1
|
Wang K, Huang Y, Wan Y, Chen W, Liang J, Gong L, Rui Z, Yang T. Anti-fouling array paper-based device for rapid and accurate discrimination of foodborne pathogens in real samples. Food Chem 2025; 480:143871. [PMID: 40112710 DOI: 10.1016/j.foodchem.2025.143871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Foodborne pathogens contamination can cause serious food safety incidents. Early and rapid detection of foodborne pathogens is very important. Paper-based devices have been applied for on-site rapid detection of foodborne pathogens due to their cheapness and portability. However, the paper-based foodborne pathogen detection devices for real samples often receive interference, resulting in inaccurate detection results. In this study, bovine serum albumin (BSA) was modified on the surface of nitrocellulose membrane to construct anti-fouling sensing interface. Through array design, the anti-fouling array paper-based device (APAD) with multiple detection channels was constructed. The naked eye cut-off limits of the APAD were 102 colony forming units (cfu)/mL, 102 cfu/mL, and 103 cfu/mL for Staphylococcus aureus in orange juice, Escherichia coli O157: H7 in milk and orange juice, and Escherichia coli O157:H7 in soy sauce, respectively. The above results indicate that the APAD has good practical application potential in food safety.
Collapse
Affiliation(s)
- Kuiyu Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yayue Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yu Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Wang Chen
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Jianwei Liang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Liangke Gong
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Zebao Rui
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Tao Yang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China.
| |
Collapse
|
2
|
Panferov V, Ivanov N, Zhang W, Wang S, Liu J. Utilizing the Thermostability of Nanozymes for Joule Heating to Remove Background Peroxidase Activities in Lateral Flow Assays. ACS Sens 2025; 10:3785-3793. [PMID: 40324109 DOI: 10.1021/acssensors.5c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Lateral flow assays (LFAs) are essential for point-of-care testing. The use of peroxidase-mimicking nanozymes as catalytic labels is an actively developing direction in LFA, primarily focused on enhancing sensitivity. However, endogenous peroxidases, naturally present in various samples, can interfere with nanozyme signal amplification, leading to a high background signal and making visual detection more challenging. The issue of endogenous peroxidases is particularly significant for LFAs as wash-free biosensors. In this study, we showcase the remarkable thermostability of nanozymes in contrast to enzymes, applied to the analytically relevant use of lateral flow assays for the detection of aflatoxin B1. By employing Joule heating in a portable battery-powered device, the test strips were rapidly heated to 75-80 °C after completing the conventional LFA process. This heating caused thermal denaturation of endogenous peroxidases without affecting the Au@Pt nanozymes. As a result, substrate oxidation on the test strip was carried out solely by the Au@Pt nanozymes, which reduced background noise and improved the limit of detection by a factor of 3.5 compared to the assay without heating.
Collapse
Affiliation(s)
- Vasily Panferov
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- A.N. Bach Institute of Biochemistry, Federal Research Centre ″Fundamentals of Biotechnology″, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Nikita Ivanov
- Université Paris-Saclay, CEA, Service de Physico-Chimie, Gif-Sur-Yvette 91191, France
| | - Wenjun Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sihan Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Phuong NTT, Nguyen HA, Trinh TND, Trinh KTL. A gold nanoparticle-based colorimetric strategy for DNA detection: principles and novel approaches. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40405833 DOI: 10.1039/d5ay00148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The development of nanotechnology has led to the rapid growth of many different fields, including sensors. Bulky and complex sensor systems are gradually being replaced by streamlined sensor devices with advantages in size, simplicity, cost-effectiveness, and fast response, allowing qualitative detection of target analyte on-site application for clinical diagnosis. Significantly, since the COVID-19 pandemic, research on developing test kits for detecting biological molecules has grown rapidly, with an increasing number of publications. The number of studies developing colorimetric sensors based on gold nanoparticles (AuNPs) has increased continuously over the years, demonstrating the potential application of this material. The surface plasmon resonance (SPR) effect and high biocompatibility of AuNPs make them different from many other metal nanomaterials. In addition, the peroxidase activity properties of AuNPs have also received much attention in colorimetric sensors. In this review, the colorimetric sensors developed based on the AuNP material platform for DNA detection will be discussed in detail. Among them, the commonly used synthesis methods of AuNPs based on their applications and the primary mechanism of AuNP-based colorimetric sensors for DNA detection will be discussed. In addition, AuNP-based colorimetric applications in POCT for pathogenic bacteria and viruses are also mentioned in this review to provide a broader perspective on the potential and developmental direction of AuNP-based colorimetric sensors. Another aspect this review provides is development strategies that allow simple readout using the naked eye, a spectrophotometer, or a smartphone camera, which present many opportunities for integration into other electronic devices.
Collapse
Affiliation(s)
- Nguyen Tran Truc Phuong
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Hanh An Nguyen
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City 94000, Vietnam
| | | | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
4
|
Wang F, Sun Y, Jin M, Zhang B, Cui Y, Kong D, Li D, Yan X, Fan A. Rational design to improve the detection sensitivity of sandwich-type lateral flow immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3517-3525. [PMID: 40231577 DOI: 10.1039/d5ay00338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study presents two strategies to improve the detection sensitivity of the gold nanoparticle (Au NP)-based sandwich-type lateral flow immunoassay (LFIA) using the typical human chorionic gonadotropin (hCG) LFIA as the model. One efficient way is to adjust the size of Au NPs used as the label in the LFIA. Four kinds of Au NPs with different sizes (80, 110, 130, and 160 nm) were synthesized using a seed-mediated growth method, and the influence of nanoparticle size on the detection sensitivity of hCG was investigated. The results revealed that 110 nm Au NPs offered the highest detection sensitivity. Under the optimized conditions, the limit of detection (LOD) for hCG protein using Au NPs with a diameter around 110 nm as the signal probe was 5 mIU mL-1. Another powerful strategy discovered accidentally involves the introduction of an additional glass cellulose pad on the MAX-line label. The MAX-line label, which features an adhesive backing and a marked line indicating the maximum sample volume, is assembled on the test strip covering the sample pad and conjugate pad. We found that the introduction of an additional glass cellulose pad with a length of 6 mm on the MAX-line label could achieve a visual LOD of 1 mIU mL-1 for the detection of hCG. We assume that the improvement in detection sensitivity may be attributed to the increased sample carrying capacity and the extended flow time of gold nanoprobes, as the gold probes may diffuse from the conjugate pad into the enhancement pad upon rehydration. The developed LFIA also exhibited good reproducibility and stability. We believe that the developed strategies, particularly the approach of adding an enhancement pad on the MAX-line label, will serve as a general method applicable to other types of LFIAs to improve the sensitivity of target analytes.
Collapse
Affiliation(s)
- Feiqian Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Yinuo Sun
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Muzi Jin
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Yiwen Cui
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Dexin Kong
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Dongmei Li
- Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xiluan Yan
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Mansouri S. Nanozymes-Mediated Lateral Flow Assays for the Detection of Pathogenic Microorganisms and Toxins: A Review from Synthesis to Application. Crit Rev Anal Chem 2025:1-20. [PMID: 40249095 DOI: 10.1080/10408347.2025.2491683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In today's context, there is an increasing awareness among individuals regarding the importance of healthy and safe food consumption. Consequently, there is a growing demand for food products that are safeguarded against the detrimental effects of pathogens and harmful microbial metabolites. Actually, these organisms and their associated toxins pose a significant risk to food safety and are recognized as a critical threat to human health because of their capacity to induce foodborne infections and intoxications. Consequently, in order to address such challenges, it is imperative to enhance recognizing systems comprising bio/nanosensors for detections, which are trustworthy, quick, beneficial and economical. The advent of digital color imaging technology has led to the gradual establishment of lateral flow assays (LFAs) as one of the most significant sensors for point-of-care applications. Unlike colloidal gold nanoparticles (AuNPs), nanozymes offer enhanced color intensity through target-induced precise enrichment of nanozymes at the test line. Additionally, they amplify the color signal by facilitating the catalytic oxidation of colorless substrates into colored products. This dual functionality presents significant potential for the development of well-organized LFAs. In light of this, significant attempts are dedicated to the development of nanozyme-based LFAs. This review aims to outline recent advancements in the synthesis and design of nanozymes with varying compositions that exhibit distinct activities, as well as the structure and employment of nanozyme-based LFAs for the detection of pathogenic microorganisms and their associated toxins. Furthermore, the existing challenges and prospective development directions are outlined to assist readers in advancing the nanozyme-based LFAs performance.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
6
|
Wang D, Chen Y, Zhang Q, Chen J, Li C, Luo Y, Jin Y, Qi X. SERS-Based Immunochromatographic Assay for Sensitive Detection of Escherichia coli O157:H7 Using a Novel WS 2-Au DTNB Nanotag. SENSORS (BASEL, SWITZERLAND) 2025; 25:2457. [PMID: 40285147 PMCID: PMC12031149 DOI: 10.3390/s25082457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
E. coli O157:H7 contamination in food and the environment poses a serious threat to human health. Rapid and sensitive identification of foodborne pathogens remains challenging. Here, we prepared tungsten disulfide (WS2)-Au nanocomposites coupled with the Raman signal molecule 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) and antibodies to replace the conventional colloidal gold nanoparticles and applied SERS-active nanotags in the SERS-ICA method for highly sensitive detection of E. coli O157:H7. The large surface area and numerous effective SERS hotspots of WS2-Au nanotags provide superior SERS signals. Under optimized conditions, this ICA achieves the quantitative detection of E. coli O157:H7 in a broad linear range of 8 × 102-8 × 107 CFU/mL and at a low detection limit of 175 CFU/mL. In addition, the test strip indicates high specificity for E. coli O157:H7 identification, favorable reproducibility, and shows good accuracy in the detection of actual food samples, such as milk and pork. The proposed assay can be used for rapid qualitative and quantitative detection of E. coli O157:H7 and has great potential for field application.
Collapse
Affiliation(s)
- Deying Wang
- College of Chemistry and Life Sciences, Beijing University of Technology, No. 100 Pingleyuan, Beijing 100124, China; (D.W.); (C.L.)
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Yan Chen
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Qi Zhang
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Junfei Chen
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Changhao Li
- College of Chemistry and Life Sciences, Beijing University of Technology, No. 100 Pingleyuan, Beijing 100124, China; (D.W.); (C.L.)
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Yunjing Luo
- College of Chemistry and Life Sciences, Beijing University of Technology, No. 100 Pingleyuan, Beijing 100124, China; (D.W.); (C.L.)
| | - Yong Jin
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| |
Collapse
|
7
|
Shao S, Wang X, Sorial C, Sun X, Xia X. Sensitive Colorimetric Lateral Flow Assays Enabled by Platinum-Group Metal Nanoparticles with Peroxidase-Like Activities. Adv Healthc Mater 2025; 14:e2401677. [PMID: 39108051 PMCID: PMC11799360 DOI: 10.1002/adhm.202401677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Indexed: 02/07/2025]
Abstract
The last several decades have witnessed the success and popularity of colorimetric lateral flow assay (CLFA) in point-of-care testing. Driven by increasing demand, great efforts have been directed toward enhancing the detection sensitivity of CLFA. Recently, platinum-group metal nanoparticles (PGM NPs) with peroxidase-like activities have emerged as a type of promising colorimetric labels for enhancing the sensitivity of CLFA. By incorporating a simple and rapid post-treatment process, the PGM NP-based CLFAs are orders of magnitude more sensitive than conventional gold nanoparticle-based CLFAs. In this perspective, the study begins with introducing the design, synthesis, and characterization of PGM NPs with peroxidase-like activities. The current techniques for surface modification of PGM NPs are then discussed, followed by operation and optimization of PGM NP-based CLFAs. Afterward, opinions are provided on the social impact of PGM NP-based CLFAs. Lastly, this perspective is concluded with an outlook of future research directions in this emerging field, where the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Shikuan Shao
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaochuan Wang
- School of Social Work, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Caroline Sorial
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohan Sun
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
8
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
9
|
Gui Y, Zhao Y, Liu P, Wang Y, Mao X, Peng C, Hammock BD, Zhang C. Colorimetric and Reverse Fluorescence Dual-Signal Readout Immunochromatographic Assay for the Sensitive Determination of Sibutramine. ACS OMEGA 2024; 9:7075-7084. [PMID: 38371773 PMCID: PMC10870287 DOI: 10.1021/acsomega.3c09050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Later flow immunochromatographic assay has been widely used in clinical, environmental, and other diagnostic applications owing to its high sensitivity and throughput. However, most immunoassays operate in the "turn-off" mode for detecting targets of low molecular weight. The signal intensity decreases as the analyte concentration increases, which poses a challenge for achieving ultrasensitive detection at low concentrations and is counterintuitive to new users. In this work, a fluorometric immunochromatographic assay (FICA) is developed to simultaneously read "turn-on" fluorescent and "turn-off" colorimetric signals, where ZnCdSe/ZnS quantum dots act as fluorescence donors and gold nanoparticles (AuNPs) act as quenchers. The fluorescent signal (excitation/emission wavelengths of 365/525 nm) is positively correlated with analytes' concentration. Taking sibutramine (SBT) as the analysis target, the visual limit of detection for SBT reached 3.9 ng/mL, and the limit of Quantitation was 5.0 ng/mg in spiked samples. The developed FICA achieves a high sensitivity in SBT detection, which is much lower than that of the colloidal gold-based immunochromatographic assay. This dual-function detection mode has great potential to be used as a rapid on-site semiquantitative method, providing an alternative mode for the determination of low levels of target analytes.
Collapse
Affiliation(s)
- Yun Gui
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base of Ministry of Science and Technology, Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, P. R. China
| | - Yun Zhao
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base of Ministry of Science and Technology, Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, P. R. China
- State
Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Pengyan Liu
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base of Ministry of Science and Technology, Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, P. R. China
| | - Yulong Wang
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base of Ministry of Science and Technology, Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, P. R. China
| | - Xinxin Mao
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base of Ministry of Science and Technology, Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, P. R. China
- College
of Plant Protection, Nanjing Agricultural
University, Nanjing 210095, P. R. China
| | - Chifang Peng
- State
Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Bruce D. Hammock
- Department
of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Cunzheng Zhang
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base of Ministry of Science and Technology, Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, P. R. China
- College
of Plant Protection, Nanjing Agricultural
University, Nanjing 210095, P. R. China
| |
Collapse
|
10
|
Zhang G, Huang Z, Hu L, Wang Y, Deng S, Liu D, Peng J, Lai W. Molecular Engineering Powered Dual-Readout Point-of-Care Testing for Sensitive Detection of Escherichia coli O157:H7. ACS NANO 2023; 17:23723-23731. [PMID: 38009547 DOI: 10.1021/acsnano.3c07509] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) has become one of the major threats to public health and food safety. However, the culture method as a gold standard for the detection of E. coli O157:H7 requires laborious operations and a long processing time. Herein, we developed a dual-readout aggregation-induced emission nanoparticle-based lateral flow immunoassay (LFIA) for sensitive detection of E. coli O157:H7 to achieve a qualitative and quantitative assay for satisfying the applications under varying scenarios. 2,3-Bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)fumaronitrile (BAPF), an aggregation-induced emission luminogen, was designed to achieve a strong molar extinction coefficient (3.0 × 104 M-1 cm-1) and high quantum yield (33.28%), which was further verified by a large rotation angle and low energy gap. Subsequently, BAPFs were integrated into a nanostructured system to form excellent water-soluble nanoparticles (BAPFNPs) for the detection of E. coli O157:H7 with colorimetric and fluorescent readout. The designed BAPFNPs-based LFIA (BAPFNPs-LFIA) exhibited nearly qualitative ability with gold nanoparticles-LFIA (AuNPs-LFIA) and a 9 times enhancement compared with quantum beads-LFIA (QBs-LFIA) in quantitative aspect. Especially, FL-BAPFNPs-LFIA could detect E. coli O157:H7 earlier than QBs-LFIA and AuNPs-LFIA when samples with low E. coli O157:H7 concentrations were cultured. Overall, the proposed strategy revealed that versatile BAPFNPs have great potential as reporters for dual-readout ability and enhancing detection sensitivity for rapid and accurate pathogenic bacteria assay.
Collapse
Affiliation(s)
- Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Zhen Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Liwen Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Yumeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, 330096 Nanchang, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| |
Collapse
|
11
|
Liang J, Wang K, Gong L, Zhang Z, Wang J, Cao Y, Yang T, Zeng H. High extinction coefficient material combined with multi-line lateral flow immunoassay strip for ultrasensitive detection of bacteria. Food Chem 2023; 427:136721. [PMID: 37390742 DOI: 10.1016/j.foodchem.2023.136721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Lateral flow immunoassay strips (LFIAs) are a reliable and point-of-care detection method for rapid monitoring of bacteria, but their sensitivity was limited by the low extinction coefficient of colloidal gold nanoparticles (Au NPs) and low capture efficiency of test-line. In this study, polydopamine nanoparticles (PDA NPs) were employed to replace Au NPs, due to their high extinction coefficient. And the amount of test-line was increased to 5 for further improving the efficiency of bacteria capture. Thus, under visual observation, the detection limits of PDA-based LFIAs (102 CFU/mL) were about 2 orders of magnitude lower than Au-based LFIAs (104 CFU/mL). Furthermore, the invisible signal could be collected by Image J and the detection limit can reach 10 CFU/mL. The proposed test strips were successfully applied for the quantitative, accurate, and rapid screening of E. coli in food samples. This study provided a universal approach to enhance the sensitivity of bacteria LFIAs.
Collapse
Affiliation(s)
- Jianwei Liang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Liangke Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhaoyang Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jinhao Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yuhua Cao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Youkai Science and Technology Co., Ltd., Foshan 528000, Guangdong, China.
| |
Collapse
|
12
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
13
|
Caleb OJ, Belay ZA. Role of biotechnology in the advancement of biodegradable polymers and functionalized additives for food packaging systems. Curr Opin Biotechnol 2023; 83:102972. [PMID: 37487401 DOI: 10.1016/j.copbio.2023.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Biodegradable polymers have shown enormous potential for application in food packaging systems and offer solutions to mitigate the challenges of single-use plastics. Over the past decade, advances in fermentation technology, metabolic engineering of microorganisms, and synthetic biology have enabled the optimization and functionalization of biodegradable polymers for food packaging application. This article provides an overview of the biotechnological approaches/methods used in advancing the production of biopolymers and summarizes the recent developments in the application of functionalized biopolymers for decision-making and quality control. It discusses the current applications and future perspectives of extracellular biopolymers in food systems. Finally, this review highlights the complexities of public acceptance, safety, and government regulations and legislations.
Collapse
Affiliation(s)
- Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| |
Collapse
|
14
|
Sun Q, Ning Q, Li T, Jiang Q, Feng S, Tang N, Cui D, Wang K. Immunochromatographic enhancement strategy for SARS-CoV-2 detection based on nanotechnology. NANOSCALE 2023; 15:15092-15107. [PMID: 37676509 DOI: 10.1039/d3nr02396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) has been catastrophic to both human health and social development. Therefore, developing highly reliable and sensitive point-of-care testing (POCT) for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a priority. Among all available POCTs, the lateral flow immunoassay (LFIA, also known as immunochromatography) has proved to be effective due to its accuracy, portability, convenience, and speed. In areas with a scarcity of laboratory resources and medical personnel, the LFIA provides an affordable option for the diagnosis of COVID-19. This review offers a comprehensive overview of methods for improving the sensitivity of SARS-CoV-2 detection using immunochromatography based on nanotechnology, sorted according to the different detection targets (antigens, antibodies, and nucleic acids). It also looks into the performance and properties of the various sensitivity enhancement strategies, before delving into the remaining challenges in COVID-19 diagnosis through LFIA. Ultimately, it seeks to provide helpful guidance in selecting an appropriate strategy for SARS-CoV-2 immunochromatographic detection based on nanotechnology.
Collapse
Affiliation(s)
- Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ning Tang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| |
Collapse
|
15
|
Panferov VG, Zherdev AV, Dzantiev BB. Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review. BIOSENSORS 2023; 13:866. [PMID: 37754100 PMCID: PMC10526817 DOI: 10.3390/bios13090866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA's rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA's sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions.
Collapse
Affiliation(s)
- Vasily G. Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| |
Collapse
|
16
|
Gong L, Wang K, Liang J, Zhang L, Yang T, Zeng H. Enhanced sensitivity and accuracy via gold nanoparticles based multi-line lateral flow immunoassay strip for Salmonella typhimurium detection in milk and orange juice. Talanta 2023; 265:124929. [PMID: 37442004 DOI: 10.1016/j.talanta.2023.124929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Food borne pathogens threaten food safety and affect human health. The lateral flow immunoassays (LFIAs) are widely concerned because of simplicity, low cost and user friendliness, and have broad application prospects in pathogen detection. However, the sensitivity of LFIAs is limited. Herein, multi-line LFIAs are introduced into pathogen detection for the first time. Compared with traditional single-line LFIAs, the overall signal strength of multi-line LFIAs has been significantly improved. It is particularly noteworthy that multi-line LFIAs detection accuracy of 103 CFU/mL pathogen has been improved by about 55%. The proposed multi-line LFIAs reduce the possibility of judging a positive result as a false negative result. The LFIAs strip was validated in real samples of milk and orange juice. This strategy has great potential for rapid detection of pathogens in real samples, and provides new insights for improving the accuracy and sensitivity of LFIAs strips.
Collapse
Affiliation(s)
- Liangke Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jianwei Liang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Liren Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| |
Collapse
|
17
|
Wang X, Li W, Dai S, Dou M, Jiao S, Yang J, Li W, Su Y, Li Q, Li J. High-throughput, highly sensitive and rapid SERS detection of Escherichia coli O157:H7 using aptamer-modified Au@macroporous silica magnetic photonic microsphere array. Food Chem 2023; 424:136433. [PMID: 37244192 DOI: 10.1016/j.foodchem.2023.136433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
The aim of this research was to develop a simple, rapid, sensitive, high-throughput detection method for foodborne Escherichia coli (E. coli) O157:H7 based on the aptamer-modified gold nanoparticles@macroporous magnetic silica photonic microsphere (Au@MMSPM). Such Au@MMSPM array system for E. coli O157:H7 not only integrated sample pretreatment with rapid detection, but also showed highly enhanced effect to develop a highly sensitive SERS assay. The established SERS assay platform gave a wide linear detection range (10-106 CFU/mL) and low limit of detection (2.20 CFU/mL) for E. coli O157:H7. The whole analysis time including sample pretreatment and detection was 110 min. This SERS-based assay platform provided a new high-throughput, highly sensitive and fast detection technology for monitoring E. coli O157:H7 in real samples from the fields of food industry, medicine and environment.
Collapse
Affiliation(s)
- Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangdong 510630, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Saisai Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
Zhou Q, Natarajan B, Kannan P. Nanostructured biosensing platforms for the detection of food- and water-borne pathogenic Escherichia coli. Anal Bioanal Chem 2023:10.1007/s00216-023-04731-6. [PMID: 37169938 DOI: 10.1007/s00216-023-04731-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Pathogenic bacterial infection is one of the principal causes affecting human health and ecosystems. The accurate identification of bacteria in food and water samples is of significant interests to maintain safety and health for humans. Culture-based tests are practically tedious and may produce false-positive results, while viable but non-culturable microorganisms (NCMs) cannot be retrieved. Thus, it requires fast, reliable, and low-cost detection strategies for on-field analysis and point-of-care (POC) monitoring. The standard detection methods such as nucleic acid analysis (RT-PCR) and enzyme-linked immunosorbent assays (ELISA) are still challenging in POC practice due to their time-consuming (several hours to days) and expensive laboratory operations. The optical (surface plasmon resonance (SPR), fluorescence, and surface-enhanced Raman scattering (SERS)) and electrochemical-based detection of microbes (early stage of infective diseases) have been considered as alternative routes in the emerging world of nanostructured biosensing since they can attain a faster and concurrent screening of several pathogens in real samples. Moreover, optical and electrochemical detection strategies are opening a new route for the ability of detecting pathogens through the integration of cellphones, which is well fitted for POC analysis. This review article covers the current state of sensitive mechanistic approaches for the screening and detection of Escherichia coli O157:H7 (E. coli) pathogens in food and water samples, which can be potentially applied in clinical and environmental monitoring.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Bharathi Natarajan
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| | - Palanisamy Kannan
- Department of Endocrinology, First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), 1882 Zhonghuan South Road, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| |
Collapse
|
19
|
Shao Y, Zhou Y, Chen N, Xu W, Zhou H, Lai W, Huang X, Xiang X, Ye Q, Zhang J, Wang J, Parak WJ, Wu Q, Ding Y. Synthesizing Submicron Polyelectrolyte Capsules to Boost Enzyme Immobilization and Enhance Enzyme-Based Immunoassays. ACS OMEGA 2023; 8:12393-12403. [PMID: 37033870 PMCID: PMC10077544 DOI: 10.1021/acsomega.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Polyelectrolyte capsules (PCs) exhibit attractive superiorities in enzyme immobilization, including providing a capacious microenvironment for enzyme conformational freedom, highly effective mass transfer, and protecting enzymes from the external environment. Herein, we provide the first systemic evaluation of submicron PCs (SPCs, 500 nm) for enzyme immobilization. The catalytic kinetics results show that SPC encapsulation affected the affinities of enzymes and substrates but significantly enhanced their catalytic activity. The stability test indicates that SPC-encapsulated horseradish peroxidase (HRP) exhibits ultrahigh resistance to external harsh conditions and has a longer storage life than that of soluble HRP. The proposed encapsulation strategy enables 7.73-, 2.22-, and 11.66-fold relative activities when working at a pH as low as 3, at a NaCl concentration as high as 500 mM, and at a trypsin concentration as high as 10 mg/mL. We find that SPC encapsulation accelerates the cascade reaction efficiency of HRP and glucose oxidase. Owing to SPCs enhancing the catalytic activity of the loaded enzymes, we established an amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Escherichia coli O157:H7 using HRP-loaded SPCs. The detection sensitivity of SPC-improved ELISA was found to be 280 times greater than that of conventional HRP-based ELISA. Altogether, we provide an elaborate evaluation of 500 nm SPCs on enzyme immobilization and its application in the ultrasensitive detection of foodborne pathogens. This evaluation provides evidence to reveal the potential advantage of SPCs on enzyme immobilization for enzyme-based immunoassays. It has excellent biological activity and strong stability and broadens the application prospect in urine, soy sauce, sewage, and other special samples.
Collapse
Affiliation(s)
- Yanna Shao
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaofeng Zhou
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Nuo Chen
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenxing Xu
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huan Zhou
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weihua Lai
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xinran Xiang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College
of Food Science, South China Agricultural
University, Guangzhou 510432, China
| | - Wolfgang J. Parak
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Qingping Wu
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Liu S, Wang Z, Wang M, Meng T, Zhang Y, Zhang W, Sui Z. Evaluation of volume-based flow cytometry as a potential primary method for quantification of bacterial reference material. Talanta 2023; 255:124197. [PMID: 36571974 DOI: 10.1016/j.talanta.2022.124197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Bacterial reference materials (RMs) play a crucial role in many analytical processes of microbiological detection. Currently, bacteria are typically counted using the traditional plate-based approach, which results in a higher uncertainty of bacterial RMs unfortunately. Therefore, novel methods are urgently required for the value assignment of RMs in the field of microbiology to derive measurement traceability and accuracy. A potential primary method for microbiological quantification based on flow cytometry (FCM) is described in this study using Escherichia coli O157 (E. coli O157) as an example. The proposed method was applied to determine the number of viable E. coli O157 cells in the RMs with a result of (5.48 ± 0.27) × 108 cells mL-1, which was in good agreement with the result obtained using the plate-based method (En = 0.47). Additionally, this method could be entirely described and understood by equations, and provides formal traceability to the SI for counts of viable bacterial cells, while the associated relative expanded uncertainty (4.93%, k = 2) was significantly lower in comparison to the plate-based method. Therefore, the FCM-based method might be a potential primary method for characterizing bacterial RMs. To our knowledge, this is the first description of FCM as a potential primary method for accurate and traceable quantification of viable bacterial cells with a comprehensive uncertainty statement in microbiological metrology.
Collapse
Affiliation(s)
- Siyuan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Tao Meng
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
21
|
Liu X, Chen Y, Bu T, Deng Z, Zhao L, Tian Y, Jia C, Li Y, Wang R, Wang J, Zhang D. Nanosheet antibody mimics based label-free and dual-readout lateral flow immunoassay for Salmonella enteritidis rapid detection. Biosens Bioelectron 2023; 229:115239. [PMID: 36965382 DOI: 10.1016/j.bios.2023.115239] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Portable devices for on-site foodborne pathogens detection are urgently desirable. Lateral flow immunoassay (LFIA) provides an efficient strategy for pathogens detection, however, antibody labeling independence and detection reliability, are still challenging. Here, we report the development of a label-free LFIA with dual-readout using glucan-functionalized two-dimensional (2D) transition metal dichalcogenides (TMDs) tungsten disulfide (WS2) as detection probes for sensitive detection of Salmonella enteritidis (S. enteritidis). In particular, glucan-functionalized WS2, synthesized via liquid exfoliation, are reliable detection antibody candidates which served as antibody mimics for bacteria capturing. This LFIA has not only eliminated the intricate antibody labeling process and screening of paired antibodies in conventional LFIAs, but also promised dual-readout (colorimetric/Raman) for flexible detection. Under optimized conditions, this LFIA achieves selective detection of S. enteritidis with a low visual detection limit of 103 CFU/mL and a broad linear range of 103-108 CFU/mL. Additionally, the LFIA could be successfully applied in drinking water and milk with recoveries of 85%-109%. This work is desirable to expand the application of 2D TMDs in biosensors and offers a brand-new alternative protocol of detection antibodies in foodborne pathogens detection.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqian Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Ziai Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
22
|
Mazur F, Tjandra AD, Zhou Y, Gao Y, Chandrawati R. Paper-based sensors for bacteria detection. NATURE REVIEWS BIOENGINEERING 2023; 1:180-192. [PMID: 36937095 PMCID: PMC9926459 DOI: 10.1038/s44222-023-00024-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
The detection of pathogenic bacteria is essential to prevent and treat infections and to provide food security. Current gold-standard detection techniques, such as culture-based assays and polymerase chain reaction, are time-consuming and require centralized laboratories. Therefore, efforts have focused on developing point-of-care devices that are fast, cheap, portable and do not require specialized training. Paper-based analytical devices meet these criteria and are particularly suitable to deployment in low-resource settings. In this Review, we highlight paper-based analytical devices with substantial point-of-care applicability for bacteria detection and discuss challenges and opportunities for future development.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| |
Collapse
|
23
|
Wang M, Wang Y, Li X, Zhang H. Development of a photothermal-sensing microfluidic paper-based analytical chip (PT-Chip) for sensitive quantification of diethylstilbestrol. Food Chem 2023; 402:134128. [DOI: 10.1016/j.foodchem.2022.134128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022]
|
24
|
Banerjee T, Panchal N, Sutton C, Elliott R, Patel T, Kajal K, Arogunyo E, Koti N, Santra S. Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens. BIOSENSORS 2023; 13:109. [PMID: 36671944 PMCID: PMC9856065 DOI: 10.3390/bios13010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Frequent outbreaks of food-borne pathogens, particularly E. coli O157:H7, continue to impact human health and the agricultural economy tremendously. The required cell count for this pathogenic strain of E. coli O157:H7 is relatively low and hence it is vital to detect at low colony forming unit (CFU) counts. Available detection methods, though sensitive, fall short in terms of timeliness and often require extensive sample processing. To overcome these limitations, we propose a novel magneto-plasmonic nanosensor (MPnS) by integrating surface plasmon resonance (SPR) properties with spin-spin magnetic relaxation (T2 MR) technology. We engineered MPnS by encapsulating several gold nanoparticles (GNPs) within the polymer-coating of iron oxide nanoparticles (IONPs). First, the polyacrylic acid (PAA)-coated IONPs were synthesized using a solvent precipitation method, then gold chloride solution was used to synthesize GNPs and encapsulate them within the PAA-coatings of IONPs in one step. A magnetic separation technique was used to purify the MPnS and the presence of GNPs within IONPs was characterized using transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and other spectroscopic methods. The synthesized MPnS exhibits MR relaxation properties while possessing amplified optical properties than conventional GNPs. This allows for rapid and ultrasensitive detection of E. coli O157:H7 by SPR, T2 MR, and colorimetric readout. Experiments conducted in simple buffer and in milk as a complex media demonstrated that our MPnS-based assay could detect as low as 10 CFUs of this pathogenic strain of E. coli O157:H7 in minutes with no cross-reactivity. Overall, the formulated MPnS is robust and holds great potential for the ultrasensitive detection of E. coli O157:H7 in a simple and timely fashion. Moreover, this platform is highly customizable and can be used for the detection of other foodborne pathogens.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department of Chemistry and Biochemistry, College of Natural and Applied Sciences, Missouri State University, 901 S. National Avenue, Springfield, MO 65897, USA
| | - Nilamben Panchal
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Carissa Sutton
- Department of Chemistry and Biochemistry, College of Natural and Applied Sciences, Missouri State University, 901 S. National Avenue, Springfield, MO 65897, USA
| | - Rebekah Elliott
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Truptiben Patel
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Kajal Kajal
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Eniola Arogunyo
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Neelima Koti
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| |
Collapse
|
25
|
Zhou L, Liu Y, Lu Y, Zhou P, Lu L, Lv H, Hai X. Recent Advances in the Immunoassays Based on Nanozymes. BIOSENSORS 2022; 12:1119. [PMID: 36551085 PMCID: PMC9776222 DOI: 10.3390/bios12121119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
As a rapid and simple method for the detection of multiple targets, immunoassay has attracted extensive attention due to the merits of high specificity and sensitivity. Notably, enzyme-linked immunosorbent assay (ELISA) is a widely used immunoassay, which can provide high detection sensitivity since the enzyme labels can promote the generation of catalytically amplified readouts. However, the natural enzyme labels usually suffer from low stability, high cost, and difficult storage. Inspired by the advantages of superior and tunable catalytic activities, easy preparation, low cost, and high stability, nanozymes have arisen to replace the natural enzymes in immunoassay; they also possess equivalent sensitivity and selectivity, as well as robustness. Up to now, various kinds of nanozymes, including mimic peroxidase, oxidase, and phosphatase, have been incorporated to construct immunosensors. Herein, the development of immunoassays based on nanozymes with various types of detection signals are highlighted and discussed in detail. Furthermore, the challenges and perspectives of the design of novel nanozymes for widespread applications are discussed.
Collapse
|
26
|
Zhang J, Liu W, Li J, Lu K, Wen H, Ren J. Rapid bacteria electrochemical sensor based on cascade amplification of 3D DNA walking machine and toehold-mediated strand displacement. Talanta 2022; 249:123646. [DOI: 10.1016/j.talanta.2022.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
|
27
|
Arshad F, Mohd-Naim NF, Chandrawati R, Cozzolino D, Ahmed MU. Nanozyme-based sensors for detection of food biomarkers: a review. RSC Adv 2022; 12:26160-26175. [PMID: 36275095 PMCID: PMC9475342 DOI: 10.1039/d2ra04444g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Nanozymes have piqued the curiosity of scientists in recent years because of their ability to demonstrate enzyme-like activity combined with advantages such as high stability, inexpensive availability, robust activity, and tunable properties. These attributes have allowed the successful application of nanozymes in sensing to detect various chemical and biological target analytes, overcoming the shortcomings of conventional detection techniques. In this review, we discuss recent developments of nanozyme-based sensors to detect biomarkers associated with food quality and safety. First, we present a brief introduction to this topic, followed by discussing the different types of sensors used in food biomarker detection. We then highlight recent studies on nanozyme-based sensors to detect food markers such as toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, and drug residues. In the subsequent section, we discuss the challenges and possible solutions towards the development of nanozyme-based sensors for application in the food industry. Finally, we conclude the review by discussing future perspectives of this field towards successful detection and monitoring of food analytes.
Collapse
Affiliation(s)
- Fareeha Arshad
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - Rona Chandrawati
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The University of Queensland Australia
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
28
|
Hu X, Hu R, Zhu H, Chen Q, Lu Y, Chen J, Liu Y, Chen H. Nanozyme-based cascade SPR signal amplification for immunosensing of nitrated alpha-synuclein. Mikrochim Acta 2022; 189:367. [PMID: 36056240 DOI: 10.1007/s00604-022-05465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
A self-assembled nanozyme of iron porphyrin mediated supramolecular modified gold nanoparticles (FpA) was fabricated to determine nitrated alpha-synuclein as the Tyr 39 residue (nT39 α-Syn) of a potential biomarker for early diagnosis of Parkinson's disease (PD). Mechanically, localized surface plasmon resonance (LSPR) and the mass effect caused by catalytic deposition of the nanozyme contributed to a cascade signal amplification strategy. The sensor allowed a signal amplification and selective nT39 α-Syn bioanalysis with a 1.34-fold enhancement by cascade amplified SPR signal and double specific recognition. The detection limit was 1.78 ng/mL in the detection range of 7-240 ng/mL. Benefiting from the excellent immunosensor, this method can distinguish healthy people and PD patients using actual samples. Overall, this strategy provides a nanozyme-based biosensing platform for the early diagnosis of PD and can be applied to detect other protein biomarkers, such as PD-L1.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ruhui Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
29
|
Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe 3O 4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022; 64:1110-1138. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.
Collapse
Affiliation(s)
- Lina Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
30
|
Enciso-Martínez Y, González-Aguilar GA, Martínez-Téllez MA, González-Pérez CJ, Valencia-Rivera DE, Barrios-Villa E, Ayala-Zavala JF. Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. Int J Food Microbiol 2022; 374:109736. [DOI: 10.1016/j.ijfoodmicro.2022.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
31
|
Kim DM, Yoo SM. Colorimetric Systems for the Detection of Bacterial Contamination: Strategy and Applications. BIOSENSORS 2022; 12:bios12070532. [PMID: 35884335 PMCID: PMC9313054 DOI: 10.3390/bios12070532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/19/2022]
Abstract
Bacterial contamination is a public health concern worldwide causing enormous social and economic losses. For early diagnosis and adequate management to prevent or treat pathogen-related illnesses, extensive effort has been put into the development of pathogenic bacterial detection systems. Colorimetric sensing systems have attracted increasing attention due to their simple and single-site operation, rapid signal readout with the naked eye, ability to operate without external instruments, portability, compact design, and low cost. In this article, recent trends and advances in colorimetric systems for the detection and monitoring of bacterial contamination are reviewed. This article focuses on pathogen detection strategies and technologies based on reaction factors that affect the color change for visual readout. Reactions used in each strategy are introduced by dividing them into the following five categories: external pH change-induced pH indicator reactions, intracellular enzyme-catalyzed chromogenic reactions, enzyme-like nanoparticle (NP)-catalyzed substrate reactions, NP aggregation-based reactions, and NP accumulation-based reactions. Some recently developed colorimetric systems are introduced, and their challenges and strategies to improve the sensing performance are discussed.
Collapse
Affiliation(s)
- Dong-Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Seung-Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence:
| |
Collapse
|
32
|
Enzyme-Mimetic nano-immunosensors for amplified detection of food hazards: Recent advances and future trends. Biosens Bioelectron 2022; 217:114577. [DOI: 10.1016/j.bios.2022.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
|
33
|
Yu Q, Chen X, Qi L, Yang H, Wang Y, Zhang M, Huang K, Yuan X. Smartphone readable colorimetry and ICP-MS dual-mode sensing platform for ultrasensitive and label-free detection of Escherichia coli based on filter-assisted separation. Talanta 2022; 251:123760. [DOI: 10.1016/j.talanta.2022.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
34
|
Mao M, Xie Z, Ma P, Peng C, Wang Z, Wei X, Liu G. Design and optimizing gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: Application to rapid detection of acetamiprid. Biosens Bioelectron 2022; 207:114114. [DOI: 10.1016/j.bios.2022.114114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 11/02/2022]
|
35
|
Xia J, Bu T, Jia P, He K, Wang X, Sun X, Wang L. Polydopamine nanospheres-assisted direct PCR for rapid detection of Escherichia coli O157:H7. Anal Biochem 2022; 654:114797. [DOI: 10.1016/j.ab.2022.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
36
|
Shao Y, Xu W, Zheng Y, Wang J, Xie J, Zhu Z, Xiang X, Ye Q, Zhang Y, Xue L, Gu B, Chen J, Zhang J, Wu Q, Ding Y. Controlled PAH-mediated method with enhanced optical properties for simple, stable immunochromatographic assays. Biosens Bioelectron 2022; 206:114150. [DOI: 10.1016/j.bios.2022.114150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
37
|
Novel Dual-Color Immunochromatographic Assay Based on Chrysanthemum-like Au@polydopamine and Colloidal Gold for Simultaneous Sensitive Detection of Paclobutrazol and Carbofuran in Fruits and Vegetables. Foods 2022; 11:foods11111564. [PMID: 35681314 PMCID: PMC9180898 DOI: 10.3390/foods11111564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
To ensure food safety and prevent the toxic effects of paclobutrazol (PBZ) and carbofuran (CAR) on humans, a sensitive and rapid method for the detection of PBZ and CAR in fruits and vegetables is required. Herein, a highly sensitive PBZ monoclonal antibody (PBZ mAb) and CAR monoclonal antibody (CAR mAb) with half-inhibitory concentrations (IC50) at 0.77 and 0.82 ng mL−1 were prepared, respectively. We proposed a novel dual-color immunochromatographic assay (ICA) with two test lines (T1 and T2) and an independent control line (C) based on chrysanthemum-like Au@Polydopamine (AuNC@PDA) and colloidal gold (AuNPs) for the simultaneous and sensitive detection of PBZ and CAR with naked-eye detection limits of 10 and 5 μg kg−1, respectively. The limits of detection (LOD) for PBZ and CAR were 0.117 and 0.087 μg kg−1 in orange, 0.109 and 0.056 μg kg−1 in grape, and 0.131 and 0.094 μg kg−1 in cabbage mustard, respectively. The average recoveries of PBZ and CAR in orange, grape, and cabbage mustard were 97.86−102.83%, with coefficients of variation from 8.94 to 11.05. The detection results of this method for 30 samples (orange, grapes, and cabbage mustard) agreed well with those of liquid chromatography–tandem mass spectrometry. The novel dual-color ICA was sensitive, rapid, and accurate for the simultaneous detection of PBZ and CAR in real samples.
Collapse
|
38
|
Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Zhuang YT, Ma L, Huang H, Han L, Wang L, Zhang Y. A portable kit based on thiol-ene Michael addition for acrylamide detection in thermally processed foods. Food Chem 2022; 373:131465. [PMID: 34741969 DOI: 10.1016/j.foodchem.2021.131465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Accurate, sensitive, and selective analysis of acrylamide generated in thermally processed foods is of great significance for food safety. Herein, a novel acrylamide sensing platform is designed for both sensitive on-site colorimetric analysis and accurate UV-vis spectroscopy quantification, by integrating thiol-ene Michael addition with gold nanoparticles-mediated catalytical oxidation. The Michael addition reaction between acrylamide and glutathione efficiently alleviates glutathione-induced catalytic activity inhibition of gold nanoparticles, evoking the chromogenic reaction of H2O2-mediated 3,3',5,5'-tetramethylbenzidine. With increasing the concentration of acrylamide, the oxidation of 3,3',5,5'-tetramethylbenzidine is accelerated, presenting a series of shades from colorless to blue. The sensing platform exhibits excellent detection performance of acrylamide in the range of 0.5-175 μM with a detection limit of 0.16 μM, and is successfully employed in food samples. Especially, a portable assay kit based on the proposed platform is developed for visual determination of acrylamide, opening an avenue for smart sensors of food safety hazards.
Collapse
Affiliation(s)
- Yu-Ting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Liuyimai Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Han
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
40
|
Sharma VK, Sharma M, Usmani Z, Pandey A, Singh BN, Tabatabaei M, Gupta VK. Tailored enzymes as next-generation food-packaging tools. Trends Biotechnol 2022; 40:1004-1017. [PMID: 35144849 DOI: 10.1016/j.tibtech.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Enzymes have the potential for biotransformation in the food industry. Engineering tools can be used to develop tailored enzymes for food-packaging systems that perform well and retain their activity under adverse conditions. Consequently, novel tailored enzymes have been produced to improve or include new and useful characteristics for intelligent food-packaging systems. This review discusses the protein-engineering tools applied to create new functionality in food-packaging enzymes. The challenges in applications and anticipated directions for future developments are also highlighted. The development and discovery of tailored enzymes for smart food packaging is a promising way to ensure safe and high-quality food products.
Collapse
Affiliation(s)
- Vivek K Sharma
- Pharmacology Division, CSIR-National Botanical Research Institute Rana Pratap Marg, PO 436 Lucknow 226001, India
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobasés, Haute Ecole Provinciale du Hainaut-Condorcet, Département Agro Bioscience et Chimie, 11, rue de la Sucrerie, 7800 Ath, Belgium; Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute for Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun-248 007, Uttarakhand, India
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute Rana Pratap Marg, PO 436 Lucknow 226001, India.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
41
|
Liu Z, Hua Q, Wang J, Liang Z, Zhou Z, Shen X, Lei H, Li X. Prussian blue immunochromatography with portable smartphone-based detection device for zearalenone in cereals. Food Chem 2022; 369:131008. [PMID: 34500205 DOI: 10.1016/j.foodchem.2021.131008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
In this study, we developed a prussian blue nanoparticles (PBNPs) immunochromatographic assay (ICA) integrated with smartphone-based detection device for ZEN in cereals. PBNPs, as probe labels, were synthesized with properties of controllable structure, environment friendliness, and high affinities to antibody (Ab). PBNPs-ICA quantitative analysis was performed with a hand-held smartphone-based device coupled with a user-friendly and self-programmed detection App. This integrated strategy demonstrated high sensitivity for ZEN with a cut-off value of 10 μg/kg, a detection limit of 0.12 μg/kg, a quantitation limit of 0.27 μg/kg, and recovery rates of 92.0%-105.0% and 88.0%-98.0% for maize and wheat, respectively. The results of 20 naturally contaminated cereal samples showed good correlation (R2>0.99) between LC-MS/MS and developed system. Moreover, the stability experiment revealed that PBNPs-ICA maintained high stability and bioactivity against competitive antigen (Ag). The proposed strategy exhibited great potential for the rapid monitoring of mycotoxins or other small molecule hazards.
Collapse
Affiliation(s)
- Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qicheng Hua
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zaoqing Liang
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Zexuan Zhou
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Yang D, Lei L, Yang K, Gao K, Jia T, Wang L, Wang X, Xue C. An immunochromatography strip with peroxidase-mimicking ferric oxyhydroxide nanorods-mediated signal amplification and readout. Mikrochim Acta 2022; 189:58. [PMID: 35013820 DOI: 10.1007/s00604-021-05085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022]
Abstract
Immunochromatography testing strips (ICTs) promise to become the point-of-care test format for early diagnosis due to their convenience, low cost, and simplification. However, the insufficient signal intensity and limited sensitivity of this format hamper their application. Herein, we overcame these limitations by integrating rod-like ferric oxyhydroxide (β-FeOOH) nanoparticles with ICTs. By varying the concentration of PEI, a one-pot, mild-temperature hydrolysis method was adapted for the synthesis and morphology regulation of β-FeOOH nanorod. Due to the excellent enzyme-like catalytic activity toward peroxidase substrates (TMB) in the presence of hydrogen peroxide (H2O2), the β-FeOOH nanorod in ICTs served as a signal generator and the nanozyme for signal amplification. The proof-of-concept work was performed for the detection of human chorionic gonadotropin (hCG). A two fold improvement of detection sensitivity was achieved compared to the sensitivity of conventional Au NPs-based ICTs. These results show that β-FeOOH-based ICT has a potential application in POCT detection in clinical diagnostics.
Collapse
Affiliation(s)
- Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China. .,Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, China.
| | - Lei Lei
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, China
| | - Kaidi Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, China
| | - Keyi Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, China
| | - Tongtong Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, China
| | - Lixia Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, China
| | | | - Chaohua Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
43
|
Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Am J Cancer Res 2022; 12:574-602. [PMID: 34976202 PMCID: PMC8692915 DOI: 10.7150/thno.67184] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters is a popular point-of-care diagnostic technique. However, given the weak absorbance of traditional 20-40 nm spherical AuNPs, their sensitivity is low, which greatly limits the wide application of AuNP-based LFIA. With the rapid advances in materials science and nanotechnology, the synthesis of noble metal nanoparticles (NMNPs) has enhanced physicochemical properties such as optical, plasmonic, catalytic, and multifunctional activity by simply engineering their physical parameters, including the size, shape, composition, and external structure. Using these engineered NMNPs as an alternative to traditional AuNPs, the sensitivity of LFIA has been significantly improved, thereby greatly expanding the working range and application scenarios of LFIA, particularly in trace analysis. Therefore, in this review, we will focus on the design of engineered NMNPs and their demonstration in improving LFIA. We highlight the strategies available for tailoring NMNP designs, the effect of NMNP engineering on their performance, and the working principle of each engineering design for enhancing LFIA. Finally, current challenges and future improvements in this field are briefly discussed.
Collapse
|
44
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
45
|
Zhou Y, Wu Y, Ding L, Huang X, Xiong Y. Point-of-care COVID-19 diagnostics powered by lateral flow assay. Trends Analyt Chem 2021; 145:116452. [PMID: 34629572 PMCID: PMC8487324 DOI: 10.1016/j.trac.2021.116452] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since its first discovery in December 2019, the global coronavirus disease 2019 (COVID-19) pandemic caused by the novel coronavirus (SARS-CoV-2) has been posing a serious threat to human life and health. Diagnostic testing is critical for the control and management of the COVID-19 pandemic. In particular, diagnostic testing at the point of care (POC) has been widely accepted as part of the post restriction COVID-19 control strategy. Lateral flow assay (LFA) is a popular POC diagnostic platform that plays an important role in controlling the COVID-19 pandemic in industrialized countries and resource-limited settings. Numerous pioneering studies on the design and development of diverse LFA-based diagnostic technologies for the rapid diagnosis of COVID-19 have been done and reported by researchers. Hundreds of LFA-based diagnostic prototypes have sprung up, some of which have been developed into commercial test kits for the rapid diagnosis of COVID-19. In this review, we summarize the crucial role of rapid diagnostic tests using LFA in targeting SARS-CoV-2-specific RNA, antibodies, antigens, and whole virus. Then, we discuss the design principle and working mechanisms of these available LFA methods, emphasizing their clinical diagnostic efficiency. Ultimately, we elaborate the challenges of current LFA diagnostics for COVID-19 and highlight the need for continuous improvement in rapid diagnostic tests.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Lu Ding
- Hypertension Research Institute of Jiangxi Province, Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
46
|
Ma T, Liu K, Yang X, Yang J, Pan M, Wang S. Development of Indirect Competitive ELISA and Visualized Multicolor ELISA Based on Gold Nanorods Growth for the Determination of Zearalenone. Foods 2021; 10:foods10112654. [PMID: 34828935 PMCID: PMC8619891 DOI: 10.3390/foods10112654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
In this study, a zearalenone (ZEN) hapten was designed and prepared against the mycotoxin ZEN, and the original coating ZEN-ovalbumin (ZEN-OVA) was prepared by conjugation with OVA. Based on the gold nanorods (AuNRs) of uniform size and stable properties synthesized by the seed-mediated method, the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and the AuNRs growth-based multicolor ELISA for detecting ZEN toxin were further established. Under the optimal experimental conditions, the coating amount of ZEN-OVA: 0.025 μg/well, antibody (Ab) dilution factor: 32,000 times, blocking solution: 0.5% skimmed milk powder, enzyme-labeled secondary Ab diluted 10,000 times, and a pH of the PBS buffer at 7.4, the sensitivity (IC50) of the established ic-ELISA for ZEN detection reached 0.85 ± 0.04 μg/L, and the limit of detection (IC15) reached 0.22 ± 0.08 μg/L. In the multicolor ELISA based on the growth of AuNRs, as the content of ZEN increased, the mixed solution exhibited a significant color change from brownish red to colorless. ZEN concentration as low as 0.1 μg/L can be detected by the naked eye (brown red to dark gray). This study provided an effective analysis strategy for the rapid screening and accurate monitoring of the ZEN contaminant in foods.
Collapse
Affiliation(s)
- Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-022-6091-2493
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
47
|
Wu L, Zhou S, Wang G, Yun Y, Liu G, Zhang W. Nanozyme Applications: A Glimpse of Insight in Food Safety. Front Bioeng Biotechnol 2021; 9:727886. [PMID: 34504834 PMCID: PMC8421533 DOI: 10.3389/fbioe.2021.727886] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022] Open
Abstract
Nanozymes own striking merits, including high enzyme-mimicking activity, good stability, and low cost. Due to the powerful and distinguished functions, nanozymes exhibit widespread applications in the field of biosensing and immunoassay, attracting researchers in various fields to design and engineer nanozymes. Recently, nanozymes have been innovatively used to bridge nanotechnology with analytical techniques to achieve the high sensitivity, specificity, and reproducibility. However, the applications of nanozymes in food applications are seldom reviewed. In this review, we summarize several typical nanozymes and provide a comprehensive description of the history, principles, designs, and applications of nanozyme-based analytical techniques in food contaminants detection. Based on engineering and modification of nanozymes, the food contaminants are classified and then discussed in detail via discriminating the roles of nanozymes in various analytical methods, including fluorescence, colorimetric and electrochemical assay, surface-enhanced Raman scattering, magnetic relaxing sensing, and electrochemiluminescence. Further, representative examples of nanozymes-based methods are highlighted for contaminants analysis and inhibition. Finally, the current challenges and prospects of nanozymes are discussed.
Collapse
Affiliation(s)
- Long Wu
- College of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, China
| | - Shuhong Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, China
| | - Gonglei Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yonghuan Yun
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Weimin Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
48
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
49
|
Sang P, Hu Z, Cheng Y, Yu H, Xie Y, Yao W, Guo Y, Qian H. Nucleic Acid Amplification Techniques in Immunoassay: An Integrated Approach with Hybrid Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5783-5797. [PMID: 34009975 DOI: 10.1021/acs.jafc.0c07980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An immunoassay is mostly employed for the direct detection of food contaminants, and a molecular assay for targeting nucleic acids employs amplification techniques for distinguishing genes. The integration of an immunoassay with nucleic acid amplification techniques inherits the direct and rapid performance of an immunoassay and the ultrasensitive merit of a molecular assay. Enthusiastic attention has been attracted in recent years on the utilization of isothermal amplification techniques in an immunoassay, as well as the employment of a lateral flow immunoassay in a molecular assay. Thus, this Review discussed these kinds of approaches from two categories: immuno-nucleic acid amplification (I-NAA) and nucleic acid amplification-immunoassay (NAA-I). The advantages, drawbacks, and future developments were discussed for a comprehensive understanding.
Collapse
Affiliation(s)
- Panting Sang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
50
|
Zhou Y, Huang X, Hu X, Tong W, Leng Y, Xiong Y. Recent advances in colorimetry/fluorimetry-based dual-modal sensing technologies. Biosens Bioelectron 2021; 190:113386. [PMID: 34119839 DOI: 10.1016/j.bios.2021.113386] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Tailored to the increasing demands for sensing technologies, the fabrication of dual-modal sensing technologies through combining two signal transduction channels into one method has been proposed and drawn considerable attention. The integration of two sensing signals not only promotes the analytical efficiency with reduced assumption, but also improves the analytical performances with enlarged detection linear range, enhanced accuracy, and boosted application flexibility. The two top-rated output signals for developing dual-modal sensors are colorimetric and fluorescent signals because of their outstanding merits for point of care applications and real-time sensitive sensing. Given the rapid development of material chemistry and nanotechnology, the recent decade has witnessed great advance in colorimetric/fluorimetric signal based dual-modal sensing technologies. The new sensing strategy leads to a broad avenue for various applications in disease diagnosis, environmental monitoring and food safety because of the complementary and synergistic effects of the two output signals. In this state-of-the-art review, we comprehensively summarize different types of colorimetric/fluorimetric dual-modal sensing methods by highlighting representative research in the last 5 years, digging into their sensing methodologies, particularly the working principles of the signal transduction systems. Then, the challenges and future prospects for boosting further development of this research field are discussed.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xinyu Hu
- School of Qianhu, Nanchang University, Nanchang, 330031, PR China
| | - Weipeng Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|