1
|
Zsidó BZ, Hetényi C. Water in drug design: pitfalls and good practices. Expert Opin Drug Discov 2025; 20:745-764. [PMID: 40289543 DOI: 10.1080/17460441.2025.2497912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Structure-based drug design relies on optimizing drug-target interactions and blocking harmful pathophysiological events at the atomic level. Such events of the human body are modulated by water acting either as a medium or an individual partner in molecular interactions. A precise understanding of the modulatory mechanisms of water is essential for a successful drug design. AREAS COVERED The present review discusses different topographical and networking situations that result in radically different roles of water, a root of various pitfalls of drug design. The review surveys good practices for tackling the problems of determining water structure at atomic resolution. Techniques for quantifying the effects of bulk, networking, and individual water molecules on the stability of drug-target complexes are also discussed. The article is based on a literature search using the PubMed, Web of Science, and Google Scholar databases. EXPERT OPINION With advances in rapid computational algorithms and a better understanding of the physicochemical machinery of complex formation, theoretical approaches have resulted in elegant and cost-effective tools that fill the knowledge gaps left by the limited experimental methods. Overcoming the technical pitfalls of drug design, water transforms from a frustrating challenge into a handy tool for fine-tuning drug-target interactions.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
2
|
Bencsik T, Balázs O, Vida RG, Zsidó BZ, Hetényi C, Valentová K, Poór M. Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2765-2776. [PMID: 39606799 PMCID: PMC11909324 DOI: 10.1002/jsfa.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Over the past two decades, the global incidence of gout has markedly increased, affecting people worldwide. Considering the side effects of xanthine oxidase (XO) inhibitor drugs (e.g. allopurinol and febuxostat) used in the treatment of hyperuricemia and gout, the potential application of phytochemicals has been widely studied. In addition, XO also takes part in the elimination of certain drugs, including 6-mercaptopurine. In the current explorative study, we aimed to examine the potential effects of tea catechins, resveratrol, silymarin flavonolignans and some of their conjugated metabolites on XO-catalyzed xanthine and 6-mercaptopurine oxidation, applying in vitro assays and modeling studies. RESULTS Catechins, resveratrol and resveratrol conjugates exerted no or only weak inhibitory effects on XO. Silybin A, silybin B and isosilybin A were weak, silychristin was a moderate, while 2,3-dehydrosilychristin was a potent inhibitor of the enzyme. Sulfate metabolites of silybin A, silybin B and isosilybin A were considerably stronger inhibitors compared to the parent flavonolignans, and the sulfation of 2,3-dehydrosilychristin slightly increased its inhibitory potency. Silychristin was the sole flavonolignan tested, where sulfate conjugation decreased its inhibitory effect. CONCLUSION 2,3-Dehydrosilychristin seems to be a promising candidate for examining its in vivo antihyperuricemic effects, because both the parent compound and its sulfate conjugate are highly potent inhibitors of XO. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tímea Bencsik
- Department of Pharmacognosy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Orsolya Balázs
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Balázs Z Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- National Laboratory for Drug Research and DevelopmentBudapestHungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- National Laboratory for Drug Research and DevelopmentBudapestHungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Miklós Poór
- Department of Laboratory Medicine, Medical SchoolUniversity of PécsPécsHungary
- Molecular Medicine Research Group, János Szentágothai Research CentreUniversity of PécsPécsHungary
| |
Collapse
|
3
|
Szalai T, Bajusz D, Börzsei R, Zsidó BZ, Ilaš J, Ferenczy GG, Hetényi C, Keserű GM. Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments. J Chem Inf Model 2024; 64:8980-8998. [PMID: 39576659 PMCID: PMC11632780 DOI: 10.1021/acs.jcim.4c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/10/2024]
Abstract
Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein-ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks. However, quantitative experimental characterization of relevant protein-ligand-water systems, and consequently the validation of these modeling methods, remains challenging. Here, we investigated the impact of solvent exchange from light (H2O) to heavy water (D2O) to provide complete thermodynamic profiling of these ternary systems. Utilizing the solvent isotope effects, we gain a deeper understanding of the energetic contributions of various components. Specifically, we conducted isothermal titration calorimetry experiments on trypsin with a series of p-substituted benzamidines, as well as carbonic anhydrase II (CAII) with a series of aromatic sulfonamides. Significant differences in binding enthalpies found between light vs heavy water indicate a substantial role of the binding site water network in protein-ligand binding. Next, we challenged two conceptually distinct modeling methods, the grid-based WaterFLAP and the molecular dynamics-based MobyWat, by predicting and scoring relevant water networks. The predicted water positions accurately reproduce those in available high-resolution X-ray and neutron diffraction structures of the relevant protein-ligand complexes. Estimated energetic contributions of the identified water networks were corroborated by the experimental thermodynamics data. Besides providing a direct validation for the predictive power of these methods, our findings confirmed the importance of considering binding site water networks in computational ligand design.
Collapse
Affiliation(s)
- Tibor
Viktor Szalai
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Dávid Bajusz
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Rita Börzsei
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - Balázs Zoltán Zsidó
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - Janez Ilaš
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - György G. Ferenczy
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Csaba Hetényi
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
4
|
Szél V, Zsidó BZ, Hetényi C. Enthalpic Classification of Water Molecules in Target-Ligand Binding. J Chem Inf Model 2024; 64:6583-6595. [PMID: 39135312 DOI: 10.1021/acs.jcim.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Water molecules play various roles in target-ligand binding. For example, they can be replaced by the ligand and leave the surface of the binding pocket or stay conserved in the interface and form bridges with the target. While experimental techniques supply target-ligand complex structures at an increasing rate, they often have limitations in the measurement of a detailed water structure. Moreover, measurements of binding thermodynamics cannot distinguish between the different roles of individual water molecules. However, such a distinction and classification of the role of individual water molecules would be key to their application in drug design at atomic resolution. In this study, we investigate a quantitative approach for the description of the role of water molecules during ligand binding. Starting from complete hydration structures of the free and ligand-bound target molecules, binding enthalpy scores are calculated for each water molecule using quantum mechanical calculations. A statistical evaluation showed that the scores can distinguish between conserved and displaced classes of water molecules. The classification system was calibrated and tested on more than 1000 individual water positions. The practical tests of the enthalpic classification included important cases of antiviral drug research on HIV-1 protease inhibitors and the Influenza A ion channel. The methodology of classification is based on open source program packages, Gromacs, Mopac, and MobyWat, freely available to the scientific community.
Collapse
Affiliation(s)
- Viktor Szél
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| |
Collapse
|
5
|
Bayarsaikhan B, Zsidó BZ, Börzsei R, Hetényi C. Efficient Refinement of Complex Structures of Flexible Histone Peptides Using Post-Docking Molecular Dynamics Protocols. Int J Mol Sci 2024; 25:5945. [PMID: 38892133 PMCID: PMC11172440 DOI: 10.3390/ijms25115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Histones are keys to many epigenetic events and their complexes have therapeutic and diagnostic importance. The determination of the structures of histone complexes is fundamental in the design of new drugs. Computational molecular docking is widely used for the prediction of target-ligand complexes. Large, linear peptides like the tail regions of histones are challenging ligands for docking due to their large conformational flexibility, extensive hydration, and weak interactions with the shallow binding pockets of their reader proteins. Thus, fast docking methods often fail to produce complex structures of such peptide ligands at a level appropriate for drug design. To address this challenge, and improve the structural quality of the docked complexes, post-docking refinement has been applied using various molecular dynamics (MD) approaches. However, a final consensus has not been reached on the desired MD refinement protocol. In this present study, MD refinement strategies were systematically explored on a set of problematic complexes of histone peptide ligands with relatively large errors in their docked geometries. Six protocols were compared that differ in their MD simulation parameters. In all cases, pre-MD hydration of the complex interface regions was applied to avoid the unwanted presence of empty cavities. The best-performing protocol achieved a median of 32% improvement over the docked structures in terms of the change in root mean squared deviations from the experimental references. The influence of structural factors and explicit hydration on the performance of post-docking MD refinements are also discussed to help with their implementation in future methods and applications.
Collapse
Affiliation(s)
- Bayartsetseg Bayarsaikhan
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Rita Börzsei
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Valentová K, Vida RG, Poór M. Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites. Biomed Pharmacother 2023; 167:115548. [PMID: 37734263 DOI: 10.1016/j.biopha.2023.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Luteolin, naringenin, myricetin, and ampelopsin are abundant flavonoids in nature, and several dietary supplements also contain them at very high doses. After the peroral intake, flavonoids go through extensive presystemic biotransformation; therefore, typically their sulfate/glucuronic acid conjugates reach high concentrations in the circulation. Xanthine oxidase (XO) enzyme is involved in uric acid production, and it also takes part in the elimination of certain drugs (e.g., 6-mercaptopurine). The inhibitory effects of flavonoid aglycones on XO have been widely studied; however, only limited data are available regarding their sulfate and glucuronic acid conjugates. In this study, we examined the impacts of luteolin, naringenin, myricetin, ampelopsin, and their sulfate/glucuronide derivatives on XO-catalyzed xanthine and 6-mercaptopurine oxidations employing in vitro enzyme incubation assays and molecular modeling studies. Our major results/conclusions are the following: (1) Sulfate metabolites were stronger while glucuronic acid derivatives were weaker inhibitors of XO compared to the parent flavonoids. (2) Naringenin, ampelopsin, and their metabolites were weak inhibitors of the enzyme. (3) Luteolin, myricetin, and their sulfates were highly potent inhibitors of XO, and the glucuronides of luteolin showed moderate inhibitory impacts. (4) Conjugated metabolites of luteolin and myricetin can be involved in the inhibitory effects of these flavonoids on XO enzyme.
Collapse
Affiliation(s)
- Orsolya Balázs
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Balázs Z Zsidó
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Prague, Czech Republic
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary.
| |
Collapse
|
7
|
Yoon HR, Park GJ, Balupuri A, Kang NS. TWN-FS method: A novel fragment screening method for drug discovery. Comput Struct Biotechnol J 2023; 21:4683-4696. [PMID: 37841326 PMCID: PMC10568351 DOI: 10.1016/j.csbj.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a well-established and effective method for generating diverse and novel hits in drug design. Kinases are suitable targets for FBDD due to their well-defined structure. Water molecules contribute to structure and function of proteins and also influence the environment within the binding pocket. Water molecules form a variety of hydrogen-bonded cyclic water-ring networks, collectively known as topological water networks (TWNs). Analyzing the TWNs in protein binding sites can provide valuable insights into potential locations and shapes for fragments within the binding site. Here, we introduce TWN-based fragment screening (TWN-FS) method, a novel screening method that suggests fragments through grouped TWN analysis within the protein binding site. We used this method to screen known CDK2, CHK1, IGF1R and ERBB4 inhibitors. Our findings suggest that TWN-FS method has the potential to effectively screen fragments. The TWN-FS method package is available on GitHub at https://github.com/pkj0421/TWN-FS.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Gyoung Jin Park
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| |
Collapse
|
8
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023; 24:11784. [PMID: 37511543 PMCID: PMC10381018 DOI: 10.3390/ijms241411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Water is a key actor of various processes of nature and, therefore, molecular engineering has to take the structural and energetic consequences of hydration into account. While the present review focuses on the target-ligand interactions in drug design, with a focus on biomolecules, these methods and applications can be easily adapted to other fields of the molecular engineering of molecular complexes, including solid hydrates. The review starts with the problems and solutions of the determination of water structures. The experimental approaches and theoretical calculations are summarized, including conceptual classifications. The implementations and applications of water models are featured for the calculation of the binding thermodynamics and computational ligand docking. It is concluded that theoretical approaches not only reproduce or complete experimental water structures, but also provide key information on the contribution of individual water molecules and are indispensable tools in molecular engineering.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Viktor Szél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| |
Collapse
|
9
|
Csenki Z, Bartók T, Bock I, Horváth L, Lemli B, Zsidó BZ, Angeli C, Hetényi C, Szabó I, Urbányi B, Kovács M, Poór M. Interaction of Fumonisin B1, N-Palmitoyl-Fumonisin B1, 5- O-Palmitoyl-Fumonisin B1, and Fumonisin B4 Mycotoxins with Human Serum Albumin and Their Toxic Impacts on Zebrafish Embryos. Biomolecules 2023; 13:biom13050755. [PMID: 37238625 DOI: 10.3390/biom13050755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Fumonisins are frequent food contaminants. The high exposure to fumonisins can cause harmful effects in humans and animals. Fumonisin B1 (FB1) is the most typical member of this group; however, the occurrence of several other derivatives has been reported. Acylated metabolites of FB1 have also been described as possible food contaminants, and the very limited data available suggest their significantly higher toxicity compared to FB1. Furthermore, the physicochemical and toxicokinetic properties (e.g., albumin binding) of acyl-FB1 derivatives may show large differences compared to the parent mycotoxin. Therefore, we tested the interactions of FB1, N-palmitoyl-FB1 (N-pal-FB1), 5-O-palmitoyl-FB1 (5-O-pal-FB1), and fumonisin B4 (FB4) with human serum albumin as well as the toxic effects of these mycotoxins on zebrafish embryos were examined. Based on our results, the most important observations and conclusions are the following: (1) FB1 and FB4 bind to albumin with low affinity, while palmitoyl-FB1 derivatives form highly stable complexes with the protein. (2) N-pal-FB1 and 5-O-pal-FB1 likely occupy more high-affinity binding sites on albumin. (3) Among the mycotoxins tested, N-pal-FB1 showed the most toxic effects on zebrafish, followed by 5-O-pal-FB1, FB4, and FB1. (4) Our study provides the first in vivo toxicity data regarding N-pal-FB1, 5-O-pal-FB1, and FB4.
Collapse
Affiliation(s)
- Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Tibor Bartók
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Levente Horváth
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary
- Institute of Physiology and Nutrition, Agriobiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, H-7400 Kaposvár, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Pharmacoinformatics Unit, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Cserne Angeli
- Institute of Physiology and Nutrition, Agriobiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, H-7400 Kaposvár, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Pharmacoinformatics Unit, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Melinda Kovács
- Institute of Physiology and Nutrition, Agriobiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, H-7400 Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Guba Sándor út 40, H-7400 Kaposvár, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
10
|
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Vida RG, Poór M. Probing the Interactions of 31 Mycotoxins with Xanthine Oxidase: Alternariol, Alternariol-3-Sulfate, and α-Zearalenol Are Allosteric Inhibitors of the Enzyme. Toxins (Basel) 2023; 15:250. [PMID: 37104188 PMCID: PMC10143053 DOI: 10.3390/toxins15040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are frequent toxic contaminants in foods and beverages, causing a significant health threat. Interactions of mycotoxins with biotransformation enzymes (e.g., cytochrome P450 enzymes, sulfotransferases, and uridine 5'-diphospho-glucuronosyltransferases) may be important due to their possible detoxification or toxic activation during enzymatic processes. Furthermore, mycotoxin-induced enzyme inhibition may affect the biotransformation of other molecules. A recent study described the strong inhibitory effects of alternariol and alternariol-9-methylether on the xanthine oxidase (XO) enzyme. Therefore, we aimed to test the impacts of 31 mycotoxins (including the masked/modified derivatives of alternariol and alternariol-9-methylether) on XO-catalyzed uric acid formation. Besides the in vitro enzyme incubation assays, mycotoxin depletion experiments and modeling studies were performed. Among the mycotoxins tested, alternariol, alternariol-3-sulfate, and α-zearalenol showed moderate inhibitory actions on the enzyme, representing more than tenfold weaker impacts compared with the positive control inhibitor allopurinol. In mycotoxin depletion assays, XO did not affect the concentrations of alternariol, alternariol-3-sulfate, and α-zearalenol in the incubates; thus, these compounds are inhibitors but not substrates of the enzyme. Experimental data and modeling studies suggest the reversible, allosteric inhibition of XO by these three mycotoxins. Our results help the better understanding of the toxicokinetic interactions of mycotoxins.
Collapse
Affiliation(s)
- Orsolya Balázs
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Róbert György Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
11
|
Testing Serum Albumins and Cyclodextrins as Potential Binders of the Mycotoxin Metabolites Alternariol-3-Sulfate, Alternariol-9-Monomethylether and Alternariol-9-Monomethylether-3-Sulfate. Int J Mol Sci 2022; 23:ijms232214353. [PMID: 36430830 PMCID: PMC9698663 DOI: 10.3390/ijms232214353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Alternaria mycotoxins, including alternariol (AOH), alternariol-9-monomethylether (AME), and their masked/modified derivatives (e.g., sulfates or glycosides), are common food contaminants. Their acute toxicity is relatively low, while chronic exposure can lead to the development of adverse health effects. Masked/modified metabolites can probably release the more toxic parent mycotoxin due to their enzymatic hydrolysis in the intestines. Previously, we demonstrated the complex formation of AOH with serum albumins and cyclodextrins; these interactions were successfully applied for the extraction of AOH from aqueous matrices (including beverages). Therefore, in this study, the interactions of AME, alternariol-3-sulfate (AS), and alternariol-9-monomethylether-3-sulfate (AMS) were investigated with albumins (human, bovine, porcine, and rat) and with cyclodextrins (sulfobutylether-β-cyclodextrin, sugammadex, and cyclodextrin bead polymers). Our major results/conclusions are the following: (1) The stability of mycotoxin-albumin complexes showed only minor species dependent variations. (2) AS and AMS formed highly stable complexes with albumins in a wide pH range, while AME-albumin interactions preferred alkaline conditions. (3) AME formed more stable complexes with the cyclodextrins examined than AS and AMS. (4) Beta-cyclodextrin bead polymer proved to be highly suitable for the extraction of AME, AS, and AMS from aqueous solution. (5) Albumins and cyclodextrins are promising binders of the mycotoxins tested.
Collapse
|
12
|
Bálint M, Zsidó BZ, van der Spoel D, Hetényi C. Binding Networks Identify Targetable Protein Pockets for Mechanism-Based Drug Design. Int J Mol Sci 2022; 23:ijms23137313. [PMID: 35806314 PMCID: PMC9267029 DOI: 10.3390/ijms23137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The human genome codes only a few thousand druggable proteins, mainly receptors and enzymes. While this pool of available drug targets is limited, there is an untapped potential for discovering new drug-binding mechanisms and modes. For example, enzymes with long binding cavities offer numerous prerequisite binding sites that may be visited by an inhibitor during migration from a bulk solution to the destination site. Drug design can use these prerequisite sites as new structural targets. However, identifying these ephemeral sites is challenging. Here, we introduce a new method called NetBinder for the systematic identification and classification of prerequisite binding sites at atomic resolution. NetBinder is based on atomistic simulations of the full inhibitor binding process and provides a networking framework on which to select the most important binding modes and uncover the entire binding mechanism, including previously undiscovered events. NetBinder was validated by a study of the binding mechanism of blebbistatin (a potent inhibitor) to myosin 2 (a promising target for cancer chemotherapy). Myosin 2 is a good test enzyme because, like other potential targets, it has a long internal binding cavity that provides blebbistatin with numerous potential prerequisite binding sites. The mechanism proposed by NetBinder of myosin 2 structural changes during blebbistatin binding shows excellent agreement with experimentally determined binding sites and structural changes. While NetBinder was tested on myosin 2, it may easily be adopted to other proteins with long internal cavities, such as G-protein-coupled receptors or ion channels, the most popular current drug targets. NetBinder provides a new paradigm for drug design by a network-based elucidation of binding mechanisms at an atomic resolution.
Collapse
Affiliation(s)
- Mónika Bálint
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden;
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
- Correspondence:
| |
Collapse
|
13
|
Kolokouris D, Kalenderoglou IE, Kolocouris A. Inside and Out of the Pore: Comparing Interactions and Molecular Dynamics of Influenza A M2 Viroporin Complexes in Standard Lipid Bilayers. J Chem Inf Model 2021; 61:5550-5568. [PMID: 34714655 DOI: 10.1021/acs.jcim.1c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion channels located at viral envelopes (viroporins) have a critical function for the replication of infectious viruses and are important drug targets. Over the last decade, the number and duration of molecular dynamics (MD) simulations of the influenza A M2 ion channel owing to the increased computational efficiency. Here, we aimed to define the system setup and simulation conditions for the correct description of the protein-pore and the protein-lipid interactions for influenza A M2 in comparison with experimental data. We performed numerous MD simulations of the influenza A M2 protein in complex with adamantane blockers in standard lipid bilayers using OPLS2005 and CHARMM36 (C36) force fields. We explored the effect of varying the M2 construct (M2(22-46) and M2(22-62)), the lipid buffer size and type (stiffer DMPC or softer POPC with or without 20% cholesterol), the simulation time, the H37 protonation site (Nδ or Νε), the conformational state of the W41 channel gate, and M2's cholesterol binding sites (BSs). We report that the 200 ns MD with M2(22-62) (having Nε Η37) in the 20 Å lipid buffer with the C36 force field accurately describe: (a) the M2 pore structure and interactions inside the pore, that is, adamantane channel blocker location, water clathrate structure, and water or chloride anion blockage/passage from the M2 pore in the presence of a channel blocker and (b) interactions between M2 and the membrane environment as reflected by the calculation of the M2 bundle tilt, folding of amphipathic helices, and cholesterol BSs. Strikingly, we also observed that the C36 1 μs MD simulations using M2(22-62) embedded in a 20 Å POPC:cholesterol (5:1) scrambled membrane produced frequent interactions with cholesterol, which when combined with computational kinetic analysis, revealed the experimentally observed BSs of cholesterol and suggested three similarly long-interacting positions in the top leaflet that have previously not been observed experimentally. These findings promise to be useful for other viroporin systems.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
14
|
Zsidó BZ, Börzsei R, Pintér E, Hetényi C. Prerequisite Binding Modes Determine the Dynamics of Action of Covalent Agonists of Ion Channel TRPA1. Pharmaceuticals (Basel) 2021; 14:988. [PMID: 34681212 PMCID: PMC8540651 DOI: 10.3390/ph14100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane protein channeling the influx of calcium ions. As a polymodal nocisensor, TRPA1 can be activated by thermal, mechanical stimuli and a wide range of chemically damaging molecules including small volatile environmental toxicants and endogenous algogenic lipids. After activation by such compounds, the ion channel opens up, its central pore widens allowing calcium influx into the cytosol inducing signal transduction pathways. Afterwards, the calcium influx desensitizes irritant evoked responses and results in an inactive state of the ion channel. Recent experimental determination of structures of apo and holo forms of TRPA1 opened the way towards the design of new agonists, which can activate the ion channel. The present study is aimed at the elucidation of binding dynamics of agonists using experimental structures of TRPA1-agonist complexes at the atomic level applying molecular docking and dynamics methods accounting for covalent and non-covalent interactions. Following a test of docking methods focused on the final, holo structures, prerequisite binding modes were detected involving the apo forms. It was shown how reversible interactions with prerequisite binding sites contribute to structural changes of TRPA1 leading to covalent bonding of agonists. The proposed dynamics of action allowed a mechanism-based forecast of new, druggable binding sites of potent agonists.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Rita Börzsei
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| |
Collapse
|