.5Al0.5Fe2O4) gives a promising result as a fungicidal activity and could be a novel family of future new generation fungicide.
Collapse
Affiliation(s)
- Sushma Sharma
- Dr Khem Singh Gill Akal College of Agriculture, Eternal University, H.P., Baru Sahib, Sirmour, India
| | - Poonam Kumari
- Akal College of Basic Science, Eternal University, H.P., Baru Sahib, Sirmour, India.
| | - Priyanka Thakur
- Dr Khem Singh Gill Akal College of Agriculture, Eternal University, H.P., Baru Sahib, Sirmour, India
| | - Gaganpreet Singh Brar
- Dr Yashwant, Singh Parmar University of Horticulture and Forestry, H.P., Nauni, Solan, India
| | - Nahla A Bouqellah
- Science College, Biology Department, Taibah University, Al-Madinah Al-Munawarh, 42317-8599, Saudi Arabia
| | - Abd El-Latif Hesham
- Department of Genetics, Faculty of Agriculture, Beni-Suef University, 62521, Beni-Suef, Egypt.
| |
Collapse
|
9
|
Cantu JM, Ye Y, Hernandez-Viezcas JA, Zuverza-Mena N, White JC, Gardea-Torresdey JL. Tomato Fruit Nutritional Quality Is Altered by the Foliar Application of Various Metal Oxide Nanomaterials. NANOMATERIALS 2022; 12:nano12142349. [PMID: 35889574 PMCID: PMC9319107 DOI: 10.3390/nano12142349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022]
Abstract
Carbohydrates and phytonutrients play important roles in tomato fruit’s nutritional quality. In the current study, Fe3O4, MnFe2O4, ZnFe2O4, Zn0.5Mn0.5Fe2O4, Mn3O4, and ZnO nanomaterials (NMs) were synthesized, characterized, and applied at 250 mg/L to tomato plants via foliar application to investigate their effects on the nutritional quality of tomato fruits. The plant growth cycle was conducted for a total of 135 days in a greenhouse and the tomato fruits were harvested as they ripened. The lycopene content was initially reduced at 0 stored days by MnFe2O4, ZnFe2O4, and Zn0.5Mn0.5Fe2O4; however, after a 15-day storage, there was no statistical difference between the treatments and the control. Moreover, the β-carotene content was also reduced by Zn0.5Mn0.5Fe2O4, Mn3O4, and ZnO. The effects of the Mn3O4 and ZnO carried over and inhibited the β-carotene after the fruit was stored. However, the total phenolic compounds were increased by ZnFe2O4, Zn0.5Mn0.5Fe2O4, and ZnO after 15 days of storage. Additionally, the sugar content in the fruit was enhanced by 118% and 111% when plants were exposed to Mn3O4 and ZnO, respectively. This study demonstrates both beneficial and detrimental effects of various NMs on tomato fruit quality and highlights the need for caution in such nanoscale applications during crop growth.
Collapse
Affiliation(s)
- Jesus M. Cantu
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; (J.M.C.); (Y.Y.); (J.A.H.-V.)
| | - Yuqing Ye
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; (J.M.C.); (Y.Y.); (J.A.H.-V.)
| | - Jose A. Hernandez-Viezcas
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; (J.M.C.); (Y.Y.); (J.A.H.-V.)
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (N.Z.-M.); (J.C.W.)
| | - Jason C. White
- Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (N.Z.-M.); (J.C.W.)
| | - Jorge L. Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; (J.M.C.); (Y.Y.); (J.A.H.-V.)
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
- Correspondence:
| |
Collapse
|
10
|
Khan MR, Siddiqui ZA, Fang X. Potential of metal and metal oxide nanoparticles in plant disease diagnostics and management: Recent advances and challenges. CHEMOSPHERE 2022; 297:134114. [PMID: 35240149 DOI: 10.1016/j.chemosphere.2022.134114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Plant diseases caused by phytopathogens are a severe threat to global food production. Management of plant diseases mostly rely on the application of pesticides which have several adverse effects on the ecosystem. Innovative and high-performance diagnostic tools are useful for the early detection of phytopathogens. Emerging role of metal and metal oxides nanoparticles (NPs) in plant disease diagnostics to combat crop diseases has been described. These NPs constitute new weapons against plant pathogens and facilitate the early diagnosis/management of crop diseases specifically in resource-poor conditions. The interactions between NPs, phytopathogens and plants showed great diversity and multiplicity which reduces chances of the development of resistant pathogen strains. The present article discusses the available literature as well as challenges and research gaps that are essential in the successful utilization of metal and metal oxide NPs for precise and timely detection and management of plant diseases.
Collapse
Affiliation(s)
- Manzoor R Khan
- Plant Pathology & Nematology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Botany, Government Degree College Kupwara, Kupwara, Jammu & Kashmir, 193222, India
| | - Zaki A Siddiqui
- Plant Pathology & Nematology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
11
|
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118900. [PMID: 35085650 DOI: 10.1016/j.envpol.2022.118900] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO2 NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO2 NMs maintained Na+/K+ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO2 NMs application, indicating that CeO2 NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO2 NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO2 NMs foliar application. These results will provide new insights for the application of CeO2 NMs in management to reduce the salinity-caused crop loss.
Collapse
Affiliation(s)
- Yinglin Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
12
|
Dai Y, Li T, Wang Z, Xing B. Physiological and proteomic analyses reveal the effect of CeO 2 nanoparticles on strawberry reproductive system and fruit quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152494. [PMID: 34971678 DOI: 10.1016/j.scitotenv.2021.152494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
With the rapid development of nanotechnology, the environmental impact assessment of nanoparticles (NPs) becomes a pressing problem to ensure the environmental safety and human health. However, the roles of CeO2 NPs on the development of crop reproductive system and fruit quality are largely unknown. Herein, strawberry (Fragaria × ananassa Duch.) plants were exposed to CeO2 NPs at 0-115 mg/L. The reduced generation of stolon, increased pollen numbers and germination rate of pollen grains, as well as the elongation of pollen tubes contributed to the enhanced yield of strawberry upon CeO2 NP exposure (6-115 mg/L). Furthermore, the fruit quality was improved by increasing total phenols, vitamin C, amino acids, and protein contents. More importantly, even at 115 mg/L treatment, fruit Ce contents (4.4 mg/kg) did not exceed the Ce mean oral reference dose of humans. Finally, label-free proteomic results disclosed that differentially expressed proteins related to malate were down-regulated, and the differential regulation of sugar-associated proteins suggested the changes in sugar composition. The significantly different expression of ascorbate and glutathione related proteins exhibited the increased antioxidant capacity of fruits. The findings in the present study provide new perspectives for understanding the potential risk posed by NPs in the environment.
Collapse
Affiliation(s)
- Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Laoshan District, Qingdao 266100, China
| | - Teng Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Laoshan District, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, No.1800, Lihu Avenue, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States
| |
Collapse
|
13
|
Tommasi F, Thomas PJ, Pagano G, Perono GA, Oral R, Lyons DM, Toscanesi M, Trifuoggi M. Review of Rare Earth Elements as Fertilizers and Feed Additives: A Knowledge Gap Analysis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:531-540. [PMID: 33141264 PMCID: PMC8558174 DOI: 10.1007/s00244-020-00773-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/10/2020] [Indexed: 05/19/2023]
Abstract
Rare earth elements (REEs) are key constituents of modern technology and play important roles in various chemical and industrial applications. They also are increasingly used in agricultural and zootechnical applications, such as fertilizers and feed additives. Early applications of REEs in agriculture have originated in China over the past several decades with the objective of increasing crop productivity and improving livestock yield (e.g., egg production or piglet growth). Outside China, REE agricultural or zootechnical uses are not currently practiced. A number of peer-reviewed manuscripts have evaluated the adverse and the positive effects of some light REEs (lanthanum and cerium salts) or REE mixtures both in plant growth and in livestock yield. This information was never systematically evaluated from the growing body of scientific literature. The present review was designed to evaluate the available evidence for adverse and/or positive effects of REE exposures in plant and animal biota and the cellular/molecular evidence for the REE-associated effects. The overall information points to shifts from toxic to favorable effects in plant systems at lower REE concentrations (possibly suggesting hormesis). The available evidence for REE use as feed additives may suggest positive outcomes at certain doses but requires further investigations before extending this use for zootechnical purposes.
Collapse
Affiliation(s)
- Franca Tommasi
- Department of Biology, "Aldo Moro" Bari University, 70125, Bari, Italy
| | - Philippe J Thomas
- Environment and Climate Change Canada, Science and Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, 80126, Naples, Italy.
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Rahime Oral
- Faculty of Fisheries, Ege University, 35100, Bornova, İzmir, Turkey
| | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, 52210, Rovinj, Croatia
| | - Maria Toscanesi
- Department of Chemical Sciences, Federico II Naples University, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, 80126, Naples, Italy
| |
Collapse
|
14
|
Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YAG, Badr A, Osman MEH, Elsamahy T, Jiao H, Sun J. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148359. [PMID: 34147795 DOI: 10.1016/j.scitotenv.2021.148359] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 05/12/2023]
Abstract
The high demand for sufficient and safe food, and continuous damage of environment by conventional agriculture are major challenges facing the globe. The necessity of smart alternatives and more sustainable practices in food production is crucial to confront the steady increase in human population and careless depletion of global resources. Nanotechnology implementation in agriculture offers smart delivery systems of nutrients, pesticides, and genetic materials for enhanced soil fertility and protection, along with improved traits for better stress tolerance. Additionally, nano-based sensors are the ideal approach towards precision farming for monitoring all factors that impact on agricultural productivity. Furthermore, nanotechnology can play a significant role in post-harvest food processing and packaging to reduce food contamination and wastage. In this review, nanotechnology applications in the agriculture and food sector are reviewed. Implementations of nanotechnology in agriculture have included nano- remediation of wastewater for land irrigation, nanofertilizers, nanopesticides, and nanosensors, while the beneficial effects of nanomaterials (NMs) in promoting genetic traits, germination, and stress tolerance of plants are discussed. Furthermore, the article highlights the efficiency of nanoparticles (NPs) and nanozymes in food processing and packaging. To this end, the potential risks and impacts of NMs on soil, plants, and human tissues and organs are emphasized in order to unravel the complex bio-nano interactions. Finally, the strengths, weaknesses, opportunities, and threats of nanotechnology are evaluated and discussed to provide a broad and clear view of the nanotechnology potentials, as well as future directions for nano-based agri-food applications towards sustainability.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Nanoscience Program, Zewail City of Science and Technology, 6th of October, Giza 12588, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Mohamed E H Osman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Shang H, Ma C, Li C, Zhao J, Elmer W, White JC, Xing B. Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce ( Lactuca sativa) Infected with Fusarium oxysporum f. sp. lactucae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13432-13442. [PMID: 34236843 DOI: 10.1021/acs.est.1c00777] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of nanotechnology to suppress crop diseases has attracted increasing attention in agriculture. The present work investigated the antifungal efficacy of copper oxide nanoparticle (CuO NP)-embedded hydrogels, which were synthesized by loading CuO nanoparticles (NPs) in hydrogels formed from cross-linked interaction between chitosan and acrylic acid, against Fusarium wilt of lettuce (Lactuca sativa) caused by Fusarium oxysporum f. sp. lactucae. In comparison with CuO NPs, 7-day Cu dissolution from CuO NP-embedded hydrogels was 34.2-94.8% slower regardless of media type, including water, potato dextrose broth, or a soil extract. In a greenhouse study, upon exposure to CuO NP-embedded hydrogels, CuO NPs, or Kocide 3000 with equivalent amounts of Cu (31 mg/kg), the fresh shoot biomass was significantly increased by 40.5, 26.1 and 27.2%, respectively, as compared to that of the infected control. Notably, CuO NP-embedded hydrogels enhanced uptake of P, Mn, Zn, and Mg and increased the levels of organic acids as compared to the diseased control. Increased salicylic acid (SA) and decreased jasmonic acid (JA) and abscisic acid (ABA) levels with the addition of different forms of Cu may have enhanced disease resistance. Taken together, our findings provide useful information and approach for improving the delivery efficiency of agrichemicals via nanoenabled strategies and an advanced understanding of plant defense mechanisms triggered by Cu-based NPs.
Collapse
Affiliation(s)
- Heping Shang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jian Zhao
- IInstitute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Mustafa H, Ilyas N, Akhtar N, Raja NI, Zainab T, Shah T, Ahmad A, Ahmad P. Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112519. [PMID: 34364122 DOI: 10.1016/j.ecoenv.2021.112519] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 05/15/2023]
Abstract
Drought stress is reducing the production of crops globally. This research was designed to evaluate the role of titanium dioxide (TiO2 NPs) nanoparticles and calcium phosphate on wheat facing drought stress. TiO2 NPs were prepared by green synthesis and their characterization (by UV-visible spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX)) was also done. The results showed that TiO2 NPs worked efficiently and improved plant growth under drought. However, the best results were obtained from combined applications of 40 ppm TiO2 NPs and 40 ppm calcium phosphate on plants. They increased root length (33%), shoot length (53%), fresh weight (48%), and dry weight (44%) of wheat as compared to control. The physiological parameters including chlorophyll content, relative water content, membrane stability index, and osmolyte content (proline and sugar) were also improved. The increase in superoxide dismutase, peroxidase and, catalase activity by the combined application of TiO2 NPs and calcium phosphate was 83% and 78%, 74% and 52%, 81%, and 67% in Pakistan-13 and Zincol-16 respectively, as compared to untreated drought exposed plants. They also enhanced the nutrients uptake (including potassium, phosphorus, and nitrogen) that ultimately improved plant biomass. They also maintained the level of growth hormones in plants. These hormones regulate cellular processes and are responsible for germination, development, and plant reaction in drought stress. The increase in the yield was also significant, hence it is recommended that the 40 ppm concentration of TiO2 NPs along with calcium phosphate improves the productivity of wheat under drought stress.
Collapse
Affiliation(s)
- Hina Mustafa
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan.
| | - Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Tayyaba Zainab
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Tariq Shah
- Department of Agroecology, Universite de Bourgogne, Dijon 21000, France
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
17
|
Lian J, Liu W, Meng L, Wu J, Chao L, Zeb A, Sun Y. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116978. [PMID: 33780844 DOI: 10.1016/j.envpol.2021.116978] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Currently, there is a lack of information about the influence of foliar-applied nanoplastics on crop growth and nutritional quality. To fill the knowledge gap, soil-grown lettuces (Lactuca sativa L.) were foliar-exposed to polystyrene nanoplastics (PSNPs) at 0, 0.1 and 1 mg/L for one month. Foliar exposure to PSNPs significantly decreased the dry weight, height, and leaf area of lettuce by 14.3%-27.3%, 24.2%-27.3%, and 12.7%-19.2%, respectively, compared with the control. Similarly, plant pigment content (chlorophyll a, b and carotenoid) was considerably reduced (9.1%, 8.7%, 12.5%) at 1 mg/L PSNPs. However, the significant increase in electrolyte leakage rate (18.6%-25.5%) and the decrease in total antioxidant capacity (12.4%-26%) were the key indicators of oxidative stress in lettuce leaves, demonstrating the phytotoxicity of PSNPs by foliar exposure. In addition, the remarkable reduction in micronutrients and essential amino acids demonstrated a decrease in nutritional quality of lettuce caused by PSNPs. Besides, SEM and TEM analysis indicated the possible absorption of PSNPs through leaves stoma and the translocation downwards to plant roots. This study provides new information about the interaction of airborne NPs with plants. It also warns against atmospheric NPs pollution that the adverse effects of airborne NPs on crop production and food quality should be assessed as a matter of urgency.
Collapse
Affiliation(s)
- Jiapan Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lingzuo Meng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jiani Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Chao
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
18
|
Tortella GR, Rubilar O, Diez MC, Padrão J, Zille A, Pieretti JC, Seabra AB. Advanced Material Against Human (Including Covid-19) and Plant Viruses: Nanoparticles As a Feasible Strategy. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000049. [PMID: 33614127 PMCID: PMC7883180 DOI: 10.1002/gch2.202000049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 virus outbreak revealed that these nano-pathogens have the ability to rapidly change lives. Undoubtedly, SARS-CoV-2 as well as other viruses can cause important global impacts, affecting public health, as well as, socioeconomic development. But viruses are not only a public health concern, they are also a problem in agriculture. The current treatments are often ineffective, are prone to develop resistance, or cause considerable adverse side effects. The use of nanotechnology has played an important role to combat viral diseases. In this review three main aspects are in focus: first, the potential use of nanoparticles as carriers for drug delivery. Second, its use for treatments of some human viral diseases, and third, its application as antivirals in plants. With these three themes, the aim is to give to readers an overview of the progress in this promising area of biotechnology during the 2017-2020 period, and to provide a glance at how tangible is the effectiveness of nanotechnology against viruses. Future prospects are also discussed. It is hoped that this review can be a contribution to general knowledge for both specialized and non-specialized readers, allowing a better knowledge of this interesting topic.
Collapse
Affiliation(s)
- Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Joana C. Pieretti
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| | - Amedea B. Seabra
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| |
Collapse
|
19
|
Lizzi D, Mattiello A, Adamiano A, Fellet G, Gava E, Marchiol L. Influence of Cerium Oxide Nanoparticles on Two Terrestrial Wild Plant Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:335. [PMID: 33578641 PMCID: PMC7916331 DOI: 10.3390/plants10020335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
Most current studies on the relationships between plans and engineered nanomaterials (ENMs) are focused on food crops, while the effects on spontaneous plants have been neglected so far. However, from an ecological perspective, the ENMs impacts on the wild plants could have dire consequences on food webs and ecosystem services. Therefore, they should not be considered less critical. A pot trial was carried out in greenhouse conditions to evaluate the growth of Holcus lanatus L. (monocot) and Diplotaxis tenuifolia L. DC. (dicot) exposed to cerium oxide nanoparticles (nCeO2). Plants were grown for their entire cycle in a substrate amended with 200 mg kg-1nCeO2 having the size of 25 nm and 50 nm, respectively. nCeO2 were taken up by plant roots and then translocated towards leaf tissues of both species. However, the mean size of nCeO2 found in the roots of the species was different. In D. tenuifolia, there was evidence of more significant particle aggregation compared to H. lanatus. Further, biomass variables (dry weight of plant fractions and leaf area) showed that plant species responded differently to the treatments. In the experimental conditions, there were recorded stimulating effects on plant growth. However, nutritional imbalances for macro and micronutrients were observed, as well.
Collapse
Affiliation(s)
- Daniel Lizzi
- DI4A—Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (D.L.); (A.M.); (G.F.)
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 10, 34127 Trieste, Italy
| | - Alessandro Mattiello
- DI4A—Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (D.L.); (A.M.); (G.F.)
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy;
| | - Guido Fellet
- DI4A—Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (D.L.); (A.M.); (G.F.)
| | - Emanuele Gava
- Laboratory of Inorganic Micro Pollutants, Regional Environmental Protection Agency of Friuli Venezia Giulia (ARPA-FVG), Via Colugna 42, 33100 Udine, Italy;
| | - Luca Marchiol
- DI4A—Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (D.L.); (A.M.); (G.F.)
| |
Collapse
|
20
|
Germination and Early Development of Three Spontaneous Plant Species Exposed to Nanoceria ( nCeO 2) with Different Concentrations and Particle Sizes. NANOMATERIALS 2020; 10:nano10122534. [PMID: 33348606 PMCID: PMC7766237 DOI: 10.3390/nano10122534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
This study aimed to provide insight regarding the influence of Ce oxide nanoparticles (nCeO2) with different concentrations and two different particle sizes on the germination and root elongation in seedlings of spontaneous terrestrial species. In a bench-scale experiment, seeds of the monocot, Holcus lanatus and dicots Lychnis-flos-cuculi and Diplotaxis tenuifolia were treated with solutions containing nCeO2 25 nm and 50 nm in the range 0-2000 mg Ce L-1. The results show that nCeO2 enters within the plant tissues. Even at high concentration, nCeO2 have positive effects on seed germination and the development of the seedling roots. This study further demonstrated that the particle size had no influence on the germination of L. flos-cuculi, while in H. lanatus and D. tenuifolia, the germination percentage was slightly higher (+10%) for seeds treated with nCeO2 25 nm with respect to 50 nm. In summary, the results indicated that nCeO2 was taken up by germinating seeds, but even at the highest concentrations, they did not have negative effects on plant seedlings. The influence of the different sizes of nCeO2 on germination and root development was not very strong. It is likely that particle agglomeration and ion dissolution influenced the observed effects.
Collapse
|