1
|
Wasif Baig M, Pederzoli M, Kývala M, Pittner J. Quantum Chemical and Trajectory Surface Hopping Molecular Dynamics Study of Iodine-Based BODIPY Photosensitizer. J Comput Chem 2025; 46:e70026. [PMID: 40068139 PMCID: PMC11896635 DOI: 10.1002/jcc.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 03/15/2025]
Abstract
A computational study of I-BODIPY (2-ethyl-4,4-difluoro-6,7-diiodo-1,3-dimethyl-4-bora-3a,4a-diaza-s-indacene) has been carried out to investigate its key photophysical properties as a potential triplet photosensitizer capable of generating singlet oxygen. Multireference CASPT2 and CASSCF methods have been used to calculate vertical excitation energies and spin-orbit couplings (SOCs), respectively, in a model (mono-iodinated BODIPY) molecule to assess the applicability of the single-reference second-order algebraic diagrammatic construction, ADC(2), method to this and similar molecules. Subsequently, time-dependent density functional theory (TD-DFT), possibly within the Tamm-Dancoff approximation (TDA), using several exchange-correlation functionals has been tested on I-BODIPY against ADC(2), both employing a basis set with a two-component pseudopotential on the iodine atoms. Finally, the magnitudes of SOC between excited electronic states of all types found have thoroughly been discussed using the Slater-Condon rules applied to an arbitrary one-electron one-center effective spin-orbit Hamiltonian. The geometry dependence of SOCs between the lowest-lying states has also been addressed. Based on these investigations, the TD-DFT/B3LYP and TD-DFT(TDA)/BHLYP approaches have been selected as the methods of choice for the subsequent nuclear ensemble approach absorption spectra simulations and mixed quantum-classical trajectory surface hopping (TSH) molecular dynamics (MD) simulations, respectively. Two bright states in the visible spectrum of I-BODIPY have been found, exhibiting a redshift of the main peak with respect to unsubstituted BODIPY caused by the iodine substituents. Excited-state MD simulations including both non-adiabatic effects and SOCs have been performed to investigate the relaxation processes in I-BODIPY after its photoexcitation to theS 1 $$ {\mathrm{S}}_1 $$ state. The TSH MD simulations revealed that intersystem crossings occur on a time scale comparable to internal conversions and that after an initial phase of triplet population growth a "saturation" is reached where the ratio of the net triplet to singlet populations is about 4:1. The calculated triplet quantum yield of 0.85 is in qualitative agreement with the previously reported experimental singlet oxygen generation yield of 0.99± $$ \pm $$ 0.06.
Collapse
Affiliation(s)
- Mirza Wasif Baig
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
- Faculty of Science, Department of Physical and Macromolecular ChemistryCharles UniversityPrague 2Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| | - Mojmír Kývala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| |
Collapse
|
2
|
Goyal S, Reddy SR. Investigation of excited states of BODIPY derivatives and non-orthogonal dimers from the perspective of singlet fission. Phys Chem Chem Phys 2024; 26:26398-26408. [PMID: 39390812 DOI: 10.1039/d4cp02656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We report state of the art electronic structure calculations RICC2 and XMCQDPT of BODIPY nonorthogonal dimers to understand the photophysical processes from the intramolecular singlet fission (iSF) perspective. We have calculated singlet, triplet and quintet states at the XMCQDPT(8,8)/cc-pVDZ level of theory and diabatic singlet states at the XMCQDPT(4,4)/cc-pVDZ level of theory. In all the systems studied, charge transfer states (1(CA) and 1(AC)) couple strongly with locally excited (1(S1S0)) and multiexcitonic (1(T1T1)) states. The rates of formation of the multiexcitonic state from the locally excited state are very low on account of large activation energy (E(1(T1T1)) - E(1(S1S0))). A relaxed scan along the torsional angle revealed contrasting results for axial and orthogonal conformers. We proposed a probable mechanism for contrasting photophysical properties of dimers B[3,3] and B[2,8]. We also found that substitution of CN, NH2 and BH2 at meso, β and α positions reduces the energy gap (ΔSF = 2E(T1) - E(S1)) significantly, making iSF a competing process in triplet state generation. Intrigued by the success of the CN group at the meso position in reducing the energy gap, we also studied the azaBODIPY monomer and its derivatives using the same methodology. The iSF is slightly endoergic with ΔSF ∼ 0.2 eV in these systems and iSF may play an important role in their photophysical responses.
Collapse
Affiliation(s)
- Sophiya Goyal
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| | - S Rajagopala Reddy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
3
|
Tsuneda T, Taketsugu T. Singlet Fission as the Gateway to Triplet Generation in Heavy Atom-Free Organic Molecules. J Phys Chem Lett 2024; 15:6676-6684. [PMID: 38899775 DOI: 10.1021/acs.jpclett.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Triplet generations in heavy atom-free organic molecules are primarily revealed to proceed through singlet fissions (SFs) by investigating the contributions of SFs and intersystem crossings to the generation rates. The spin-flip long-range corrected time-dependent density functional theory calculations on 11 organic molecules known for triplet generation under photoirradiation are performed. The correlation between the descriptors for SF and the experimental singlet-to-triplet conversion rates strongly supports the predominance of SF progressions in all these molecules, corroborated by experimental observations of their triplet-triplet annihilations. Based on these findings, we propose updated conditions for SF progression: There is a high-absorption singlet state just above the triplet-triplet excitation of the chromophore dimer, or the singlet (triplet-triplet) excitation itself is responsible for photoabsorption. To the best of our knowledge, all organic molecules known for rapid triplet state generation fulfill these conditions.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Dai Y, Dellai A, Bassan E, Bellatreccia C, Gualandi A, Anselmi M, Cozzi PG, Ceroni P, Negri F. Solvent and alkyl substitution effects on charge-transfer mediated triplet state generation in BODIPY dyads: a combined computational and experimental study. Photochem Photobiol Sci 2024; 23:451-462. [PMID: 38324165 DOI: 10.1007/s43630-023-00530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Donor-acceptor dyads based on BODIPYs have been recently employed to enhance the formation of triplet excited states with the process of spin-orbit charge transfer intersystem crossing (SOCT-ISC) which does not require introduction of transition metals or other heavy atoms into the molecule. In this work we compare two donor-acceptor dyads based on meso-naphthalenyl BODIPY by combining experimental and computational investigations. The photophysical and electrochemical characterization reveals a significant effect of alkylation of the BODIPY core, disfavoring the SOCT-ISC mechanism for the ethylated BODIPY dyad. This is complemented with a computational investigation carried out to rationalize the influence of ethyl substituents and solvent effects on the electronic structure and efficiency of triplet state population via charge recombination (CR) from the photoinduced electron transfer (PeT) generated charge-transfer (CT) state. Time dependent-density functional theory (TD-DFT) calculations including solvent effects and spin-orbit coupling (SOC) calculations uncover the combined role played by solvent and alkyl substitution on the lateral positions of BODIPY.
Collapse
Affiliation(s)
- Yasi Dai
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Angela Dellai
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Elena Bassan
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Caterina Bellatreccia
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Andrea Gualandi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy.
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
| | - Fabrizia Negri
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy.
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
- INSTM, UdR Bologna, Via F. Selmi, 2, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Doležel J, Poryvai A, Slanina T, Filgas J, Slavíček P. Spin-Vibronic Coupling Controls the Intersystem Crossing of Iodine-Substituted BODIPY Triplet Chromophores. Chemistry 2024; 30:e202303154. [PMID: 37905588 DOI: 10.1002/chem.202303154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.
Collapse
Affiliation(s)
- Jiří Doležel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Anna Poryvai
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
6
|
Tsuneda T, Taketsugu T. Singlet fission initiating organic photosensitizations. Sci Rep 2024; 14:829. [PMID: 38191637 PMCID: PMC10774408 DOI: 10.1038/s41598-023-50860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
The feasibility of singlet fission (SF) in organic photosensitizers is investigated through spin-flip long-range corrected time-dependent density functional theory. This study focuses on four major organic photosensitizer molecules: benzophenone, boron-dipyrromethene, methylene blue, and rose bengal. Calculations demonstrate that all these molecules possess moderate [Formula: see text]-stacking energies and closely-lying singlet (S) and quintet (triplet-triplet, TT) excitations, satisfying the essential conditions for SF: (1) Near-degenerate low-lying S and (TT) excitations with a significant S-T energy gap, and (2) Moderate [Formula: see text]-stacking energy of chromophores, slightly higher than solvation energy, enabling dissociation for triplet-state chromophore generation. Moreover, based on the El-Sayed rule, intersystem crossing is found to simultaneously proceed at very slow rates in all these photosensitizers. This is attributed to the fact that the lowest singlet excitation of the monomers partly involves [Formula: see text] transitions alongside the main [Formula: see text] transitions. The proposed mechanisms are strongly substantiated by comparisons with experimental studies.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
7
|
Tsuneda T, Taketsugu T. Roles of Singlet Fission in the Photosensitization of Silicon Phthalocyanine. J Phys Chem Lett 2023; 14:11587-11596. [PMID: 38100084 DOI: 10.1021/acs.jpclett.3c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The roles of singlet fission in the triplet generation of silicon phthalocyanine (SiPc), a compound analogous to the IRDye700DX photosensitizer used in near-infrared photoimmunotherapy, are investigated by considering the energetical relation between the excitations of this compound. These excitations are obtained through spin-flip long-range corrected time-dependent density functional theory calculations. To initiate singlet fission, chromophores must meet two conditions: (1) near-degenerate low-lying singlet and quintet (triplet-triplet) excitations with a considerable energy gap of the lowest singlet and triplet excited states and (2) moderate π-stacking energy of chromophores, which is higher than but not far from the solvation energy, to facilitate the dissociation and generation of triplet-state chromophores. The present calculations demonstrate that SiPc satisfies both of these conditions after the formation of π-stacking irrespective of the presence of an axial ligand(s), suggesting that singlet fission plays a crucial role in the triplet generation process, although intersystem crossing occurs simultaneously at a very slow rate.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
8
|
Prieto-Montero R, Díaz Andres A, Prieto-Castañeda A, Tabero A, Longarte A, Agarrabeitia AR, Villanueva A, Ortiz MJ, Montero R, Casanova D, Martínez-Martínez V. Halogen-free photosensitizers based on meso-enamine-BODIPYs for bioimaging and photodynamic therapy. J Mater Chem B 2022; 11:169-179. [PMID: 36484323 DOI: 10.1039/d2tb01515c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The search for efficient heavy atom free photosensitizers (PSs) for photodynamic therapy (PDT) is a very active field. We describe herein a simple and easily accessible molecular design based on the attachment of an enamine group as an electron-donor moiety at the meso position of the BODIPY core with different alkylation patterns. The effect of the alkylation degree and solvent polarity on the photophysical properties in terms of splitting absorption bands, fluorescence efficiencies and singlet oxygen production is analyzed in depth experimentally using spectroscopic techniques, including femtosecond and nanosecond transient absorption (fs- and ns-TA) and using computational simulations based on time-dependent density functional theory. The correlation between the theoretical/experimental results permits the rationalization of the observed photophysical behavior exhibited by meso-enamine-BODIPY compounds and the determination of mechanistic details, which rule the population of the triplet state manifold. The potential applicability as a theragnostic agent for the most promising compound is demonstrated through in vitro assays in HeLa cells by analyzing the internalization, localization and phototoxic action.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain.
| | - Aitor Díaz Andres
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Andrea Tabero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Asier Longarte
- Spectroscopy Laboratory, Departamento Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apartado 644, 48080 Bilbao, Spain
| | - Antonia R Agarrabeitia
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.,Sección Departamental de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, 28037 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - María J Ortiz
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raúl Montero
- SGiker Laser Facility, Universidad del País Vasco (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain.
| |
Collapse
|
9
|
Tsuneda T, Taketsugu T. Singlet fission initiating triplet generations of BODIPY derivatives through [Formula: see text]-stacking: a theoretical study. Sci Rep 2022; 12:19714. [PMID: 36385479 PMCID: PMC9668823 DOI: 10.1038/s41598-022-23370-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The role of singlet fission (SF) in the triplet-state generation mechanism of 1,3,5,7-tetramethyl-boron-dipyrromethene derivatives is revealed by exploring the cause for the solvent dependence of the generation rate. Comparing the adsorption energy calculations of solvent molecules, i.e., cyclohexane, chloroform and acetonitrile molecules, to the derivatives with the [Formula: see text]-stacking energies of these derivatives surprisingly show that the hierarchy of the solvation energies and [Formula: see text]-stacking energies strongly correlates with the experimentally-suggested solvent dependence of the triplet-state generation of these derivatives for five and more adsorbing solvent molecules. Following this finding, the excitation spectra of these derivatives in acetonitrile solvent are explored using the proprietary spin-flip long-range corrected time-dependent density functional theory. It is, consequently, confirmed that the [Formula: see text]-stacking activates the second lowest singlet excitation to trigger the spin-allowed transition to the singlet doubly-excited tetraradical (TT)[Formula: see text] state, which generates the long-lived quintet (TT)[Formula: see text] state causing the SF. However, it is also found that the [Formula: see text]-stacking also get a slow intersystem crossing active around the intersections of the lowest singlet excitations with the lowest triplet T[Formula: see text] excitations in parallel with the SF due to the charge transfer characters of the lowest singlet excitations. These results suggest that SF initiates the triplet-state generations through near-degenerate low-lying singlet and (TT) excitations with a considerable singlet-triplet energy gap after the [Formula: see text]-stacking of chromophores stronger than but not far from the solvation. Since these derivatives are organic photosensitizers, this study proposes that SF should be taken into consideration in developing novel heavy atom-free organic photosensitizers, which will contribute to a variety of research fields such as medical care, photobiology, energy science, and synthetic chemistry.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021 Japan
| |
Collapse
|
10
|
Rebollar E, Bañuelos J, de la Moya S, Eng J, Penfold T, Garcia-Moreno I. A Computational-Experimental Approach to Unravel the Excited State Landscape in Heavy-Atom Free BODIPY-Related Dyes. Molecules 2022; 27:4683. [PMID: 35897859 PMCID: PMC9330419 DOI: 10.3390/molecules27154683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
We performed a time-gated laser-spectroscopy study in a set of heavy-atom free single BODIPY fluorophores, supported by accurate, excited-state computational simulations of the key low-lying excited states in these chromophores. Despite the strong fluorescence of these emitters, we observed a significant fraction of time-delayed (microseconds scale) emission associated with processes that involved passage through the triplet manifold. The accuracy of the predictions of the energy arrangement and electronic nature of the low-lying singlet and triplet excited states meant that an unambiguous assignment of the main deactivation pathways, including thermally activated delayed fluorescence and/or room temperature phosphorescence, was possible. The observation of triplet state formation indicates a breakthrough in the "classic" interpretation of the photophysical properties of the renowned BODIPY and its derivatives.
Collapse
Affiliation(s)
- Esther Rebollar
- Departamento Química-Física de Materiales, Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain;
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Santiago de la Moya
- Departamento Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
| | - Julien Eng
- Chemistry Department, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, UK; (J.E.); (T.P.)
| | - Thomas Penfold
- Chemistry Department, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, UK; (J.E.); (T.P.)
| | - Inmaculada Garcia-Moreno
- Departamento Química-Física de Materiales, Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain;
| |
Collapse
|
11
|
Walia R, Yang J. Exploring optimal multimode vibronic pathways in singlet fission of azaborine analogues of perylene. Photochem Photobiol Sci 2022; 21:1689-1700. [PMID: 35716333 DOI: 10.1007/s43630-022-00251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The development of new singlet fission chromophores is a vibrant area of research to explore the possibility of efficient photovoltaic devices. Using high-level ab-initio density matrix renormalization group calculations, we present a systematic analysis of BN-doped perylenes for their potential application as singlet fission candidates. Four singlet fission chromophores are identified considering the monomer-based properties and their excitonic characters are further analyzed in a dimer configuration optimized in a six-dimensional space for local maxima of fission rates. Furthermore, a multistate multimode vibronic Hamiltonian is employed to identify intra- and interstate vibrational pathways for excitation energy modulation. Several photophysical properties such as Davydov splitting, activation energy and vibronic admixture of multiexcitonic and charge-transfer states are calculated for physically accessible dimers. The optimal dimer packing results in appropriate vibrational relaxation of singlet fission states and promotes significant population transfer which would be more attenuated without such couplings. This work not only identifies potential singlet fission systems with favorable electronic properties but also highlights the sensitivity of dimer packings with respect to the substitution patterns in singlet fission chromophores.
Collapse
Affiliation(s)
- Rajat Walia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.
| |
Collapse
|
12
|
García-Moreno I, Postils V, Rebollar E, Ortiz MJ, Agarrabeitia AR, Casanova D. Generation of multiple triplet states in an orthogonal bodipy dimer: a breakthrough spectroscopic and theoretical approach. Phys Chem Chem Phys 2022; 24:5929-5938. [PMID: 35195637 DOI: 10.1039/d1cp05730h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Generation of triplet states in assemblies of organic chromophores is extremely appealing for their potential use in optoelectronic applications. In this work, we investigate the intricacies of triplet state generation in an orthogonal BODIPY dimer by combining delayed photoemission techniques with electronic structure calculations. Our analysis provides a deep understanding of the electronic states involved, and describes different competing deactivation channels beyond prompt radiative decay. In particular, we identify charge-transfer (CT) mediated intersystem crossing (ISC) as the most likely mechanism for the triplet state generation in this system. The different emission bands at long times can be associated with delayed fluorescence, CT emission and phosphorescence from multiple low-energy triplets. Interestingly, the dependence of the yield of triplet state population and emission profiles with the solvent polarity evidences the decisive role of the CT configuration in the fate of the photoactivated dimer, controlling the relative ISC, reverse ISC, and internal conversion efficiencies. Overall, the present results provide a rather complete description of the delayed photophysics in the BODIPY dimer, but are not able to fully rationalize the unexpected photoluminescence recorded at long wavelengths (≥ 900 nm). We hypothesize that the origin of this emission, not present in BODIPY monomers, emerges from intermonomer interactions triggered by intramolecular distortions opening up a new vision in the controverted mechanism driving the photophysical behavior from orthogonally linked organic monomers.
Collapse
Affiliation(s)
| | - Verònica Postils
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,Polimero eta Material Aurreratuak, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Euskadi, Spain
| | - Esther Rebollar
- Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain.
| | - Maria J Ortiz
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Antonia R Agarrabeitia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,Ikerbasque Foundation for Science, 48009 Bilbao, Euskadi, Spain.
| |
Collapse
|
13
|
Effect of the iodine atom position on the phosphorescence of BODIPY derivatives: a combined computational and experimental study. Photochem Photobiol Sci 2022; 21:777-786. [PMID: 35023042 DOI: 10.1007/s43630-021-00152-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
A new BODIPY derivative (o-I-BDP) containing an iodine atom in the ortho position of the meso-linked phenyl group was prepared. Photophysical and electrochemical properties of the molecule were compared to previously reported iodo BODIPY derivatives, as well as to the non-iodinated analog. While in the case of derivatives featuring iodine substituents in the BODIPY core, efficient population of the triplet state is accompanied by a substantial positive shift of the reduction potential compared to pristine BODIPY, o-I-BDP displays phosphorescence and simultaneously maintains the electrochemical properties of unsubstituted BODIPYs. A theoretical investigation was settled to analyze results and rationalize the influence of iodine position on electronic and photophysical properties, with the purpose of preparing a fully organic phosphorescent BODIPY derivative. TD-DFT and spin-orbit coupling calculations shed light on the subtle effects played by the introduction of iodine atom in different positions of BODIPY.
Collapse
|