1
|
Kołodziejczyk AM, Grala M, Kołodziejczyk Ł. Evaluation of PAMAM Dendrimer-Stabilized Gold Nanoparticles: Two-Stage Procedure Synthesis and Toxicity Assessment in MCF-7 Breast Cancer Cells. Molecules 2025; 30:2024. [PMID: 40363829 DOI: 10.3390/molecules30092024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Gold nanoparticles stabilized with polyamidoamine dendrimers are one of the potential candidates for use as a contrast agent in computed tomography and a drug delivery agent. This work demonstrates a rapid, two-step synthesis of such complexes, which are size-stable for up to 18 months. The first step of the synthesis involves a short sonication of gold (III) chloride hydrate with polyamidoamine dendrimers of the fourth generation, while the second step uses microwaves to reduce gold (III) chloride hydrate with sodium citrate. The developed synthesis method enables rapid production of spherical and monodisperse gold nanoparticles stabilized with polyamidoamine dendrimers. Physicochemical characterization of the gold nanoparticle-polyamidoamine dendrimers complexes was performed using ultraviolet-visible spectroscopy, dynamic light scattering technique, infrared spectroscopy, atomic force microscopy, and transmission electron microscopy. The toxicity of synthesized complexes on the breast cancer MCF-7 cell line has been studied using the tetrazolium salt reduction test. The produced gold nanoparticles revealed lower toxicity levels on the MCF-7 cell line after 18 months from synthesis compared with newly synthesized colloids. Synthesized gold nanoparticles stabilized with dendrimers and commercially available gold nanoparticles stabilized with sodium citrate show similar toxicity levels on breast cancer cells.
Collapse
Affiliation(s)
- Agnieszka Maria Kołodziejczyk
- Nanomaterial Structural Research Laboratory and Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Magdalena Grala
- Nanomaterial Structural Research Laboratory and Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland
- Department of Chemical and Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 93-005 Lodz, Poland
| | - Łukasz Kołodziejczyk
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| |
Collapse
|
2
|
Zenjanab MK, Pakchin PS, Fathi M, Abdolahinia ED, Adibkia K. Niosomes containing paclitaxel and gold nanoparticles with different coating agents for efficient chemo/photothermal therapy of breast cancer. Biomed Mater 2024; 19:035015. [PMID: 38422524 DOI: 10.1088/1748-605x/ad2ed5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer (BC) is one of the most common cancers in women, and chemotherapy is usually used to overcome this cancer. To improve drug delivery to cancer sites and reduce their side effects, nanocarriers such as niosomes (NIOs) are used. Moreover, a combination of other therapeutic methods like photothermal therapy (PTT) can help to enhance the chemotherapy effect. The aim of this research is the design a nanocarrier that simultaneously delivers chemotherapy and PTT agents. To achieve this goal, NIOs containing paclitaxel (PTX) as a chemotherapeutic agent and spherical gold nanoparticles (AuNPs) coated with citrate, chitosan (CS), and polyamidoamine (PAMAM) as a PTT agent were synthesized by thin hydration methods. Their physicochemical properties were determined by dynamic light scattering, UV-Vis, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) analysis. Cellular uptake, cell cytotoxicity, hyperthermia, and apoptosis effects of the proposed system were investigated in the MCF-7 BC cell line. The cellular uptake of NIOs/AuNPs-PAMAM (99.21%) and NIOs/AuNPs-CS (98.93%) by MCF-7 cells was higher than that of NIOs/AuNPs (79.55%), demonstrating that surface charge plays a key role in the cellular uptake of NPs. The MTT assay showed the cell viability of 45.48% for NIOs/AuNPs/PTX, 34.24% for NIOs/AuNPs-CS/PTX, and 37.67% for NIOs/AuNPs-PAMAM/PTX after 48 h of treatment. However, the application of hyperthermia significantly decreased the viability of cells treated with NIOs/AuNPs/PTX (37.72%), NIOs/AuNPs-CS/PTX (10.49%), and NIOs/AuNPs-PAMAM/PTX (4.1%) after 48 h. The apoptosis rate was high in NIOs/AuNPs-PAMAM/PTX (53.24%) and NIOs/AuNPs-CS/PTX (55.4%) confirming the data from MTT. In conclusion, the result revealed that combined PTT with chemotherapy increased cell cytotoxicity effects against the MCF-7 cells, and the AuNPs with various coating agents affected cellular uptake and hyperthermia which can be considered for efficient BC therapy.
Collapse
Affiliation(s)
- Masuomeh Kaveh Zenjanab
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Jeevanandam J, Gonçalves M, Castro R, Gallo J, Bañobre-López M, Rodrigues J. Enhanced alpha-amylase inhibition activity of amine-terminated PAMAM dendrimer stabilized pure copper-doped magnesium oxide nanoparticles. BIOMATERIALS ADVANCES 2023; 153:213535. [PMID: 37385162 DOI: 10.1016/j.bioadv.2023.213535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
The present work aims to prepare copper-doped MgO nanoparticles via a sol-gel approach and study their antidiabetic alpha-amylase inhibition activity with undoped MgO nanoparticles. The ability of G5 amine-terminated polyamidoamine (PAMAM) dendrimer for the controlled release of copper-doped MgO nanoparticles to exhibit alpha-amylase inhibition activity was also evaluated. The synthesis of MgO nanoparticles via sol-gel approach and optimization of calcination temperature and time has led to the formation of nanoparticles with different shapes (spherical, hexagonal, and rod-shaped) and a polydispersity in size ranging from 10 to 100 nm with periclase crystalline phase. The presence of copper ions in the MgO nanoparticles has altered their crystallite size, eventually modifying their size, morphology, and surface charge. The efficiency of dendrimer to stabilize spherical copper-doped MgO nanoparticles (ca. 30 %) is higher than in other samples, which was confirmed by UV-Visible, DLS, FTIR, and TEM analysis. The amylase inhibition assay emphasized that the dendrimer nanoparticles stabilization has led to the prolonged enzyme inhibition ability of MgO and copper-doped MgO nanoparticles for up to 24 h.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mara Gonçalves
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rita Castro
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Juan Gallo
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
4
|
Maki MAA, Teng MS, Tan KF, Kumar PV. Polyamidoamine-stabilized and hyaluronic acid-functionalized gold nanoparticles for cancer therapy. OPENNANO 2023; 13:100182. [DOI: 10.1016/j.onano.2023.100182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Zheng Y, Dai Y, Hong J, Fan H, Zhang Q, Jiang W, Xu W, Fei J, Hong J. Magnetic dummy template molecularly imprinted particles functionalized with dendritic nanoclusters for selective enrichment and determination of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in tobacco products. RSC Adv 2023; 13:13824-13833. [PMID: 37152563 PMCID: PMC10160923 DOI: 10.1039/d3ra00610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
The compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the tobacco specific nitrosamines (TSNAs), is widely recognized as a major carcinogen found in tobacco products, environmental tobacco smoke and wastewater. Thus, a selective enrichment and sensitive detection method for monitoring the risk of NNK exposure is highly desirable. In this study, a magnetic molecularly imprinted polymer (MMIP) functionalized with dendritic nanoclusters was synthesized to selectively recognize NNK via the dummy template imprinting strategy, aiming to avoid residual template leakage and increase the imprinting efficiency. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, as well as vibrating sample magnetometry (VSM) and nitrogen adsorption/desorption analysis. The resulting MMIPs exhibited high adsorption capacity, fast binding kinetics and good selectivity for trace amounts of NNK. A rapid, low cost and efficient method for detecting NNK in tobacco products was established using magnetic dispersive solid-phase extraction coupled with HPLC-DAD with a good linear range of 0.1-250 μg mL-1. The limit of detection (LOD) and limit of quantification (LOQ) of NNK were 13.5 and 25.0 ng mL-1, respectively. The average recoveries were 87.8-97.3% with RSDs lower than 3%. The results confirmed that the MMIPs could be used as an excellent selective adsorbent for NNK, with potential applications in the pretreatment of tobacco products.
Collapse
Affiliation(s)
- Yani Zheng
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Yin Dai
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Junqiang Hong
- Department of Radiotherapy, Fujian Medical University Affiliated Xiamen Humanity Hospital Xiamen Fujian 361000 China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Qing Zhang
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 China
| | - Wei Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development Center of China Tobacco Yunnan Industrial Co. Ltd Kunming Yunnan 650231 China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Jianwen Fei
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| |
Collapse
|
6
|
Grala M, Kołodziejczyk AM, Białkowska K, Walkowiak B, Komorowski P. Assessment of the influence of gold nanoparticles stabilized with PAMAM dendrimers on HUVEC barrier cells. Micron 2023; 168:103430. [PMID: 36905752 DOI: 10.1016/j.micron.2023.103430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Civilization diseases, cancer, frequent mutations of viruses and other pathogens constitute the need to look for new drugs, as well as systems for their targeted delivery. One of the promising way of using drugs is supplying them by linking to nanostructures. One of the solution for the development of nanobiomedicine are metallic nanoparticles stabilized with various polymer structures. In this report, we present the synthesis of gold nanoparticles, their stabilization with polyamidoamine (PAMAM) dendrimers with ethylenediamine core and the characteristics of the obtained product (AuNPs/PAMAM). The presence, size and morphology of synthesized gold nanoparticles were evaluated by ultraviolet-visible light spectroscopy, transmission electron microscopy and atomic force microscopy. The hydrodynamic radius distribution of the colloids was analyzed by dynamic light scattering technique. Additionally, the cytotoxicity and changes in mechanical properties of human umbilical vein endothelial cell line (HUVEC) cells caused by AuNPs/PAMAM were assessed. The results of studies on the nanomechanical properties of cells suggest a two-step changes in cell elasticity as a response to contact with nanoparticles. When using AuNPs/PAMAM in lower concentrations, no changes in cell viability were observed and the cells were softer than untreated cells. When higher concentrations were used, a decrease in the cells viability to about 80 % were observed, as well as non-physiological stiffening of the cells. The presented results may play a significant role in the development of nanomedicine.
Collapse
Affiliation(s)
- Magdalena Grala
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd, Lodz, Poland; Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland
| | - Agnieszka M Kołodziejczyk
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd, Lodz, Poland; Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland.
| | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland
| | - Bogdan Walkowiak
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd, Lodz, Poland; Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland
| |
Collapse
|
7
|
Poly(amidoamine) dendrimer-induced 3D crosslinked network constructed on polyphenylene sulfide nonwoven as a battery separator: Effect of generation number on cell performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Zenze M, Daniels A, Singh M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics 2023; 15:398. [PMID: 36839720 PMCID: PMC9961584 DOI: 10.3390/pharmaceutics15020398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The formulation of nanoscale systems with well-defined sizes and shapes is of great interest in applications such as drug and gene delivery, diagnostics and imaging. Dendrimers are polymers that have attracted interest due to their size, shape, branching length, amine density, and surface functionalities. These unique characteristics of dendrimers set them apart from other polymers, their ability to modify nanoparticles (NPs) for biomedical applications. Dendrimers are spherical with multiple layers over their central core, each representing a generation. Their amphiphilic nature and hollow structure allow for the incorporation of multiple drugs or genes, in addition to enabling easy surface modification with cellular receptor-targeting moieties to ensure site-specific delivery of therapeutics. Dendrimers are employed in chemotherapeutic applications for the delivery of anticancer drugs. There are many inorganic NPs currently being investigated for cancer therapy, each with their own unique biological, chemical, and physical properties. To favor biomedical applications, inorganic NPs require suitable polymers to ensure stability, biodegradability and target specificity. The success of dendrimers is dependent on their unique structure, good bioavailability and stability. In this review, we describe the properties of dendrimers and their use as modifiers of inorganic NPs for enhanced therapeutic delivery. Herein, we review the significant developments in this area from 2015 to 2022. Databases including Web of Science, Scopus, Google Scholar, Science Direct, BioMed Central (BMC), and PubMed were searched for articles using dendrimers, inorganic nanoparticles and cancer as keywords.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
9
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
10
|
Ulloa JA, Barberá J, Serrano JL. Gold Nanoparticles Modification with Liquid Crystalline Polybenzylic Dendrons via 1,3-Dipolar Cycloaddition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4026. [PMID: 36432312 PMCID: PMC9699240 DOI: 10.3390/nano12224026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
A series of six polybenzylic dendrons with an alkynyl focal point were synthesized for their incorporation to gold nanoparticles. Five of these compounds showed columnar mesomorphism in a wide range of temperatures. These dendrons were reacted with gold nanoparticles stabilized with a combination of a dodecanethiol and 11-azidoundecane-1-thiol. The azido group of the last compound allowed the functionalization of the nanoparticles with the six polybenzylic dendrons by 1,3-dipolar cycloaddition between their alkynyl groups and the terminal azido groups of the thiols. A high efficiency of the cycloaddition process (47-69%) was confirmed by several experimental techniques and no decomposition or aggregation phenomena were detected in the dendron-coated nanoparticles. The involved mechanism and the resulting percentage composition of the final materials are discussed. The results of the ulterior growth of the nanoparticles by thermal treatment are influenced by the size and the shape of the dendron and the temperature of the process. The structures of the final nanoparticles were investigated by TEM, DSC, TGA, NMR and UV-Vis spectroscopy. These nanoparticles do not show liquid crystal properties. However, a melting process between a crystalline and a fluid phase is observed. In the solid phase, the nanomaterials prepared show a short-range interaction between nanoparticles with a 2D local hexagonal order. A near-field effect was observed in the UV-vis spectra by coupling of different surface plasmon resonance bands (SPR) probably due to the short-range interactions. The main novelty of this work lies in the scarcity of previous studies of gold nanoparticles coated with dendrons forming themselves columnar mesophases. Most of the studies reported in the literature deal with gold nanoparticles coated with calamitic mesogens. Additionally, the effect of the thermal treatment, which in a previous paper was shown to increase the mean size of the nanoparticles without increasing their size polydispersity, has been studied in these materials.
Collapse
Affiliation(s)
- José Antonio Ulloa
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Calle Edmundo Larenas 129, Concepción 4070371, Chile
| | - Joaquín Barberá
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José Luis Serrano
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
11
|
Fernandes T, Nogueira HIS, Amorim CO, Amaral JS, Daniel‐da‐Silva AL, Trindade T. Chemical Strategies for Dendritic Magneto-plasmonic Nanostructures Applied to Surface-Enhanced Raman Spectroscopy. Chemistry 2022; 28:e202202382. [PMID: 36083195 PMCID: PMC9828551 DOI: 10.1002/chem.202202382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 01/12/2023]
Abstract
Chemical analyses in the field using surface-enhanced Raman scattering (SERS) protocols are expected to be part of several analytical procedures applied to water quality monitoring. To date, these endeavors have been supported by developments in SERS substrate nanofabrication, instrumentation portability, and the internet of things. Here, we report distinct chemical strategies for preparing magneto-plasmonic (Fe3 O4 : Au) colloids, which are relevant in the context of trace-level detection of water contaminants due to their inherent multifunctionality. The main objective of this research is to investigate the role of poly(amidoamine) dendrimers (PAMAMs) in the preparation of SERS substrates integrating both functionalities into single nanostructures. Three chemical routes were investigated to design magneto-plasmonic nanostructures that translate into different ways for assessing SERS detection by using distinct interfaces. Hence, a series of magneto-plasmonic colloids have been characterized and then assessed for their SERS activity by using a model pesticide (thiram) dissolved in aqueous samples.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Helena I. S. Nogueira
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Carlos O. Amorim
- Department of PhysicsCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - João S. Amaral
- Department of PhysicsCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Ana L. Daniel‐da‐Silva
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Tito Trindade
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| |
Collapse
|
12
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
13
|
Fernandes T, Martins NCT, Fateixa S, Nogueira HIS, Daniel-da-Silva AL, Trindade T. Dendrimer stabilized nanoalloys for inkjet printing of surface-enhanced Raman scattering substrates. J Colloid Interface Sci 2022; 612:342-354. [PMID: 34998194 DOI: 10.1016/j.jcis.2021.12.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022]
Abstract
Research on paper substrates prepared by inkjet deposition of metal nanoparticles for sensing applications has become a hot topic in recent years; however, the design of such substrates based on the deposition of alloy nanoparticles remains less explored. Herein, we report for the first time the inkjet printing of dendrimer-stabilized colloidal metal nanoalloys for the preparation of paper substrates for surface-enhanced Raman scattering (SERS) spectroscopy. To this end, nanoassemblies containing variable molar ratios of Au:Ag were prepared in the presence of poly(amidoamine) dendrimer (PAMAM), resulting in plasmonic properties that depend on the chemical composition of the final materials. The dendrimer-stabilized Au:Ag:PAMAM colloids exhibit high colloidal stability, making them suitable for the preparation of inks for long-term use in inkjet printing of paper substrates. Moreover, the pre-treatment of paper with a polystyrene (PS) aqueous emulsion resulted in hydrophobic substrates with improved SERS sensitivity, as illustrated in the analytical detection of tetramethylthiuram disulfide (thiram pesticide) dissolved in aqueous solutions. We suggest that the interactions established between the two polymers (PAMAM and PS) in an interface region over the cellulosic fibres, resulted in more exposed metallic surfaces for the adsorption of the analyte molecules. The resulting hydrophobic substrates show long-term plasmonic stability with high SERS signal retention for at least ninety days.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Natércia C T Martins
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena I S Nogueira
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Syamila N, Syahir A, Sulaiman Y, Ikeno S, Tan WS, Ahmad H, Ahmad Tajudin A. Bio-nanogate manipulation on electrode surface as an electrochemical immunosensing strategy for detecting anti-hepatitis B surface antigen. Bioelectrochemistry 2022; 143:107952. [PMID: 34600402 DOI: 10.1016/j.bioelechem.2021.107952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
The diagnosis of hepatitis B virus (HBV) and monitoring of the vaccination efficiency against HBV require real-time analysis. The presence of antibody against hepatitis B virus surface antigen (anti-HBsAg) as a result of HBV infection and/or immunization may indicate individual immune status towards HBV. This study investigated the ability of a bio-nanogate-based displacement immunosensing strategy in detecting anti-HBsAg antibody, via nonspecific-binding between polyamidoamine dendrimers encapsulated gold nanoparticles (PAMAM-Au) and the 'antigenic determinant' region (aD) of HBsAg. For this purpose, maltose binding protein harbouring the aD region (MBP-aD) was synthesized as a bioreceptor and immobilized on the screen-printed carbon electrode (SPCE). Following that, PAMAM-Au was deposited on MBP-aD, forming the 'gate' and was used as a monitoring agent. Under optimal conditions, the high specificity of anti-HBsAg antibody towards MBP-aD displaced PAMAM-Au causing the decrement of anodic peak in differential pulse voltammetry (DPV) analysis. The signal changes were proportionally related to the concentration of anti-HBsAg antibody, in a range of 1 - 1000 mIU/mL with a limit of detection (LOD) of 2.5 mIU/mL. The results also showed high specificity and selectivity of the immunosensor platform in detecting anti-HBsAg antibody both in spiked buffer and human serum samples.
Collapse
Affiliation(s)
- Noor Syamila
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amir Syahir
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Gibbens-Bandala B, Trujillo-Nolasco M, Cruz-Nova P, Aranda-Lara L, Ocampo-García B. Dendrimers as Targeted Systems for Selective Gene and Drug Delivery. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:361-397. [DOI: 10.1007/978-3-031-12658-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Devadas B, Periasamy AP, Bouzek K. A review on poly(amidoamine) dendrimer encapsulated nanoparticles synthesis and usage in energy conversion and storage applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
|
18
|
Jiang G, Liu S, Yu T, Wu R, Ren Y, van der Mei HC, Liu J, Busscher HJ. PAMAM dendrimers with dual-conjugated vancomycin and Ag-nanoparticles do not induce bacterial resistance and kill vancomycin-resistant Staphylococci. Acta Biomater 2021; 123:230-243. [PMID: 33508504 DOI: 10.1016/j.actbio.2021.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
The effective life-time of new antimicrobials until the appearance of the first resistant strains is steadily decreasing, which discourages incentives for commercialization required for clinical translation and application. Therefore, development of new antimicrobials should not only focus on better and better killing of antimicrobial-resistant strains, but as a paradigm shift on developing antimicrobials that prevent induction of resistance. Heterofunctionalized, poly-(amido-amine) (PAMAM) dendrimers with amide-conjugated vancomycin (Van) and incorporated Ag nanoparticles (AgNP) showed a 6-7 log reduction in colony-forming-units of a vancomycin-resistant Staphylococcus aureus strain in vitro, while not inducing resistance in a vancomycin-susceptible strain. Healing of a superficial wound in mice infected with the vancomycin-resistant S. aureus was significantly faster and more effective by irrigation with low-dose, dual-conjugated Van-PAMAM-AgNP dendrimer suspension than by irrigation with vancomycin in solution or a PAMAM-AgNP dendrimer suspension. Herewith, dual-conjugation of vancomycin together with AgNPs in heterofunctionalized PAMAM dendrimers fulfills the need for new, prolonged life-time antimicrobials killing resistant pathogens without inducing resistance in susceptible strains. Important for clinical translation, this better use of antibiotics can be achieved with currently approved and clinically applied antibiotics, provided suitable for amide-conjugation.
Collapse
Affiliation(s)
- Guimei Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Sidi Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Tianrong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Renfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| |
Collapse
|
19
|
Dongying Q, Lan L, Qian D. Targeting of ovarian cancer cell through functionalized gold nanoparticles by novel glypican-3- binding peptide as a ultrasound contrast agents. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Valencia FJ, Ramírez M, Varas A, Rogan J, Kiwi M. Thermal Stability of Hollow Porous Gold Nanoparticles: A Molecular Dynamics Study. J Chem Inf Model 2020; 60:6204-6210. [PMID: 33118806 DOI: 10.1021/acs.jcim.0c00785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hollow nanoparticle structures play a major role in nanotechnology and nanoscience since their surface to volume ratio is significantly larger than that of filled ones. While porous hollow nanoparticles offer a significant improvement of the available surface area, there is a lack of theoretical understanding, and scarce experimental information, on how the porosity controls or dominates the stability. Here we use classical molecular dynamics simulations to shed light on the particular characteristics and properties of gold porous hollow nanoparticles and how they differ from the nonporous ones. Adopting gold as a prototype, we show how, as the temperature increases, the porosity introduces surface stress and minor transitions that lead to various scenarios, from partial shrinkage for small filling factors to abrupt compression and the loss of spherical shape for large filling. Our work provides new insights into the stability limits of porous hollow nanoparticles, with important implications for the design and practical use of these enhanced geometries.
Collapse
Affiliation(s)
- Felipe J Valencia
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124
| | - Max Ramírez
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| | - Alejandro Varas
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| | - José Rogan
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| | - Miguel Kiwi
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| |
Collapse
|
21
|
Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
Dendritic polymers have highly branched three-dimensional architectures, the fourth type apart from linear, cross-linked, and branched one. They possess not only a large number of terminal functional units and interior cavities, but also a low viscosity with weak or no entanglement. These features endow them with great potential in various biomedicine applications, including drug delivery, gene therapy, tissue engineering, immunoassay and bioimaging. Most review articles related to bio-related applications of dendritic polymers focus on their drug or gene delivery, while very few of them are devoted to their function as cancer diagnosis agents, which are essential for cancer treatment. In this review, we will provide comprehensive insights into various dendritic polymer-based cancer diagnosis agents. Their classification and preparation are presented for readers to have a precise understanding of dendritic polymers. On account of physical/chemical properties of dendritic polymers and biological properties of cancer, we will suggest a few design strategies for constructing dendritic polymer-based diagnosis agents, such as active or passive targeting strategies, imaging reporters-incorporating strategies, and/or internal stimuli-responsive degradable/enhanced imaging strategies. Their recent applications in in vitro diagnosis of cancer cells or exosomes and in vivo diagnosis of primary and metastasis tumor sites with the aid of single/multiple imaging modalities will be discussed in great detail. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|