1
|
Kong LJ, Cao XY, Sun NB, Min LJ, Duke SO, Wu HK, Zhang LQ, Liu XH. Isoxazoline: An Emerging Scaffold in Pesticide Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8678-8693. [PMID: 40176756 DOI: 10.1021/acs.jafc.4c09612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Isoxazolines are five-membered heterocycle compounds with a wide range of pharmacological and pesticidal activities. Numerous marketed pesticides contain an isoxazoline motif as a key skeleton. Isoxazoline compounds have relatively simple syntheses and wide biological activities against various weeds, bacteria, and other pests. In recent years, they have received increasing attention and are widely used in organic chemistry research, such as intermediate and catalyst ligands in organic synthesis. They also have excellent optoelectronic properties and are widely used in the field of materials. Hence, the exploration of isoxazoline derivatives remains an important research area in pesticide discovery. This review provides an up-to-date overview of isoxazoline heterocycle compounds utilized as pesticides and in pesticide discovery, highlighting their structure and biological properties. It summarizes relevant publications from the last 10 years, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Ling-Jie Kong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xin-Yu Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Stephen O Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, Mississippi 38677, United States
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qin Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Li S, Wang G, Zhang Y, Zhao W, Yang H, Yin X, Li Y. Discovery of Novel Isoxazoline Derivatives Containing Pyrazolamide Fragment as Insecticidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6580-6588. [PMID: 40053670 DOI: 10.1021/acs.jafc.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Lepidopteran species cause significant harm to agricultural yields and food quality. In this study, a series of innovative isoxazoline derivatives incorporating pyrazolamide moieties were carefully designed and synthesized as potential insecticidal agents. Among these, compound F16 demonstrated an LC50 value of 0.01 mg/L against Plutella xylostella, surpassing that of the lead compound fluxametamide (LC50 = 0.15 mg/L). Furthermore, F16 exhibited broad-spectrum insecticidal activity against Pyrausta nubilalis, Spodoptera frugiperda, Chilo suppressalis, Aphis craccivora, and Sogatella furcifera. Notably, F16 possessed low toxicity against Danio rerio, whereas fluxametamide displayed moderate toxicity. Furthermore, molecular docking analysis demonstrated that the potent insecticidal activity of F16 is likely mediated by its specific interactions with γ-GABA receptors primarily through the formation of hydrogen bonds with key residues. Density functional theory calculations and molecular electrostatic potentials were also performed to gain insights into the insecticidal behavior of F16. These findings suggest that F16 is a promising candidate for further investigation as a novel pesticide.
Collapse
Affiliation(s)
- Shaochen Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guangpeng Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yanyang Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenli Zhao
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huiying Yang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xue Yin
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Zhang Y, Liu J, Shi J, Wu B, He Z, Wu X. The interaction and response of gut microbes to exposure to chiral ethiprole in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137112. [PMID: 39756327 DOI: 10.1016/j.jhazmat.2025.137112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Widespread pesticide use is believed to be a major factor contributing to the decline of bee populations. Previous studies have shown that enantiomers of chiral pesticides may have different toxicities on bee, but the effects of pesticide enantiomers on honeybees and their gut microbiota are still unknown. In this study, we assessed the gut microbial and their host toxicities of ethiprole enantiomers at a concentration of 15 μg/L in honeybees. Compared to the sucrose control and R-ethiprole, S-ethiprole exposure significantly reduced bee survival. Notably, bees exposed to ethiprole and its enantiomers affected sucrose consumption and body weight, and developed a small gut with thinning and degeneration. 16S rRNA gene amplicon sequencing of the bee gut revealed that ethiprole and its enantiomers significantly disrupted the microbial communities. In contrast, S-ethiprole exposure markedly reduced community size and diversity and exhibited a lower niche width. In addition, the expression of immune detoxification genes (Defensin1,Defensin2,GST3) was upregulated by R-ethiprole in bees and S-ethiprole downregulated the mRNA levels of CYP6AS14 in bees. The expression of immune response-related genes was negatively correlated with core bacteria.This study offers comprehensive insights the effect of chiral ethiprole on the health of bees, particularly the risk of S-ethiprole in bees. Moreover, it provides a reference for exploring the interactions between host and microbiota systems under exogenous stress.
Collapse
Affiliation(s)
- Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Baohui Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zetian He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
4
|
Li J, Liu K, Chang AK, Ai J, Li H, Xu L, Wang T, Li R, Liu W, Chen L, Liang X. Toxicity Risk Assessment of Clethodim Enantiomers in Rats and Mice: Insights from Stereoselective Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1580-1588. [PMID: 39746712 DOI: 10.1021/acs.jafc.4c07912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Clethodim is a chiral herbicide with two enantiomers. The herbicidal activity of (-)-clethodim is 1.3-2.0-fold that of (+)-clethodim, but the absolute configurations of (-)-clethodim have not been clarified. In this study, enantiomers 1 and 2 resolved from a racemate by preparative HPLC equipped with a Chiralpak IA column were confirmed as R-(-)-clethodim and S-(+)-clethodim, respectively. Both enantiomers showed significant stereoselectivity in vivo. The AUC0-72h of R-(-)-clethodim was 4.50 and 4.90 times that of S-(+)-clethodim in plasma after intragastric and intravenous administration, respectively. However, the bioavailability of R-(-)-clethodim (12.96%) was lower than that of S-(+)-clethodim (14.14%). S-(+)-clethodim was found in a relatively high abundance in most tissues. No mutual transformation between the two enantiomers was observed in vivo, indicating that configuration conversion did not contribute to the differences in the content of the enantiomers in the plasma and tissues. This may be due to the binding of clethodim enantiomers to serum albumin and acetyl-CoA carboxylase, which was verified by the molecular docking experiment. In summary, the findings from this study provided novel insights into the stereoselective risk assessment of the chiral clethodim and valuable evidence for toxicity risk assessments.
Collapse
Affiliation(s)
- Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Alan Kueichieh Chang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| |
Collapse
|
5
|
Wang Y, Wang C, Tian Q, Li Y. Recent Research Progress in Oxime Insecticides and Perspectives for the Future. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15077-15091. [PMID: 38920088 DOI: 10.1021/acs.jafc.4c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In recent decades, the unique structural attributes and purported insecticidal properties of oximes have garnered increasing attention. A variety of insecticides, encompassing fluxametamide, fluhexafon, and lepimectin, have been synthesized, all of which incorporate oximes. This review endeavors to encapsulate the insecticidal efficacy, structure-activity correlations, and operative mechanisms of oxime-containing compounds. Furthermore, it delves into the conceptual frameworks underpinning the design of innovative oxime-based insecticides, thereby shedding light on prospective advancements in this field.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Chuxia Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qingqiang Tian
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Yang F, Ran L, He Y, Xu Z, He L, Zhang P. Enantioselective metabolism of fenpropathrin enantiomers by carboxyl/choline esterase 6 in Tetranychus cinnabarinus. PEST MANAGEMENT SCIENCE 2024; 80:1501-1509. [PMID: 37948435 DOI: 10.1002/ps.7882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Tetranychus cinnabarinus is a polyphagous pest mite commonly found in agriculture. As an excellent acaricide, fenpropathrin (FEN) is frequently used to control T. cinnabarinus in agriculture. However, commercial FEN is a racemate with two enantiomers, R-FEN and S-FEN. Considering that investigations on the metabolism of FEN by T. cinnabarinus are based on racemate FEN, it is important to investigate the enantioselective metabolism of FEN in T. cinnabarinus. RESULTS S-FEN was more toxic to T. cinnabarinus than R-FEN by more than 68.8-fold. Moreover, the synergist bioassay revealed that carboxylesterase and cytochrome P450 were the primary enzymes engaged in the detoxification of FEN in T. cinnabarinus, with carboxylesterase playing a leading role. Seven genes were substantially different after the induction of S-FEN and R-FEN. TcCCE06 was screened and selected as a key gene that related to FEN metabolism in T. cinnabarinus. The metabolic results showed that the recombinant TcCCE06 effectively metabolized 32.1% of the R-FEN and 13.8% of the S-FEN within 4 h of incubation. Moreover, R-FEN was demonstrated to have a higher affinity for the TcCCE06 protein than S-FEN based on molecular docking. CONCLUSION Our results indicated that TcCCE06 mediates the enantioselective metabolism of FEN in T. cinnabarinus. Our findings will contribute to a more comprehensive understanding of the mechanisms underlying the differential toxicity of the FEN enantiomers against T. cinnabarinus. Furthermore, they also provide a new perspective for the development of enantiomer-enriched acaricides with higher activity and lower pesticide dosage and pollution risks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Furong Yang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lulu Ran
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuhan He
- College of Plant Protection, Southwest University, Chongqing, China
| | - Zhifeng Xu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ping Zhang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Zhong LK, Sun XP, Han L, Tan CX, Weng JQ, Xu TM, Shi JJ, Liu XH. Design, Synthesis, Insecticidal Activity, and SAR of Aryl Isoxazoline Derivatives Containing Pyrazole-5-carboxamide Motif. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14458-14470. [PMID: 37782011 DOI: 10.1021/acs.jafc.3c01608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
It is important to develop new insecticides with a new mode of action because of increasing pesticide resistance. In this study, a series of novel aryl isoxazoline derivatives containing the pyrazole-5-carboxamide motif were designed and synthesized. Their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Bioassays indicated that the 24 compounds synthesized possessed excellent insecticidal activity against Mythimna separate and no activity against Aphis craccivora and Tetranychus cinnabarinus. Among these aryl isoxazoline derivatives, 3-(5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydrozol-3-yl)-N-(4-fluorophenyl)-1-methyl-1H-pyrazole-5-carboxamide (IA-8) had the best insecticidal activity against M. separate, which is comparable with the positive control fluralaner. The molecular docking results of compound IA-8 and fluralaner with the GABA model demonstrated the same docking mode between compound IA-8 and positive control fluralaner in the active site of GABA. Molecular structure comparisons and ADMET analysis can potentially be used to design more active compounds. The structure-activity relationships are also discussed. This work provided an excellent insecticide for further optimization.
Collapse
Affiliation(s)
- Liang-Kun Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - Xin-Peng Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tian-Ming Xu
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - Jian-Jun Shi
- College of Chemistry & Chemical Engineering, Huangshan University, Huangshan 245041, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Tong Z, Shen Y, Meng D, Yi X, Sun M, Dong X, Chu Y, Duan J. Ecological threat caused by malathion and its chiral metabolite in a honey bee-rape system: Stereoselective exposure risk and the mechanism revealed by proteome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162585. [PMID: 36870510 DOI: 10.1016/j.scitotenv.2023.162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 μg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 μg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 μg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yan Shen
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
9
|
Li Y, Zhang W, Wu Z, Song B, Song R. Design, Synthesis, and Insecticidal Activity of Novel Isoxazoline Diacylhydrazine Compounds as GABA Receptor Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6561-6569. [PMID: 37075263 DOI: 10.1021/acs.jafc.2c08880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A series of isoxazoline derivatives containing diacylhydrazine moieties were designed and synthesized as potential insecticides. Most of these derivatives exhibited good insecticidal activities against Plutella xylostella, and some compounds exhibited excellent insecticidal activities against Spodoptera frugiperda. Especially, D14 showed outstanding insecticidal activity against P. xylostella (LC50 = 0.37 μg/mL), which was superior to that of ethiprole (LC50 = 2.84 μg/mL) and tebufenozide (LC50 = 15.3 μg/mL) and similar to that of fluxametamide (LC50 = 0.30 μg/mL). Remarkably, the insecticidal activity of D14 against S. frugiperda (LC50 = 1.72 μg/mL) was superior to that of chlorantraniliprole (LC50 = 3.64 μg/mL) and tebufenozide (LC50 = 60.5 μg/mL) but lower than that of fluxametamide (LC50 = 0.14 μg/mL). The results of electrophysiological experiments, molecular docking, and proteomics experiments indicate that compound D14 acts by interfering with the γ-aminobutyric acid receptor to control pests.
Collapse
Affiliation(s)
- Yahui Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenbo Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
10
|
Ma S, Wang L, Guo G, Yu J, Di X. Systematic Stereoselectivity Evaluations of Tetramethrin Enantiomers: Stereoselective Cytotoxicity, Metabolism, and Environmental Fate in Earthworms, Soils, Vegetables, and Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:234-243. [PMID: 36577083 DOI: 10.1021/acs.jafc.2c06489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tetramethrin is a widely applied type I chiral pyrethroid insecticide that exists as a mixture of four isomers. In the present study, its stereoselective cytotoxicity, bioaccumulation, degradation, and metabolism were investigated for the first time at the enantiomeric level in detail by using a sensitive chiral high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) method. Results showed that among rac-tetramethrin and its four enantiomers, the trans (+)-1R,3R-tetramethrin had the strongest inhibition effect on the PC12 cells. In the earthworm exposure trial, the concentration of trans (-)-1S,3S-tetramethrin was 0.94-8.92 times in earthworms (cultivated in natural soil) and 1.67-5.01 times (cultivated in artificial soil) higher than trans (+)-1R,3R-tetramethrin, respectively. In the greenhouse experiment, the trans (+)-1R,3R-tetramethrin and cis (+)-1R,3S-tetramethrin were preferentially degraded. Furthermore, for rat liver microsome in vitro incubation, the maximum metabolism rate of cis (-)-1S,3R-tetramethrin was 1.50 times higher than its antipodes. Altogether, the aim of this study was to provide a scientific and reasonable reference for the possibility of developing a single enantiomer to replace the application of rac-tetramethrin, which could possess better bioactivity and lower ecotoxicity, and thus permit more reliable and accurate environmental monitoring and risk assessment.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lina Wang
- Department of Animal Products and Fishery Products, Liaoning Institute for Agro-product Veterinary Drugs and Feed Control, Liaoning Inspection, Examination & Certification Center, Shenyang110000, China
| | - Guoxian Guo
- Department of Animal Products and Fishery Products, Liaoning Institute for Agro-product Veterinary Drugs and Feed Control, Liaoning Inspection, Examination & Certification Center, Shenyang110000, China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| |
Collapse
|
11
|
Liu Z, Han M, Yan X, Cheng W, Tang Z, Cui L, Yang R, Guo Y. Design, Synthesis, and Biological Evaluation of Novel Osthole-Based Isoxazoline Derivatives as Insecticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7921-7928. [PMID: 35731949 DOI: 10.1021/acs.jafc.2c01925] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural products are an abundant and environmentally friendly source for controlling plant pathogens and insect pests. Toward the development of new natural product-based pesticides, here, a series of osthole-based isoxazoline derivatives were prepared by [3 + 2] annulation and evaluated for their insecticidal activities and toxicities. The structures of all osthole-based isoxazoline derivatives were characterized by various spectral analyses, and derivative B13 was further confirmed by X-ray crystallography. Among all the osthole derivatives, B2 displayed the most promising growth inhibitory effect on Mythimna separata with a final corrected mortality rate of 96.4% ± 3.3, which was 1.80 times higher than those of both osthole and toosendanin. Derivative B13 displayed the most promising larvicidal activity against Plutella xylostella with an LC50 value of 0.220 mg/mL, which was superior to rotenone. Furthermore, both B13 and B21 also exhibited better control efficacy against P. xylostella than rotenone in the pot experiments. Additionally, the toxicity evaluation suggested that these osthole-based isoxazoline derivatives showed relatively low toxicity toward nontarget organisms. Given these results, osthole derivatives B2, B13, and B21 could be deeply developed as natural insecticidal agents in agriculture.
Collapse
Affiliation(s)
- Zhiyan Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Meiyue Han
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Xiaoting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Zhenshuai Tang
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| |
Collapse
|
12
|
Li R, Wang Z, Zhang Y, Chen Z, Sang N, Wang M, Shi H. A Novel Enantioseparation Method and Enantioselective Dissipation of Novaluron in Tomatoes Using Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry via a Box-Behnken Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6670-6678. [PMID: 35605133 DOI: 10.1021/acs.jafc.2c02166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Enantioseparation parameters of novaluron were optimized on a Chiralpak IG-3 column by ultrahigh-performance liquid chromatography tandem mass spectrometry via response surface methodology. The absolute configuration and elution order were identified as R-(+)-novaluron and S-(-)-novaluron by polarimetry and X-ray diffraction. A modified QuEChERS method was developed for enantioselective determination of novaluron in eight food and environmental samples. Under optimal conditions, the mean recoveries of the novaluron enantiomers in the eight matrices were 74.4-108.1% with intraday relative standard deviations (RSDs) of 0.3-9.7% and interday RSDs of 0.1-4.1%. Enantioselective dissipation was observed in tomatoes. The dissipation of S-(-)-novaluron was faster than that of R-(+)-novaluron with a half-life of 7.1 and 7.9 days, and the enantiomer fraction value changed from 0.49 to 0.53 in 21 days. An effective method for monitoring novaluron enantiomer residues in food and the environment was established for the first time and had been successfully applied to real samples. This study is of great significance for strengthening the risk assessment and supervision level of chiral pesticides.
Collapse
Affiliation(s)
- Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zihao Chen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Ningning Sang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
13
|
Wells C, Collins CMT. A rapid evidence assessment of the potential risk to the environment presented by active ingredients in the UK's most commonly sold companion animal parasiticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45070-45088. [PMID: 35461423 PMCID: PMC9209362 DOI: 10.1007/s11356-022-20204-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A number of parasiticides are commercially available as companion animal treatments to protect against parasite infestation and are sold in large volumes. These treatments are not intended to enter the wider environment but may be washed off or excreted by treated animals and have ecotoxic impacts. A systematic literature review was conducted to identify the existing evidence for the toxicity of the six most used parasiticides in the UK: imidacloprid, fipronil, fluralaner, afoxolaner, selamectin, and flumethrin. A total of 17,207 published articles were screened, with 690 included in the final evidence synthesis. All parasiticides displayed higher toxicity towards invertebrates than vertebrates, enabling their use as companion animal treatments. Extensive evidence exists of ecotoxicity for imidacloprid and fipronil, but this focuses on exposure via agricultural use and is not representative of environmental exposure that results from use in companion animal treatments, especially in urban greenspace. Little to no evidence exists for the ecotoxicity of the remaining parasiticides. Despite heavy usage, there is currently insufficient evidence to understand the environmental risk posed by these veterinary treatments and further studies are urgently needed to quantify the levels and characterise the routes of environmental exposure, as well as identifying any resulting environmental harm.
Collapse
Affiliation(s)
- Clodagh Wells
- The Centre for Environmental Policy, Imperial College London, The Weeks Building, Princes Gardens, London, SW7 1NE UK
| | - C. M. Tilly Collins
- The Centre for Environmental Policy, Imperial College London, The Weeks Building, Princes Gardens, London, SW7 1NE UK
| |
Collapse
|
14
|
Shao S, Cheng X, Zheng R, Zhang S, Yu Z, Wang H, Wang W, Ye Q. Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152545. [PMID: 34952065 DOI: 10.1016/j.scitotenv.2021.152545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A series of vanillin derivatives have recently been synthesized as effective candidate antiviral agents, with vanisulfane exhibiting pronounced curative and protective activities against cucumber mosaic virus and potato virus Y. However, research on some new pesticides usually ignores their various metabolites and sex-related toxicity. Assisted by 14C labeling, a trial was conducted to investigate the tissue distribution, excretion, and metabolism of vanisulfane in male and female rats for the first time. The results showed that 83.30-87.51% of applied 14C activity was excreted in urine and feces within 24 h of oral administration, and 14C was most abundant in the liver and kidney in both sexes. Interestingly, sex differences were observed in the experiment, with lower body clearance in males than in females 24 h after treatment and preferences for biliary and renal excretion of the pesticide in male and female rats, respectively. A high degradation rate was found for vanisulfane in the plasma; thus, the metabolites of vanisulfane were investigated using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with 14C labeling. One glucuronic acid conjugate and two oxidation metabolites were detected, supporting the monitoring of vanisulfane in vivo. Additionally, rats exposed to vanisulfane exhibited hepatic steatosis in both sexes, along with mild gonadal effects in males. This research offers an effective method for conducting environmental behavioral research and provides new insights for evaluating the potential risks of novel pesticides in mammals from a sex perspective.
Collapse
Affiliation(s)
- Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Ma S, Zhang H, Li F, Zhao P, Yin S, Sun J, Xu J, Wang Z, Xu X, Di X. Systemic Stereoselectivity Study of Fenobucarb: Environmental Behaviors in Greenhouse Vegetables, Fruits, Earthworms, and Soils and Its Cytotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2127-2135. [PMID: 35138837 DOI: 10.1021/acs.jafc.1c06420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fenobucarb (2-sec-butylphenyl methylcarbamate, BPMC) is a potent carbamate pesticide with high insecticidal activity. In this study, the enantioselective accumulation of BPMC in earthworms (Eisenia foetida) and dissipation in cabbage, Chinese cabbage, strawberry, and soils were investigated. The samples were prepared using the QuEChERS method and analyzed using fast and sensitive chiral high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) analysis. The stereoselective accumulation of BPMC enantiomers revealed that S-(+)-BPMC was preferentially accumulated in earthworms rather than its antipode. However, the dissipation studies showed that S-(+)-BPMC degraded faster than the R-(-)-isomer in cabbage, Chinese cabbage, strawberry, and soils. Furthermore, the cytotoxic effect of BPMC enantiomers toward PC12 and N9 neuronal, A549 lung cancer, and MRC5 lung fibroblast cell lines was evaluated using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Compared with R-(-)- and rac-isomers, S-(+)-BPMC exhibited lower cytotoxicity in neuronal cells and a weaker proliferating effect on lung cancer and lung fibroblast cells. Altogether, the findings suggest the use of the pure S-(+)-enantiomer in agricultural management rather than the use of the racemate or the R-(-)-isomer, which might reduce the environmental risk.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fei Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengfei Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang 261031, People's Republic of China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Jiaqi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jiayu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhenqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xin Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
16
|
Qiao Z, Ji Y, Zhang Y, Li Z, Xu Z, Shao X. Azobenzene-isoxazoline as photopharmacological ligand for optical control of insect GABA receptor and behavior. PEST MANAGEMENT SCIENCE 2022; 78:467-474. [PMID: 34516709 DOI: 10.1002/ps.6641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Photopharmacology is a fast-growing photonics-based technology, which realizes the high-resolution regulation of drugs in time and space through light. The purpose of this research was to introduce photochromic groups into the isoxazoline structure to realize the regulation of γ-Aminobutyric acid receptors (GABARs) targeting insect behavior. RESULTS Azobenzene-Fluralaner analogs ABF02, ABF03 and ABF04 have been proven to have larvicidal activity against mosquito larvae. Cis-ABF03 had excellent larvicidal activity against mosquito larvae with a median lethal concentration (LC50 ) value of 1.63, which was better than that of trans-ABF03 (LC50 = 3.90). In particular, ABF03 also showed insecticidal activity against Mythimna separata. Further experiments showed that ABF03 (1 μm) induced depolarization of dorsal unpaired median neurons after ultraviolet light irradiation, enhanced affinity to the receptor, and blocked ligand-gated chloride channels of GABARs. ABF03 (1 μm) realized the real-time photoregulation of the behavior of mosquito larvae, which indicated that the synthesized ligand can complete the binding and off-target action of drugs and targets in vivo under the regulation of light. CONCLUSION Azobenzene-Isoxazoline as photopharmacological ligand was synthesized and evaluated for optical control of insect GABARs and behavior for the first time. ABF03 completed the differential regulation of cockroach neurons and the real-time reversible regulation of insect behavior. The establishment of photochromic ligands provides a new strategy for basic and convenience-oriented research on GABARs in invertebrates. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi Qiao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunfan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yongchao Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Qu S, Zhu L, Wang Q, Wang X. Design, Synthesis and Insecticidal Activity of 3-Arylisoxazoline-N-alkylpyrazole-5-carboxamide Derivatives against Tetranychus urticae Koch. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
He R, Guo D, Huang Z, Kong Y, Ji C, Gu J, Zhang ZB, Diao J, Zhou Z, Zhao M, Fan J, Zhang W. Systematic investigation of stereochemistry, stereoselective bioactivity, and antifungal mechanism of chiral triazole fungicide metconazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147194. [PMID: 33901949 DOI: 10.1016/j.scitotenv.2021.147194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In this study, the stereochemistry, stereoselective fungicidal bioactivity, and antifungal mechanism of chiral triazole fungicide metconazole were investigated. The configurations of metconazole stereoisomers were determined to be (1R, 5R)-metconazole, (1R, 5S)-metconazole, (1S, 5S)-metconazole, and (1S, 5R)-metconazole through using electronic circular dichroism spectroscopy. The bioactivities of four stereoisomers and their stereoisomer mixture toward Fusarium graminearum Schw and Alternaria triticina were found to be in the following order: (1S, 5R)-metconazole > the stereoisomer mixture > (1S, 5S)-metconazole > (1R, 5R)-metconazole > (1R, 5S)-metconazole. In addition, the fungicidal activities of (1S, 5R)-metconazole against two tested pathogens was 13.9-23.4 times higher than those of (1R, 5S)-metconazole. Molecular docking methodology was applied to characterize the docking energy and distances between Cytochrome P450 CYP51B and the metconazole stereoisomers, and (1S, 5R)-metconazole showed the strongest binding energy and the shortest distance binding to CYP51B than the other three stereoisomers. Moreover, enantioselective metabolisms of (1S, 5R)-metconazole and (1R, 5S)-metconazole by Fusarium graminearum Schw were investigated through NMR-based metabolomics. The amounts of alanine, arginine, acetate, ethanol, and dimethylamine produced in the presence of (1R, 5S)-metconazole were significantly higher than corresponding amounts in the presence of (1S, 5R)-metconazole, whereas the amounts of glucose, glycerol, glutamate, methionine, and trimethylamine formed in the presence of (1R, 5S)-metconazole were much less than those in the presence of (1S, 5R)-metconazole. This systematic investigation of metconazole stereoisomers would provide a new perception of metconazole in stereoisomeric level, including bioactivities, metabolic behaviors and antifungal mechanism.
Collapse
Affiliation(s)
- Rujian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou 510663, China
| | - Zhan Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenyang Ji
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen-Bin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
19
|
Dong C, Zhou J, Zuo W, Li Z, Li J, Jiao B. Enantioselective determination of phenthoate enantiomers in plant-origin matrices using reversed-phase high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2021; 36:e5229. [PMID: 34414593 DOI: 10.1002/bmc.5229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Phenthoate is a chiral organophosphate pesticide with a pair of enantiomers which differ in toxicity, behavior and insecticidal activity, and its acute toxicity on human health owing to the inhibition of acetylcholinesterase highlights the need for enantioselective detection of enantiomers. Therefore, this study aimed to establish a simple rapid method for separation and detection of phenthoate enantiomers in fruits, vegetables and grains. The enantiomers were separated using reversed-phase high-performance liquid chromatography-tandem mass spectrometry for the first time. Rapid chiral separation (within 9 min) of the target compound was achieved on a chiral OJ-RH column with the mobile phase of methanol-water = 85:15(v/v), at a flow rate of 1 ml/min and a column temperature of 30°C. Acetonitrile and graphitized carbon black were used as the extractant and sorbent for pretreatment, respectively. This method provides excellent linearity (correlation coefficient ≥0.9986), high sensitivity (limit of quantification 5 μg/kg and limit of detection <0.25 μg/kg), satisfactory mean recoveries (76.2-91.0%) and relative standard deviation (intra-day RSDs ranged from 2.0 to 7.9% and inter-day RSDs ranged from 2.4 to 8.4%). In addition, a field trial to explore the stereoselective degradation of phenthoate enantiomers in citrus showed that (-)-phenthoate degraded faster than its antipode, resulting in the relative accumulation of (+)-phenthoate.
Collapse
Affiliation(s)
- Chao Dong
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Jie Zhou
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Wei Zuo
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zhixia Li
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Jing Li
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Bining Jiao
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
20
|
Gao Y, Zhao X, Sun X, Wang Z, Zhang J, Li L, Shi H, Wang M. Enantioselective Detection, Bioactivity, and Degradation of the Novel Chiral Fungicide Oxathiapiprolin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3289-3297. [PMID: 33710880 DOI: 10.1021/acs.jafc.0c04163] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxathiapiprolin is a novel chiral piperidine thiazole isooxazoline fungicide that contains a pair of enantiomers. An effective analytical method was established for the enantioselective detection of oxathiapiprolin in fruit, vegetable, and soil samples using ultraperformance liquid chromatography-tandem triple quadrupole mass spectrometry. The optimal enantioseparation was achieved on a Chiralpak IG column at 35 °C using acetonitrile and 0.1% formic acid aqueous solution (90:10, v/v) as the mobile phase. The absolute configuration of the oxathiapiprolin enantiomers was identified with the elution order of R-(-)-oxathiapiprolin and S-(+)-oxathiapiprolin by electron circular dichroism spectra. The bioactivity of R-(-)-oxathiapiprolin was 2.49 to 13.30-fold higher than that of S-(+)-oxathiapiprolin against six kinds of oomycetes. The molecular docking result illuminated the mechanism of enantioselectivity in bioactivity. The glide score (-8.00 kcal/mol) for the R-enantiomer was better with the binding site in Phytophthora capsici than the S-enantiomer (-7.50 kcal/mol). Enantioselective degradation in tomato and pepper under the field condition was investigated and indicated that R-(-)-oxathiapiprolin was preferentially degraded. The present study determines the enantioselectivity of oxathiapiprolin about enantioselective detection, bioactivity, and degradation for the first time. The R-enantiomer will be a better choice than racemic oxathiapiprolin to enhance the bioactivity and reduce the pesticide residues at a lower application rate.
Collapse
Affiliation(s)
- Yingying Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Liu Z, Chen D, Han J, Chen Y, Zhang K. Stereoselective degradation behavior of the novel chiral antifungal agrochemical penthiopyrad in soil. ENVIRONMENTAL RESEARCH 2021; 194:110680. [PMID: 33385389 DOI: 10.1016/j.envres.2020.110680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Penthiopyrad is a chiral carboxamide fungicide with a broad spectrum of fungicidal activity. However, there is no report on the analysis of the enantiomers of penthiopyrad and their environmental behavior. Soil is an important carrier for pesticides to affect the environment. Therefore, this study aimed to investigate the absolute configuration, stereoselective degradation, configuration stability and potential metabolites of this agrochemical in soil under different laboratory conditions. R-(-)-penthiopyrad and S-(+)-penthiopyrad were identified by the electronic circular dichroism method. Regarding the racemic analyte, the degradation half-lives of the stereoisomers ranged from 38.9 to 97.6 days, the S-(+)-stereoisomer degraded preferentially in four types of Chinese soil. However, enantiopure R-(-)-penthiopyrad degraded faster than its antipode, a finding that might be related to the microbial activity in soil. The organic matter (OM) content influenced the stereoselective degradation of rac-penthiopyrad. No configuration conversion was observed in both enantiopure analyte degradation processes. One possible metabolite, 753-A-OH, was detected in the treated soil samples, and the degradation pathway might be a hydroxylation reaction. This is the first report of the absolute configuration of penthiopyrad stereoisomers and the first comprehensive evaluation of the stereoselective degradation of penthiopyrad in Chinese soil. Stereoselective degradation of rac-penthiopyrad was observed in the four types of soil. And the stereoselectivity might be inhibited by OM. This study provides more accurate data to investigate the environmental behavior of penthiopyrad at the stereoisomer level.
Collapse
Affiliation(s)
- Zhengyi Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Dan Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jiahua Han
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ye Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|