1
|
Wang J, Xie J, Yu Y, Ji Y, Dong H, Li Y. Enhancing the understandings on SARS-CoV-2 main protease (M pro) mutants from molecular dynamics and machine learning. Int J Biol Macromol 2025; 310:143076. [PMID: 40220823 DOI: 10.1016/j.ijbiomac.2025.143076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
While star drugs like Paxlovid have shown remarkable performance in combating SARS-CoV-2, we still face serious challenges such as viral mutants and resistance. In this study, we employ a computational framework combining molecular dynamics (MD) simulations, enhanced sampling techniques, and machine learning (ML) approaches to systematically investigate the molecular mechanisms underlying drug resistance in SARS-CoV-2 main protease (Mpro) mutants. Specifically, based on the accuracy of the analytical structures and the advantages of MD simulation, we deeply analyze the influence of mutants on drug resistance and its intrinsic function from the dynamic dimension. The relevant data for Mpro with different states are compared and analyzed to consolidate the understanding of mutant effect. Through the free energy perturbation method, the absolute binding free energy diagrams of Mpro mutants and Nirmatrelvir are provided, which is meaningful to the design, comparison and optimization of the new-generation inhibitors. The interaction pattern between Mpro mutants and substrate is unraveled with the AlphaFold3 model, effectively filling the deficiency of experiments. Moreover, ML model is used to explore the differentiated synergetic pathways with the important dual mutants. The critical sites in the protein network are provided, which emphasizes on the importance and urgency of in-depth research on similar systems.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Juan Xie
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Trivedi A, Kushwaha T, Ishani, Vrati S, Gupta D, Kayampeta SR, Parvez MK, Inampudi KK, Appaiahgari MB, Sehgal D. Psoralidin acts as a dual protease inhibitor against PL pro and M pro of SARS-CoV-2. FEBS J 2025; 292:1106-1123. [PMID: 39745898 DOI: 10.1111/febs.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
The emergence of new coronavirus variants and concerns about vaccine effectiveness against these novel variants emphasize the need for broad-spectrum therapeutics targeting conserved coronaviral non-structural proteins. Accordingly, a virtual library of 178 putative inhibitors targeting SARS-CoV-2 Papain-like protease (PLpro) was compiled through a systematic review of published literature and subsequently screened using molecular docking. Selected hits were analyzed for protease inhibitory activities, binding strength, and antiviral activities against HCoV229E-based surrogate system and subsequently against SARS-CoV-2 for validation. Differences in potential modes of action were investigated using an HCoV229E-based system, combined with in silico and biophysical methods against SARS-CoV-2 system. Of the 178 hits, 13 molecules showed superior docking scores against PLpro and met the inclusion criteria for further investigations. Of these, seven showed notable inhibitory activities against PLpro. Particularly, both Psoralidin and Corylifol-A exhibited superior and, importantly, dual activities against SARS-CoV-2 Mpro. Both molecules were found to be biologically active against HCoV229E and SARS-CoV-2; however, Psoralidin exhibited more consistent effects and was relatively well-tolerated. Detailed in silico analyses of their interactions with the two proteases identified differences in their modes of action, primarily due to differences in their binding of PLpro. Based on these findings, we propose Psoralidin as a potential candidate for further development as a broad-spectrum antiviral and Corylifol-A as an ideal candidate for lead optimization.
Collapse
Affiliation(s)
- Aditya Trivedi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ishani
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Dharmender Gupta
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | | | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohan Babu Appaiahgari
- Yenepoya (deemed to be) University, Mangalore, India
- R&D Wing, Srikara Biologicals Pvt. Ltd., Tirupati, India
| | - Deepak Sehgal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Tao H, Yang B, Farhangian A, Xu K, Li T, Zhang ZY, Li J. Covalent-Allosteric Inhibitors: Do We Get the Best of Both Worlds? J Med Chem 2025; 68:4040-4052. [PMID: 39937154 DOI: 10.1021/acs.jmedchem.4c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Covalent-allosteric inhibitors (CAIs) may achieve the best of both worlds: increased potency, long-lasting effects, and reduced drug resistance typical of covalent ligands, along with enhanced specificity and decreased toxicity inherent in allosteric modulators. Therefore, CAIs can be an effective strategy to transform many undruggable targets into druggable ones. However, CAIs are challenging to design. In this perspective, we analyze the discovery of known CAIs targeting three protein families: protein phosphatases, protein kinases, and GTPases. We also discuss how computational methods and tools can play a role in addressing the practical challenges of rational CAI design.
Collapse
Affiliation(s)
- Hui Tao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bo Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Atena Farhangian
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Xu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tongtong Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Imberg L, Siutkina AI, Erbacher C, Schmidt J, Broekmans DF, Ovsepyan RA, Daniliuc CG, Gonçalves de Oliveira E, Serafim MSM, O’Donoghue AJ, Pillaiyar T, Panteleev MA, Poso A, Kalinina SA, Bermúdez M, Nekipelov K, Bendas G, Karst U, Kalinin DV. Pyrazinyl-Substituted Aminoazoles as Covalent Inhibitors of Thrombin: Synthesis, Structure, and Anticoagulant Properties. ACS Pharmacol Transl Sci 2025; 8:146-172. [PMID: 39816788 PMCID: PMC11730114 DOI: 10.1021/acsptsci.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/18/2025]
Abstract
This study presents a novel series of N-acylated 1,2,4-triazol-5-amines and 1H-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives 13a and 13b achieving IC50 values as low as 0.7 and 0.8 nM, respectively. Mass-shift assays confirmed that these inhibitors covalently bind to the catalytic Ser195 of thrombin, leading to temporary inhibition of its activity through specific acylation. The anticoagulant efficacy of these compounds was validated in plasma coagulation assays, with selected derivatives extending coagulation times in both an activated partial thromboplastin time (aPTT) and prothrombin time (PT) test. Thrombin generation assays further demonstrated that compounds of this series effectively reduced thrombin generation without substantially prolonging clotting times, suggesting a lower risk of bleeding. Selected compounds also strongly inhibited cancer cell- and thrombin-induced platelet aggregation. These results indicate that acylated aminoazoles hold a promise as new anticoagulants.
Collapse
Affiliation(s)
- Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Alena I. Siutkina
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Catharina Erbacher
- Institute of Inorganic and Analytical Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Judith Schmidt
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Darius F. Broekmans
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Ruzanna A. Ovsepyan
- Center for Theoretical Problems of
Physicochemical Pharmacology, Russian Academy of Sciences, 119991 Moscow,
Russia
| | | | - Ellen Gonçalves de Oliveira
- Center for Discovery and Innovation in Parasitic
Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University
of California, La Jolla, San Diego, California 92093, United
States
- Department of Microbiology, Institute of Biological Sciences,
Federal University of Minas Gerais, 31270-901 Belo Horizonte,
Minas Gerais, Brazil
| | - Mateus Sá Magalhães Serafim
- Center for Discovery and Innovation in Parasitic
Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University
of California, La Jolla, San Diego, California 92093, United
States
- Department of Microbiology, Institute of Biological Sciences,
Federal University of Minas Gerais, 31270-901 Belo Horizonte,
Minas Gerais, Brazil
| | - Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic
Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University
of California, La Jolla, San Diego, California 92093, United
States
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry, Eberhard Karls University Tübingen, 72076
Tübingen, Germany
- Tübingen Center for Academic Drug
Discovery (TüCAD2), 72076 Tübingen,
Germany
| | - Mikhail A. Panteleev
- Center for Theoretical Problems of
Physicochemical Pharmacology, Russian Academy of Sciences, 119991 Moscow,
Russia
- Laboratory of Translational Medicine,
Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and
Immunology, 117997 Moscow, Russia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
- Department of Internal Medicine VIII,
University Hospital Tübingen, 72076 Tübingen,
Germany
| | | | - Marcel Bermúdez
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Katrin Nekipelov
- Pharmaceutical Institute, University
of Bonn, 53121 Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, University
of Bonn, 53121 Bonn, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| |
Collapse
|
5
|
Kuzikov M, Morasso S, Reinshagen J, Wolf M, Monaco V, Cozzolino F, Golič Grdadolnik S, Šket P, Plavec J, Iaconis D, Summa V, Corona A, Paulis A, Esposito F, Tramontano E, Monti M, Beccari AR, Manelfi C, Windshügel B, Gribbon P, Storici P, Zaliani A. Thiol-Reactive or Redox-Active: Revising a Repurposing Screen Led to a New Invalidation Pipeline and Identified a True Noncovalent Inhibitor Against Papain-like Protease from SARS-CoV-2. ACS Pharmacol Transl Sci 2025; 8:66-77. [PMID: 39816795 PMCID: PMC11729419 DOI: 10.1021/acsptsci.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 01/18/2025]
Abstract
The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging. Comprehensive investigations utilizing enzymatic, binding studies, and cellular assays revealed the previously reported inhibitors to act in an unspecific manner. At present, GRL-0617 and its derivatives remain the best-validated compounds with demonstrated antiviral activity in cells and in mouse models. In this study, we refer to the pitfalls of the redox sensitivity of PLpro. Using a screening-based approach to identify inhibitors of PLpro's proteolytic activity, we made extensive efforts to validate active compounds over a range of conditions and readouts, emphasizing the need for comprehensive orthogonal data when profiling putative PLpro inhibitors. The remaining active compound, CPI-169, was shown to be a noncovalent inhibitor capable of competing with GRL-0617 in NMR-based experiments, suggesting that it occupied a similar binding site and inhibited viral replication in Vero-E6 cells, opening new design opportunities for further development as antiviral agents.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Stefano Morasso
- Protein
Targets for Drug Discovery Lab, Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgeri 1, 34127 Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Markus Wolf
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Vittoria Monaco
- Department
of Chemical Sciences, University of Naples
“Federico II’, Comunale Cinthia 26, 80126 Naples, Italy
- CEINGE
Advanced-Biotechnologies “Franco Salvatore”, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Flora Cozzolino
- Department
of Chemical Sciences, University of Naples
“Federico II’, Comunale Cinthia 26, 80126 Naples, Italy
- CEINGE
Advanced-Biotechnologies “Franco Salvatore”, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Simona Golič Grdadolnik
- Laboratory
for Molecular Structural Dynamics, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Daniela Iaconis
- EXSCALATE
- Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Vincenzo Summa
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Angela Corona
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Annalaura Paulis
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Francesca Esposito
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Enzo Tramontano
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II’, Comunale Cinthia 26, 80126 Naples, Italy
- CEINGE
Advanced-Biotechnologies “Franco Salvatore”, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Andrea R. Beccari
- EXSCALATE
- Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Candida Manelfi
- EXSCALATE
- Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Björn Windshügel
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Philip Gribbon
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Paola Storici
- Protein
Targets for Drug Discovery Lab, Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Andrea Zaliani
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
6
|
Xiong M, Nie T, Li Z, Hu M, Su H, Hu H, Xu Y, Shao Q. Potency Prediction of Covalent Inhibitors against SARS-CoV-2 3CL-like Protease and Multiple Mutants by Multiscale Simulations. J Chem Inf Model 2024; 64:9501-9516. [PMID: 39605253 DOI: 10.1021/acs.jcim.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
3-Chymotrypsin-like protease (3CLpro) is a prominent target against pathogenic coronaviruses. Expert knowledge of the cysteine-targeted covalent reaction mechanism is crucial to predict the inhibitory potency of approved inhibitors against 3CLpros of SARS-CoV-2 variants and perform structure-based drug design against newly emerging coronaviruses. We carried out an extensive array of classical and hybrid QM/MM molecular dynamics simulations to explore covalent inhibition mechanisms of five well-characterized inhibitors toward SARS-CoV-2 3CLpro and its mutants. The calculated binding affinity and reactivity of the inhibitors are highly consistent with experimental data, and the predicted inhibitory potency of the inhibitors against 3CLpro with L167F, E166V, or T21I/E166V mutant is in full agreement with IC50s determined by the accompanying enzymatic assays. The explored mechanisms unveil the impact of residue mutagenesis on structural dynamics that communicates to change not only noncovalent binding strength but also covalent reaction free energy. Such a change is inhibitor dependent, corresponding to varied levels of drug resistance of these 3CLpro mutants against nirmatrelvir and simnotrelvir and no resistance to the 11a compound. These results together suggest that the present simulations with a suitable protocol can efficiently evaluate the reactivity and potency of covalent inhibitors along with the elucidated molecular mechanisms of covalent inhibition.
Collapse
Affiliation(s)
- Muya Xiong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianqing Nie
- Lingang Laboratory, Shanghai 200031, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhewen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyi Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
de Souza LG, Penna EA, Rosa AS, da Silva JC, Schaeffer E, Guimarães JV, de Paiva DM, de Souza VC, Ferreira VNS, Souza DDC, Roxo S, Conceição GB, Constant LEC, Frenzel GB, Landim MJN, Baltazar MLP, Silva CC, Brand ALM, Nunes JS, Montagnoli TL, Zapata-Sudo G, Alves MA, Allonso D, Goliatt PVZC, Miranda MD, da Silva AJM. Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights. Viruses 2024; 16:1768. [PMID: 39599882 PMCID: PMC11598835 DOI: 10.3390/v16111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Endemic and pandemic viruses represent significant public health challenges, leading to substantial morbidity and mortality over time. The COVID-19 pandemic has underscored the urgent need for the development and discovery of new, potent antiviral agents. In this study, we present the synthesis and anti-SARS-CoV-2 activity of a series of benzocarbazoledinones, assessed using cell-based screening assays. Our results indicate that four compounds (4a, 4b, 4d, and 4i) exhibit EC50 values below 4 μM without cytotoxic effects in Calu-3 cells. Mechanistic investigations focused on the inhibition of the SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) have used enzymatic assays. Notably, compounds 4a and 4b showed Mpro inhibition activity with IC50 values of 0.11 ± 0.05 and 0.37 ± 0.05 µM, respectively. Furthermore, in silico molecular docking, physicochemical, and pharmacokinetic studies were conducted to validate the mechanism and assess bioavailability. Compound 4a was selected for preliminary drug-likeness analysis and in vivo pharmacokinetics investigations, which yielded promising results and corroborated the in vitro and in silico findings, reinforcing its potential as an anti-SARS-CoV-2 lead compound.
Collapse
Affiliation(s)
- Luana G. de Souza
- Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H29, Rio de Janeiro 21941-902, RJ, Brazil; (L.G.d.S.); (J.C.d.S.); (E.S.); (J.V.G.); (D.M.d.P.); (M.A.A.)
| | - Eduarda A. Penna
- Programa de Pós-Graduação em Modelagem Computacional, Grupo de Modelagem Computacional Aplicada, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.P.); (V.C.d.S.); (M.J.N.L.); (M.L.P.B.)
| | - Alice S. Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (D.D.C.S.); (S.R.); (G.B.C.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Juliana C. da Silva
- Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H29, Rio de Janeiro 21941-902, RJ, Brazil; (L.G.d.S.); (J.C.d.S.); (E.S.); (J.V.G.); (D.M.d.P.); (M.A.A.)
| | - Edgar Schaeffer
- Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H29, Rio de Janeiro 21941-902, RJ, Brazil; (L.G.d.S.); (J.C.d.S.); (E.S.); (J.V.G.); (D.M.d.P.); (M.A.A.)
| | - Juliana V. Guimarães
- Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H29, Rio de Janeiro 21941-902, RJ, Brazil; (L.G.d.S.); (J.C.d.S.); (E.S.); (J.V.G.); (D.M.d.P.); (M.A.A.)
| | - Dennis M. de Paiva
- Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H29, Rio de Janeiro 21941-902, RJ, Brazil; (L.G.d.S.); (J.C.d.S.); (E.S.); (J.V.G.); (D.M.d.P.); (M.A.A.)
| | - Vinicius C. de Souza
- Programa de Pós-Graduação em Modelagem Computacional, Grupo de Modelagem Computacional Aplicada, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.P.); (V.C.d.S.); (M.J.N.L.); (M.L.P.B.)
| | - Vivian Neuza S. Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (D.D.C.S.); (S.R.); (G.B.C.)
| | - Daniel D. C. Souza
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (D.D.C.S.); (S.R.); (G.B.C.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Sylvia Roxo
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (D.D.C.S.); (S.R.); (G.B.C.)
| | - Giovanna B. Conceição
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (D.D.C.S.); (S.R.); (G.B.C.)
| | - Larissa E. C. Constant
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil; (L.E.C.C.); (G.B.F.); (C.C.S.); (D.A.)
| | - Giovanna B. Frenzel
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil; (L.E.C.C.); (G.B.F.); (C.C.S.); (D.A.)
| | - Matheus J. N. Landim
- Programa de Pós-Graduação em Modelagem Computacional, Grupo de Modelagem Computacional Aplicada, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.P.); (V.C.d.S.); (M.J.N.L.); (M.L.P.B.)
| | - Maria Luiza P. Baltazar
- Programa de Pós-Graduação em Modelagem Computacional, Grupo de Modelagem Computacional Aplicada, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.P.); (V.C.d.S.); (M.J.N.L.); (M.L.P.B.)
| | - Celimar Cinézia Silva
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil; (L.E.C.C.); (G.B.F.); (C.C.S.); (D.A.)
| | - Ana Laura Macedo Brand
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Julia Santos Nunes
- Laboratório de Metabolômica Aplicada à Medicina de Sistemas (Meta2MS), Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-599, RJ, Brazil;
| | - Tadeu L. Montagnoli
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil;
- Laboratório de Farmacologia Cardiovascular (LabCardio), Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco J—Sala J1-11, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Gisele Zapata-Sudo
- Laboratório de Farmacologia Cardiovascular (LabCardio), Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco J—Sala J1-11, Rio de Janeiro 21941-902, RJ, Brazil;
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marina Amaral Alves
- Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H29, Rio de Janeiro 21941-902, RJ, Brazil; (L.G.d.S.); (J.C.d.S.); (E.S.); (J.V.G.); (D.M.d.P.); (M.A.A.)
- Laboratório de Metabolômica Aplicada à Medicina de Sistemas (Meta2MS), Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-599, RJ, Brazil;
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil
| | - Diego Allonso
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil; (L.E.C.C.); (G.B.F.); (C.C.S.); (D.A.)
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Priscila V. Z. Capriles Goliatt
- Programa de Pós-Graduação em Modelagem Computacional, Grupo de Modelagem Computacional Aplicada, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.P.); (V.C.d.S.); (M.J.N.L.); (M.L.P.B.)
| | - Milene D. Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (D.D.C.S.); (S.R.); (G.B.C.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Alcides J. M. da Silva
- Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H29, Rio de Janeiro 21941-902, RJ, Brazil; (L.G.d.S.); (J.C.d.S.); (E.S.); (J.V.G.); (D.M.d.P.); (M.A.A.)
| |
Collapse
|
8
|
Figueroa LPR, de Carvalho RL, Almeida RG, Paz ERS, Diogo EBT, Araujo MH, Borges WS, Ramos VFS, Menna-Barreto RFS, Wood JM, Bower JF, da Silva Júnior EN. Generation and capture of naphthoquinonynes: a new frontier in the development of trypanocidal quinones via aryne chemistry. RSC Med Chem 2024:d4md00558a. [PMID: 39512946 PMCID: PMC11539365 DOI: 10.1039/d4md00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024] Open
Abstract
The regioselective synthesis of functionalized naphthoquinones via the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using N-nucleophiles, and the second scope using pyridine N-oxides, with yields up to 74%. Evaluation against bloodstream trypomastigotes of T. cruzi has identified fourteen compounds that are more potent than benznidazole (Bz); for instance, compounds 29b-I and 30b, with IC50/24 h values of 10.5 and 10.1 μM, respectively, are approximately 10-fold more active than Bz. This study provides the first examples of the application of naphthoquinonyne chemistry for the synthesis of new compounds with potent trypanocidal activities.
Collapse
Affiliation(s)
- Laura P R Figueroa
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
- Center of Exact Sciences, Department of Chemistry, Universidade Federal do Espírito Santo CEP 29075-910 Vitória ES Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Esther R S Paz
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Warley S Borges
- Center of Exact Sciences, Department of Chemistry, Universidade Federal do Espírito Santo CEP 29075-910 Vitória ES Brazil
| | - Victor F S Ramos
- Laboratory of Cellular Biology, IOC, FIOCRUZ Rio de Janeiro RJ 21045-900 Brazil
| | | | - James M Wood
- The Ferrier Research Institute, Victoria University of Wellington Wellington 6012 New Zealand
| | - John F Bower
- University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| |
Collapse
|
9
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, da Silva EB, O'Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small molecule in situ resin capture provides a compound first approach to natural product discovery. Nat Commun 2024; 15:5230. [PMID: 38898025 PMCID: PMC11187115 DOI: 10.1038/s41467-024-49367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alexander B Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mitchell N Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Paul R Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Ruiz-Moreno AJ, Cedillo-González R, Cordova-Bahena L, An Z, Medina-Franco JL, Velasco-Velázquez MA. Consensus Pharmacophore Strategy For Identifying Novel SARS-Cov-2 M pro Inhibitors from Large Chemical Libraries. J Chem Inf Model 2024; 64:1984-1995. [PMID: 38472094 PMCID: PMC10966741 DOI: 10.1021/acs.jcim.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated from the viral genome and is critical for viral replication. Mpro is a target for anti-SARS-CoV-2 drug development, and multiple Mpro crystals complexed with competitive inhibitors have been reported. In this study, we aimed to develop an Mpro consensus pharmacophore as a tool to expand the search for inhibitors. We generated a consensus model by aligning and summarizing pharmacophoric points from 152 bioactive conformers of SARS-CoV-2 Mpro inhibitors. Validation against a library of conformers from a subset of ligands showed that our model retrieved poses that reproduced the crystal-binding mode in 77% of the cases. Using models derived from a consensus pharmacophore, we screened >340 million compounds. Pharmacophore-matching and chemoinformatics analyses identified new potential Mpro inhibitors. The candidate compounds were chemically dissimilar to the reference set, and among them, demonstrating the relevance of our model. We evaluated the effect of 16 candidates on Mpro enzymatic activity finding that seven have inhibitory activity. Three compounds (1, 4, and 5) had IC50 values in the midmicromolar range. The Mpro consensus pharmacophore reported herein can be used to identify compounds with improved activity and novel chemical scaffolds against Mpro. The method developed for its generation is provided as an open-access code (https://github.com/AngelRuizMoreno/ConcensusPharmacophore) and can be applied to other pharmacological targets.
Collapse
Affiliation(s)
- Angel J. Ruiz-Moreno
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
| | - Raziel Cedillo-González
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
- Graduate
Program in Biochemical Sciences, Universidad
Nacional Autónoma de México, Mexico City 04510, Mexico
- DIFACQUIM
Research Group, School of Chemistry, Universidad
Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Cordova-Bahena
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
- Consejo
Nacional de Humanidades, Ciencias y Tecnología, Mexico City 03940, Mexico
| | - Zhiqiang An
- Texas
Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - José L. Medina-Franco
- DIFACQUIM
Research Group, School of Chemistry, Universidad
Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco A. Velasco-Velázquez
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
- Texas
Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
11
|
Su Z, Guo B, Xu H, Yuan Z, Liu H, Guo T, Deng Z, Zhang Y, Yin D, Liu C, Chen JH, Rao Y. Synthetic Biology-based Construction of Unnatural Perylenequinones with Improved Photodynamic Anticancer Activities. Angew Chem Int Ed Engl 2024; 63:e202317726. [PMID: 38258338 DOI: 10.1002/anie.202317726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tao Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jian-Huan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
12
|
Chan HTH, Brewitz L, Lukacik P, Strain-Damerell C, Walsh MA, Schofield CJ, Duarte F. Studies on the selectivity of the SARS-CoV-2 papain-like protease reveal the importance of the P2' proline of the viral polyprotein. RSC Chem Biol 2024; 5:117-130. [PMID: 38333195 PMCID: PMC10849127 DOI: 10.1039/d3cb00128h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 02/10/2024] Open
Abstract
The SARS-CoV-2 papain-like protease (PLpro) is an antiviral drug target that catalyzes the hydrolysis of the viral polyproteins pp1a/1ab, so releasing the non-structural proteins (nsps) 1-3 that are essential for the coronavirus lifecycle. The LXGG↓X motif in pp1a/1ab is crucial for recognition and cleavage by PLpro. We describe molecular dynamics, docking, and quantum mechanics/molecular mechanics (QM/MM) calculations to investigate how oligopeptide substrates derived from the viral polyprotein bind to PLpro. The results reveal how the substrate sequence affects the efficiency of PLpro-catalyzed hydrolysis. In particular, a proline at the P2' position promotes catalysis, as validated by residue substitutions and mass spectrometry-based analyses. Analysis of PLpro catalyzed hydrolysis of LXGG motif-containing oligopeptides derived from human proteins suggests that factors beyond the LXGG motif and the presence of a proline residue at P2' contribute to catalytic efficiency, possibly reflecting the promiscuity of PLpro. The results will help in identifying PLpro substrates and guiding inhibitor design.
Collapse
Affiliation(s)
- H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
13
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Li X, Song Y. Targeting SARS-CoV-2 nonstructural protein 3: Function, structure, inhibition, and perspective in drug discovery. Drug Discov Today 2024; 29:103832. [PMID: 37977285 PMCID: PMC10872262 DOI: 10.1016/j.drudis.2023.103832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
As a highly contagious human pathogen, severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) has infected billions of people worldwide with more than 6 million deaths. With several effective vaccines and antiviral drugs now available, the SARS-CoV-2 pandemic been brought under control. However, a new pathogenic coronavirus could emerge in the future, given the zoonotic nature of this virus. Natural evolution and drug-induced mutations of SARS-CoV-2 also require continued efforts for new anti-coronavirus drugs. Nonstructural protein (nsp) 3 of CoVs is a large, multifunctional protein, containing a papain-like protease (PLpro) and a macrodomain (Mac1), which are essential for viral replication. Here, we provide a comprehensive review of the function, structure, and inhibition of SARS-CoV/-CoV-2 PLpro and Mac1. We also discuss advances in, and challenges to, the discovery of drugs against these targets.
Collapse
Affiliation(s)
- Xin Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv 2023; 13:35500-35524. [PMID: 38077980 PMCID: PMC10698513 DOI: 10.1039/d3ra06479d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The pandemic caused by the coronavirus SARS-CoV-2 led to a global crisis in the world healthcare system. Despite some progress in the creation of antiviral vaccines and mass vaccination of the population, the number of patients continues to grow because of the spread of new SARS-CoV-2 mutations. There is an urgent need for direct-acting drugs capable of suppressing or stopping the main mechanisms of reproduction of the coronavirus SARS-CoV-2. Several studies have shown that the successful replication of the virus in the cell requires proteolytic cleavage of the protein structures of the virus. Two proteases are crucial in replicating SARS-CoV-2 and other coronaviruses: the main protease (Mpro) and the papain-like protease (PLpro). In this review, we summarize the essential viral proteins of SARS-CoV-2 required for its viral life cycle as targets for chemotherapy of coronavirus infection and provide a critical summary of the development of drugs against COVID-19 from the drug repurposing strategy up to the molecular design of novel covalent and non-covalent agents capable of inhibiting virus replication. We overview the main antiviral strategy and the choice of SARS-CoV-2 Mpro and PLpro proteases as promising targets for pharmacological impact on the coronavirus life cycle.
Collapse
Affiliation(s)
- Larysa V Yevsieieva
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Kateryna O Lohachova
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Sergiy M Kovalenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Volodymyr V Ivanov
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Oleg N Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| |
Collapse
|
16
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Suresh V, Sheik DA, Detomasi TC, Zhao T, Zepeda T, Saladi S, Rajesh UC, Byers K, Craik CS, Davisson VJ. A Prototype Assay Multiplexing SARS-CoV-2 3CL-Protease and Angiotensin-Converting Enzyme 2 for Saliva-Based Diagnostics in COVID-19. BIOSENSORS 2023; 13:682. [PMID: 37504081 PMCID: PMC10377347 DOI: 10.3390/bios13070682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
With the current state of COVID-19 changing from a pandemic to being more endemic, the priorities of diagnostics will likely vary from rapid detection to stratification for the treatment of the most vulnerable patients. Such patient stratification can be facilitated using multiple markers, including SARS-CoV-2-specific viral enzymes, like the 3CL protease, and viral-life-cycle-associated host proteins, such as ACE2. To enable future explorations, we have developed a fluorescent and Raman spectroscopic SARS-CoV-2 3CL protease assay that can be run sequentially with a fluorescent ACE2 activity measurement within the same sample. Our prototype assay functions well in saliva, enabling non-invasive sampling. ACE2 and 3CL protease activity can be run with minimal sample volumes in 30 min. To test the prototype, a small initial cohort of eight clinical samples was used to check if the assay could differentiate COVID-19-positive and -negative samples. Though these small clinical cohort samples did not reach statistical significance, results trended as expected. The high sensitivity of the assay also allowed the detection of a low-activity 3CL protease mutant.
Collapse
Affiliation(s)
- Vallabh Suresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA
| | | | - Tyler C Detomasi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Tianqi Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA
| | | | | | | | - Kaleb Byers
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA
| |
Collapse
|
18
|
Castillo-Campos L, Velázquez-Libera JL, Caballero J. Computational study of the binding orientation and affinity of noncovalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-1 considering the protein flexibility by using molecular dynamics and cross-docking. Front Mol Biosci 2023; 10:1215499. [PMID: 37426421 PMCID: PMC10326900 DOI: 10.3389/fmolb.2023.1215499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The papain-like protease (PLpro) from zoonotic coronaviruses (CoVs) has been identified as a target with an essential role in viral respiratory diseases caused by Severe Acute Respiratory Syndrome-associated coronaviruses (SARS-CoVs). The design of PLpro inhibitors has been proposed as an alternative to developing potential drugs against this disease. In this work, 67 naphthalene-derived compounds as noncovalent PLpro inhibitors were studied using molecular modeling methods. Structural characteristics of the bioactive conformations of these inhibitors and their interactions at the SARS-CoV-1 PLpro binding site were reported here in detail, taking into account the flexibility of the protein residues. Firstly, a molecular docking protocol was used to obtain the orientations of the inhibitors. After this, the orientations were compared, and the recurrent interactions between the PLpro residues and ligand chemical groups were described (with LigRMSD and interaction fingerprints methods). In addition, efforts were made to find correlations between docking energy values and experimentally determined binding affinities. For this, the PLpro was sampled by using Gaussian Accelerated Molecular Dynamics (GaMD), generating multiple conformations of the binding site. Diverse protein conformations were selected and a cross-docking experiment was performed, yielding models of the 67 naphthalene-derived compounds adopting different binding modes. Representative complexes for each ligand were selected to obtain the highest correlation between docking energies and activities. A good correlation (R 2 = 0.948) was found when this flexible docking protocol was performed.
Collapse
Affiliation(s)
| | | | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
19
|
Maltarollo VG, da Silva EB, Kronenberger T, Sena Andrade MM, de Lima Marques GV, Cândido Oliveira NJ, Santos LH, Oliveira Rezende Júnior CD, Cassiano Martinho AC, Skinner D, Fajtová P, M Fernandes TH, Silveira Dos Santos ED, Rodrigues Gazolla PA, Martins de Souza AP, da Silva ML, Dos Santos FS, Lavorato SN, Oliveira Bretas AC, Carvalho DT, Franco LL, Luedtke S, Giardini MA, Poso A, Dias LC, Podust LM, Alves RJ, McKerrow J, Andrade SF, Teixeira RR, Siqueira-Neto JL, O'Donoghue A, de Oliveira RB, Ferreira RS. Structure-based discovery of thiosemicarbazones as SARS-CoV-2 main protease inhibitors. Future Med Chem 2023; 15:959-985. [PMID: 37435731 DOI: 10.4155/fmc-2023-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Aim: Discovery of novel SARS-CoV-2 main protease (Mpro) inhibitors using a structure-based drug discovery strategy. Materials & methods: Virtual screening employing covalent and noncovalent docking was performed to discover Mpro inhibitors, which were subsequently evaluated in biochemical and cellular assays. Results: 91 virtual hits were selected for biochemical assays, and four were confirmed as reversible inhibitors of SARS CoV-2 Mpro with IC50 values of 0.4-3 μM. They were also shown to inhibit SARS-CoV-1 Mpro and human cathepsin L. Molecular dynamics simulations indicated the stability of the Mpro inhibitor complexes and the interaction of ligands at the subsites. Conclusion: This approach led to the discovery of novel thiosemicarbazones as potent SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Thales Kronenberger
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, 72076, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, Tübingen, 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Marina Mol Sena Andrade
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Gabriel V de Lima Marques
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Nereu J Cândido Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Lucianna H Santos
- Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Celso de Oliveira Rezende Júnior
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, 38400-902, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Ana C Cassiano Martinho
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Danielle Skinner
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
- Institute of Organic Chemistry & Biochemistry, Academy of Sciences of the Czech Republic, Prague, 16610, Czech Republic
| | - Thaís H M Fernandes
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
- Pharmaceutical Synthesis Group (PHARSG), Departamento de Produção de Matéria-Prima, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
| | - Eduardo da Silveira Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
- Pharmaceutical Synthesis Group (PHARSG), Departamento de Produção de Matéria-Prima, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
| | - Poliana A Rodrigues Gazolla
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Ana P Martins de Souza
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Milene Lopes da Silva
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Fabíola S Dos Santos
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Stefânia N Lavorato
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, 47810-047, Brazil
| | - Ana C Oliveira Bretas
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Diogo Teixeira Carvalho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Lucas Lopardi Franco
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Stephanie Luedtke
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Miriam A Giardini
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Antti Poso
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, 72076, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, Tübingen, 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Luiz C Dias
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Larissa M Podust
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Ricardo J Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - James McKerrow
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Saulo F Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
- Pharmaceutical Synthesis Group (PHARSG), Departamento de Produção de Matéria-Prima, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Anthony O'Donoghue
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Renata B de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Rafaela S Ferreira
- Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
20
|
Shao Q, Xiong M, Li J, Hu H, Su H, Xu Y. Unraveling the catalytic mechanism of SARS-CoV-2 papain-like protease with allosteric modulation of C270 mutation using multiscale computational approaches. Chem Sci 2023; 14:4681-4696. [PMID: 37181765 PMCID: PMC10171076 DOI: 10.1039/d3sc00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Papain-like protease (PLpro) is a promising therapeutic target against SARS-CoV-2, but its restricted S1/S2 subsites pose an obstacle in developing active site-directed inhibitors. We have recently identified C270 as a novel covalent allosteric site for SARS-CoV-2 PLpro inhibitors. Here we present a theoretical investigation of the proteolysis reaction catalyzed by the wild-type SARS-CoV-2 PLpro as well as the C270R mutant. Enhanced sampling MD simulations were first performed to explore the influence of C270R mutation on the protease dynamics, and sampled thermodynamically favorable conformations were then submitted to MM/PBSA and QM/MM MD simulations for thorough characterization of the protease-substrate binding and covalent reactions. The disclosed proteolysis mechanism of PLpro, as characterized by the occurrence of proton transfer from the catalytic C111 to H272 prior to the substrate binding and with deacylation being the rate-determining step of the whole proteolysis process, is not completely identical to that of the 3C-like protease, another key cysteine protease of coronaviruses. The C270R mutation alters the structural dynamics of the BL2 loop that indirectly impairs the catalytic function of H272 and reduces the binding of the substrate with the protease, ultimately showing an inhibitory effect on PLpro. Together, these results provide a comprehensive understanding at the atomic level of the key aspects of SARS-CoV-2 PLpro proteolysis, including the catalytic activity allosterically regulated by C270 modification, which is crucial to the follow-up inhibitor design and development.
Collapse
Affiliation(s)
- Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiameng Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Hangchen Hu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
21
|
Saramago LC, Santana MV, Gomes BF, Dantas RF, Senger MR, Oliveira Borges PH, Ferreira VNDS, dos Santos Rosa A, Tucci AR, Dias Miranda M, Lukacik P, Strain-Damerell C, Owen CD, Walsh MA, Ferreira SB, Silva-Junior FP. AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity In Vitro. J Chem Inf Model 2023; 63:2866-2880. [PMID: 37058135 PMCID: PMC10124747 DOI: 10.1021/acs.jcim.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 04/15/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 μM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Luiz Carlos Saramago
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Marcos V. Santana
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Bárbara Figueira Gomes
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Mario R. Senger
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Pedro Henrique Oliveira Borges
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Vivian Neuza dos Santos Ferreira
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Alice dos Santos Rosa
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Amanda Resende Tucci
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Milene Dias Miranda
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Petra Lukacik
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - C. David Owen
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Martin Austin Walsh
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Sabrina Baptista Ferreira
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| |
Collapse
|
22
|
Kronenberger T, Laufer SA, Pillaiyar T. COVID-19 therapeutics: small-molecule drug development targeting SARS-CoV-2 main protease. Drug Discov Today 2023; 28:103579. [PMID: 37028502 PMCID: PMC10074736 DOI: 10.1016/j.drudis.2023.103579] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative factor behind the 2019 global coronavirus pandemic (COVID-19). The main protease, known as Mpro, is encoded by the viral genome and is essential for viral replication. It has also been an effective target for drug development. In this review, we discuss the rationale for inhibitors that specifically target SARS-CoV-2 Mpro. Small molecules and peptidomimetic inhibitors are two types of inhibitor with various modes of action and we focus here on novel inhibitors that were only discovered during the COVID-19 pandemic highlighting their binding modes and structures.
Collapse
Affiliation(s)
- Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Navarro-Tovar G, Vega-Rodríguez S, Leyva E, Loredo-Carrillo S, de Loera D, López-López LI. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:ph16040496. [PMID: 37111253 PMCID: PMC10144089 DOI: 10.3390/ph16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Natural product derivatives are essential in searching for compounds with important chemical, biological, and medical applications. Naphthoquinones are secondary metabolites found in plants and are used in traditional medicine to treat diverse human diseases. Considering this, the synthesis of naphthoquinone derivatives has been explored to contain compounds with potential biological activity. It has been reported that the chemical modification of naphthoquinones improves their pharmacological properties by introducing amines, amino acids, furan, pyran, pyrazole, triazole, indole, among other chemical groups. In this systematic review, we summarized the preparation of nitrogen naphthoquinones derivatives and discussed their biological effect associated with redox properties and other mechanisms. Preclinical evaluation of antibacterial and/or antitumoral naphthoquinones derivatives is included because cancer is a worldwide health problem, and there is a lack of effective drugs against multidrug-resistant bacteria. The information presented herein indicates that naphthoquinone derivatives could be considered for further studies to provide drugs efficient in treating cancer and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Gabriela Navarro-Tovar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City 03940, Mexico
| | - Sarai Vega-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Silvia Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Correspondence: (D.d.L.); (L.I.L.-L.)
| | - Lluvia Itzel López-López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78377, Mexico
- Correspondence: (D.d.L.); (L.I.L.-L.)
| |
Collapse
|
24
|
Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating Diversity, Equity, Inclusion, and Respect in Computational and Theoretical Chemistry. J Chem Inf Model 2022; 62:6287-6291. [PMID: 36567670 DOI: 10.1021/acs.jcim.2c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Thereza A Soares
- Department of Chemistry, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.,Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, 92093-0340 San Diego, California, United States
| |
Collapse
|