1
|
Meng Y, Zhang Z, Zhou C, Tang X, Hu X, Tian G, Yang J, Yao Y. Protein structure prediction via deep learning: an in-depth review. Front Pharmacol 2025; 16:1498662. [PMID: 40248099 PMCID: PMC12003282 DOI: 10.3389/fphar.2025.1498662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/28/2025] [Indexed: 04/19/2025] Open
Abstract
The application of deep learning algorithms in protein structure prediction has greatly influenced drug discovery and development. Accurate protein structures are crucial for understanding biological processes and designing effective therapeutics. Traditionally, experimental methods like X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy have been the gold standard for determining protein structures. However, these approaches are often costly, inefficient, and time-consuming. At the same time, the number of known protein sequences far exceeds the number of experimentally determined structures, creating a gap that necessitates the use of computational approaches. Deep learning has emerged as a promising solution to address this challenge over the past decade. This review provides a comprehensive guide to applying deep learning methodologies and tools in protein structure prediction. We initially outline the databases related to the protein structure prediction, then delve into the recently developed large language models as well as state-of-the-art deep learning-based methods. The review concludes with a perspective on the future of predicting protein structure, highlighting potential challenges and opportunities.
Collapse
Affiliation(s)
- Yajie Meng
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Zhuang Zhang
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Chang Zhou
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Xianfang Tang
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Xinrong Hu
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | | | | | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, China
| |
Collapse
|
2
|
van der Weg K, Merdivan E, Piraud M, Gohlke H. TopEC: prediction of Enzyme Commission classes by 3D graph neural networks and localized 3D protein descriptor. Nat Commun 2025; 16:2737. [PMID: 40108108 PMCID: PMC11923149 DOI: 10.1038/s41467-025-57324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Tools available for inferring enzyme function from general sequence, fold, or evolutionary information are generally successful. However, they can lead to misclassification if a deviation in local structural features influences the function. Here, we present TopEC, a 3D graph neural network based on a localized 3D descriptor to learn chemical reactions of enzymes from enzyme structures and predict Enzyme Commission (EC) classes. Using message-passing frameworks, we include distance and angle information to significantly improve the predictive performance for EC classification (F-score: 0.72) compared to regular 2D graph neural networks. We trained networks without fold bias that can classify enzyme structures for a vast functional space (>800 ECs). Our model is robust to uncertainties in binding site locations and similar functions in distinct binding sites. We observe that TopEC networks learn from an interplay between biochemical features and local shape-dependent features. TopEC is available as a repository on GitHub: https://github.com/IBG4-CBCLab/TopEC and https://doi.org/10.25838/d5p-66 .
Collapse
Affiliation(s)
- Karel van der Weg
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Erinc Merdivan
- Helmholtz AI Central Unit, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Marie Piraud
- Helmholtz AI Central Unit, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Holger Gohlke
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
3
|
German GJ, DeGiulio JV, Ramsey J, Kropinski AM, Misra R. The TolC and Lipopolysaccharide-Specific Escherichia coli Bacteriophage TLS-the Tlsvirus Archetype Virus. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:173-183. [PMID: 39372356 PMCID: PMC11447400 DOI: 10.1089/phage.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Introduction TLS is a virulent bacteriophage of Escherichia coli that utilizes TolC and lipopolysaccharide as its cell surface receptors. Methods The genome was reannotated using the latest online resources and compared to other T1-like phages. Results The TLS genome consists of 49,902 base pairs, encoding 86 coding sequences that display considerable sequence similarity with the T1 phage genome. It also contains 18 intergenic 21-base long repeats, each of them upstream of a predicted start codon and in the direction of transcription. Data revealed that DNA packaging occurs through the pac site-mediated headful mechanism. Conclusions Based on sequence analysis of its genome, TLS belongs to the Drexlerviridae family and represents the type member of the Tlsvirus genus.
Collapse
Affiliation(s)
- Gregory J. German
- St. Joseph’s Health Centre, Unity Health Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | | | - Jolene Ramsey
- Texas A&M University, Biology Department, College Station, TX USA
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Becker D, Bharatam PV, Gohlke H. Molecular Mechanisms Underlying Single Nucleotide Polymorphism-Induced Reactivity Decrease in CYP2D6. J Chem Inf Model 2024; 64:6026-6040. [PMID: 38994927 DOI: 10.1021/acs.jcim.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important enzymes involved in drug metabolism. Genetic polymorphism can influence drug metabolism by CYP2D6 such that a therapy is seriously affected by under- or overdosing of drugs. However, a general explanation at the atomistic level for poor activity is missing so far. Here we show for the 20 most common single nucleotide polymorphisms (SNPs) of CYP2D6 that poor metabolism is driven by four mechanisms. We found in extensive all-atom molecular dynamics simulations that the rigidity of the I-helix (central helix), distance between central phenylalanines (stabilizing bound substrate), availability of basic residues on the surface of CYP2D6 (binding of cytochrome P450 reductase), and position of arginine 132 (electron transfer to heme) are essential for an extensive function of the enzyme. These results were applied to SNPs with unknown effects, and potential SNPs that may lead to poor drug metabolism were identified. The revealed molecular mechanisms might be important for other drug-metabolizing cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Mohali, Punjab 160 062, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
5
|
Hsieh HC, Huang IH, Chang SW, Chen PL, Su YC, Wang S, Tsai WJ, Chen PH, Aroian RV, Chen CS. PRMT-7/PRMT7 activates HLH-30/TFEB to guard plasma membrane integrity compromised by bacterial pore-forming toxins. Autophagy 2024; 20:1335-1358. [PMID: 38261662 PMCID: PMC11210913 DOI: 10.1080/15548627.2024.2306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Bacterial pore-forming toxins (PFTs) that disrupt host plasma membrane integrity (PMI) significantly contribute to the virulence of various pathogens. However, how host cells protect PMI in response to PFT perforation in vivo remains obscure. Previously, we demonstrated that the HLH-30/TFEB-dependent intrinsic cellular defense (INCED) is elicited by PFT to maintain PMI in Caenorhabditis elegans intestinal epithelium. Yet, the molecular mechanism for the full activation of HLH-30/TFEB by PFT remains elusive. Here, we reveal that PRMT-7 (protein arginine methyltransferase-7) is indispensable to the nuclear transactivation of HLH-30 elicited by PFTs. We demonstrate that PRMT-7 participates in the methylation of HLH-30 on its RAG complex binding domain to facilitate its nuclear localization and activation. Moreover, we showed that PRMT7 is evolutionarily conserved to regulate TFEB cellular localization and repair plasma damage caused by PFTs in human intestinal cells. Together, our observations not only unveil a novel PRMT-7/PRMT7-dependent post-translational regulation of HLH-30/TFEB but also shed insight on the evolutionarily conserved mechanism of the INCED against PFT in metazoans.
Collapse
Affiliation(s)
- Hui-Chen Hsieh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiang Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Wen Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jiun Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hung Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Moreira BP, Gava SG, Haeberlein S, Gueye S, Santos ESS, Weber MHW, Abramyan TM, Grevelding CG, Mourão MM, Falcone FH. Identification of potent schistosomicidal compounds predicted as type II-kinase inhibitors against Schistosoma mansoni c-Jun N-terminal kinase SMJNK. FRONTIERS IN PARASITOLOGY 2024; 3:1394407. [PMID: 39817168 PMCID: PMC11732180 DOI: 10.3389/fpara.2024.1394407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 01/18/2025]
Abstract
Introduction Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively. This is the case for type II PK inhibitors, which cause PKs to adopt the so-called DFG-out conformation, corresponding to the inactive state of the enzyme. Methods The goal was to perform a virtual screen against the ATP pocket of the inactive JNK protein kinase. After virtually screening millions of compounds, Atomwise provided 85 compounds predicted to target c-Jun N-terminal kinase (JNK) as type II inhibitors. Selected compounds were screened in vitro against larval stage (schistosomula) of S. mansoni using the XTT assay. Adult worms were assessed for motility, attachment, and pairing stability. Active compounds were further analyzed by molecular docking against SmJNK. Results In total, 33 compounds were considered active in at least one of the assays, and two compounds were active in every in vitro screening assay. The two most potent compounds presented strong effects against both life stages of the parasite, and microscopy analysis showed phenotypic alterations on the tegument, in the gonads, and impairment of cell proliferation. Conclusion The approach to screen type II kinase inhibitors resulted in the identification of active compounds that will be further developed against schistosomiasis.
Collapse
Affiliation(s)
- Bernardo P. Moreira
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| | - Sandra G. Gava
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz – Fiocruz, Belo Horizonte, Brazil
| | - Simone Haeberlein
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| | - Sophie Gueye
- Polytech Angers, Université d’Angers, Angers, France
| | - Ester S. S. Santos
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz – Fiocruz, Belo Horizonte, Brazil
| | | | | | - Christoph G. Grevelding
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| | - Marina M. Mourão
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz – Fiocruz, Belo Horizonte, Brazil
| | - Franco H. Falcone
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| |
Collapse
|
7
|
Prešern U, Goličnik M. Enzyme Databases in the Era of Omics and Artificial Intelligence. Int J Mol Sci 2023; 24:16918. [PMID: 38069254 PMCID: PMC10707154 DOI: 10.3390/ijms242316918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Enzyme research is important for the development of various scientific fields such as medicine and biotechnology. Enzyme databases facilitate this research by providing a wide range of information relevant to research planning and data analysis. Over the years, various databases that cover different aspects of enzyme biology (e.g., kinetic parameters, enzyme occurrence, and reaction mechanisms) have been developed. Most of the databases are curated manually, which improves reliability of the information; however, such curation cannot keep pace with the exponential growth in published data. Lack of data standardization is another obstacle for data extraction and analysis. Improving machine readability of databases is especially important in the light of recent advances in deep learning algorithms that require big training datasets. This review provides information regarding the current state of enzyme databases, especially in relation to the ever-increasing amount of generated research data and recent advancements in artificial intelligence algorithms. Furthermore, it describes several enzyme databases, providing the reader with necessary information for their use.
Collapse
Affiliation(s)
| | - Marko Goličnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Twizerimana AP, Becker D, Zhu S, Luedde T, Gohlke H, Münk C. The cyclophilin A-binding loop of the capsid regulates the human TRIM5α sensitivity of nonpandemic HIV-1. Proc Natl Acad Sci U S A 2023; 120:e2306374120. [PMID: 37983491 PMCID: PMC10691330 DOI: 10.1073/pnas.2306374120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023] Open
Abstract
The rather few cases of humans infected by HIV-1 N, O, or P raise the question of their incomplete adaptation to humans. We hypothesized that early postentry restrictions may be relevant for the impaired spread of these HIVs. One of the best-characterized species-specific restriction factors is TRIM5α. HIV-1 M can escape human (hu) TRIM5α restriction by binding cyclophilin A (CYPA, also known as PPIA, peptidylprolyl isomerase A) to the so-called CYPA-binding loop of its capsid protein. How non-M HIV-1s interact with huTRIM5α is ill-defined. By testing full-length reporter viruses (Δ env) of HIV-1 N, O, P, and SIVgor (simian IV of gorillas), we found that in contrast to HIV-1 M, the nonpandemic HIVs and SIVgor showed restriction by huTRIM5α. Work to identify capsid residues that mediate susceptibility to huTRIM5α revealed that residue 88 in the capsid CYPA-binding loop was important for such differences. There, HIV-1 M uses alanine to resist, while non-M HIV-1s have either valine or methionine, which avail them for huTRIM5α. Capsid residue 88 determines the sensitivity to TRIM5α in an unknown way. Molecular simulations indicated that capsid residue 88 can affect trans-to-cis isomerization patterns on the capsids of the viruses we tested. These differential CYPA usages by pandemic and nonpandemic HIV-1 suggest that the enzymatic activity of CYPA on the viral core might be important for its protective function against huTRIM5α.
Collapse
Affiliation(s)
- Augustin P. Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Shenglin Zhu
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich52425, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| |
Collapse
|
9
|
Lin C, Kuffour EO, Fuchs NV, Gertzen CGW, Kaiser J, Hirschenberger M, Tang X, Xu HC, Michel O, Tao R, Haase A, Martin U, Kurz T, Drexler I, Görg B, Lang PA, Luedde T, Sparrer KMJ, Gohlke H, König R, Münk C. Regulation of STING activity in DNA sensing by ISG15 modification. Cell Rep 2023; 42:113277. [PMID: 37864791 DOI: 10.1016/j.celrep.2023.113277] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023] Open
Abstract
Sensing of human immunodeficiency virus type 1 (HIV-1) DNA is mediated by the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling axis. Signal transduction and regulation of this cascade is achieved by post-translational modifications. Here we show that cGAS-STING-dependent HIV-1 sensing requires interferon-stimulated gene 15 (ISG15). ISG15 deficiency inhibits STING-dependent sensing of HIV-1 and STING agonist-induced antiviral response. Upon external stimuli, STING undergoes ISGylation at residues K224, K236, K289, K347, K338, and K370. Inhibition of STING ISGylation at K289 suppresses STING-mediated type Ⅰ interferon induction by inhibiting its oligomerization. Of note, removal of STING ISGylation alleviates gain-of-function phenotype in STING-associated vasculopathy with onset in infancy (SAVI). Molecular modeling suggests that ISGylation of K289 is an important regulator of oligomerization. Taken together, our data demonstrate that ISGylation at K289 is crucial for STING activation and represents an important regulatory step in DNA sensing of viruses and autoimmune responses.
Collapse
Affiliation(s)
- Chaohui Lin
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Edmund Osei Kuffour
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Xiao Tang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Michel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Ricci F, Schira K, Khettabi L, Lombardo L, Mirabile S, Gitto R, Soler-Lopez M, Scheuermann J, Wolber G, De Luca L. Computational methods to analyze and predict the binding mode of inhibitors targeting both human and mushroom tyrosinase. Eur J Med Chem 2023; 260:115771. [PMID: 37657271 DOI: 10.1016/j.ejmech.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Tyrosinase, a copper-containing enzyme critical in melanin biosynthesis, is a key drug target for hyperpigmentation and melanoma in humans. Testing the inhibitory effects of compounds using tyrosinase from Agaricus bisporus (AbTYR) has been a common practice to identify potential therapeutics from synthetic and natural sources. However, structural diversity among human tyrosinase (hTYR) and AbTYR presents a challenge in developing drugs that are therapeutically effective. In this study, we combined retrospective and computational analyses with experimental data to provide insights into the development of new inhibitors targeting both hTYR and AbTYR. We observed contrasting effects of Thiamidol™ and our 4-(4-hydroxyphenyl)piperazin-1-yl-derivative (6) on both enzymes; based on this finding, we aimed to investigate their binding modes in hTYR and AbTYR to identify residues that significantly improve affinity. All the information led to the discovery of compound [4-(4-hydroxyphenyl)piperazin-1-yl](2-methoxyphenyl)methanone (MehT-3, 7), which showed comparable activity on AbTYR (IC50 = 3.52 μM) and hTYR (IC50 = 5.4 μM). Based on these achievements we propose the exploitation of our computational results to provide relevant structural information for the development of newer dual-targeting molecules, which could be preliminarily tested on AbTYR as a rapid and inexpensive screening procedure before being tested on hTYR.
Collapse
Affiliation(s)
- Federico Ricci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Kristina Schira
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lisa Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Salvatore Mirabile
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Gerhard Wolber
- Molecular Design Lab, Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestr. 2 + 4, 14195, Berlin, Germany
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy.
| |
Collapse
|
11
|
Yakici N, Kreins AY, Catak MC, Babayeva R, Erman B, Kenney H, Gungor HE, Cea PA, Kawai T, Bosticardo M, Delmonte OM, Adams S, Fan YT, Pala F, Turkyilmaz A, Howley E, Worth A, Kot H, Sefer AP, Kara A, Bulutoglu A, Bilgic-Eltan S, Altunbas MY, Bayram Catak F, Karakus IS, Karatay E, Tekeoglu SD, Eser M, Albayrak D, Citli S, Kiykim A, Karakoc-Aydiner E, Ozen A, Ghosh S, Gohlke H, Orhan F, Notarangelo LD, Davies EG, Baris S. Expanding the clinical and immunological phenotypes of PAX1-deficient SCID and CID patients. Clin Immunol 2023; 255:109757. [PMID: 37689091 PMCID: PMC10958138 DOI: 10.1016/j.clim.2023.109757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Paired box 1 (PAX1) deficiency has been reported in a small number of patients diagnosed with otofaciocervical syndrome type 2 (OFCS2). We described six new patients who demonstrated variable clinical penetrance. Reduced transcriptional activity of pathogenic variants confirmed partial or complete PAX1 deficiency. Thymic aplasia and hypoplasia were associated with impaired T cell immunity. Corrective treatment was required in 4/6 patients. Hematopoietic stem cell transplantation resulted in poor immune reconstitution with absent naïve T cells, contrasting with the superior recovery of T cell immunity after thymus transplantation. Normal ex vivo differentiation of PAX1-deficient CD34+ cells into mature T cells demonstrated the absence of a hematopoietic cell-intrinsic defect. New overlapping features with DiGeorge syndrome included primary hypoparathyroidism (n = 5) and congenital heart defects (n = 2), in line with PAX1 expression during early embryogenesis. Our results highlight new features of PAX1 deficiency, which are relevant to improving early diagnosis and identifying patients requiring corrective treatment.
Collapse
Affiliation(s)
- Nalan Yakici
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Alexandra Y Kreins
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom; Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey; Can Sucak, Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey
| | - Heather Kenney
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Hatice Eke Gungor
- Division of Pediatric Allergy and Immunology, Erciyes City Hospital, Turkey
| | - Pablo A Cea
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Tomoki Kawai
- Shizuoka Children's Hospital, Shizuoka, Department of Allergy and Clinical Immunology, Japan
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Ottavia Maria Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Yu-Tong Fan
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Evey Howley
- Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Hakan Kot
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Alper Bulutoglu
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic-Eltan
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Feyza Bayram Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Emrah Karatay
- Department of Radiology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Sidem Didar Tekeoglu
- Can Sucak, Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey; Department of Pediatric Immunology, Hacettepe University, Ankara, Turkey
| | - Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Davut Albayrak
- Department of Pediatrics, Division of Pediatric Hematology, Medicalpark Hospital, Samsun, Turkey
| | - Senol Citli
- Department of Medical Genetics, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ayca Kiykim
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sujal Ghosh
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fazil Orhan
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - E Graham Davies
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom; Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
12
|
Pourhassan ZN, Cui H, Muckhoff N, Davari MD, Smits SHJ, Schwaneberg U, Schmitt L. A step forward to the optimized HlyA type 1 secretion system through directed evolution. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12653-7. [PMID: 37405436 PMCID: PMC10386944 DOI: 10.1007/s00253-023-12653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Secretion of proteins into the extracellular space has great advantages for the production of recombinant proteins. Type 1 secretion systems (T1SS) are attractive candidates to be optimized for biotechnological applications, as they have a relatively simple architecture compared to other classes of secretion systems. A paradigm of T1SS is the hemolysin A type 1 secretion system (HlyA T1SS) from Escherichia coli harboring only three membrane proteins, which makes the plasmid-based expression of the system easy. Although for decades the HlyA T1SS has been successfully applied for secretion of a long list of heterologous proteins from different origins as well as peptides, but its utility at commercial scales is still limited mainly due to low secretion titers of the system. To address this drawback, we engineered the inner membrane complex of the system, consisting of HlyB and HlyD proteins, following KnowVolution strategy. The applied KnowVolution campaign in this study provided a novel HlyB variant containing four substitutions (T36L/F216W/S290C/V421I) with up to 2.5-fold improved secretion for two hydrolases, a lipase and a cutinase. KEY POINTS: • An improvement in protein secretion via the use of T1SS • Reaching almost 400 mg/L of soluble lipase into the supernatant • A step forward to making E. coli cells more competitive for applying as a secretion host.
Collapse
Affiliation(s)
- Zohreh N Pourhassan
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Present Address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Neele Muckhoff
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
13
|
De Luca L, Angeli A, Ricci F, Supuran CT, Gitto R. Structure-guided identification of a selective sulfonamide-based inhibitor targeting the human carbonic anhydrase VA isoform. Arch Pharm (Weinheim) 2023; 356:e2200383. [PMID: 36250310 DOI: 10.1002/ardp.202200383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 01/04/2023]
Abstract
In recent years, multistep hybrid computational protocols have attracted attention for their application in the drug discovery of enzyme inhibitors. So far, there are large collections of human carbonic anhydrase (hCA) inhibitors, but only a few of them selectively inhibit the mitochondrial isoforms hCA VA and VB as potential therapeutics in obesity treatment. Most sulfonamide-based inhibitors show poor selectivity for inhibiting isoforms of therapeutic interest over ubiquitous hCA I and hCA II. Herein, we propose a combination of ligand- and structure-based approaches to generate pharmacophore models for hCA VA inhibitors. Then, we performed a virtual screening (VS) campaign on a database of commercially available sulfonamides. Finally, the in silico screening followed by docking studies suggested several "hit compounds" that demonstrated to inhibit hCA VA at a low nanomolar concentration in a stopped-flow CO2 hydrase assay. Notably, the best candidate, 2-(3,4-dihydro-2H-quinolin-1-yl)-N-(4-sulfamoylphenyl)acetamide (code name VAME-28) proved to be a potent hCA VA inhibitor (Ki value of 54.8 nM) and a more selective agent over hCA II when compared to the reference compound topiramate.
Collapse
Affiliation(s)
- Laura De Luca
- Chibiofaram Department, University of Messina, Messina, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Florence, Italy
| | - Federico Ricci
- Chibiofaram Department, University of Messina, Messina, Italy
| | | | - Rosaria Gitto
- Chibiofaram Department, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Esch L, Kirsch C, Vogel L, Kelm J, Huwa N, Schmitz M, Classen T, Schaffrath U. Pathogen Resistance Depending on Jacalin-Dirigent Chimeric Proteins Is Common among Poaceae but Absent in the Dicot Arabidopsis as Evidenced by Analysis of Homologous Single-Domain Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:67. [PMID: 36616196 PMCID: PMC9824508 DOI: 10.3390/plants12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
MonocotJRLs are Poaceae-specific two-domain proteins that consist of a jacalin-related lectin (JRL) and a dirigent (DIR) domain which participate in multiple developmental processes, including disease resistance. For OsJAC1, a monocotJRL from rice, it has been confirmed that constitutive expression in transgenic rice or barley plants facilitates broad-spectrum disease resistance. In this process, both domains of OsJAC1 act cooperatively, as evidenced from experiments with artificially separated JRL- or DIR-domain-containing proteins. Interestingly, these chimeric proteins did not evolve in dicotyledonous plants. Instead, proteins with a single JRL domain, multiple JRL domains or JRL domains fused to domains other than DIR domains are present. In this study, we wanted to test if the cooperative function of JRL and DIR proteins leading to pathogen resistance was conserved in the dicotyledonous plant Arabidopsis thaliana. In Arabidopsis, we identified 50 JRL and 24 DIR proteins, respectively, from which seven single-domain JRL and two single-domain DIR candidates were selected. A single-cell transient gene expression assay in barley revealed that specific combinations of the Arabidopsis JRL and DIR candidates reduced the penetration success of barley powdery mildew. Strikingly, one of these pairs, AtJAX1 and AtDIR19, is encoded by genes located next to each other on chromosome one. However, when using natural variation and analyzing Arabidopsis ecotypes that express full-length or truncated versions of AtJAX1, the presence/absence of the full-length AtJAX1 protein could not be correlated with resistance to the powdery mildew fungus Golovinomyces orontii. Furthermore, an analysis of the additional JRL and DIR candidates in a bi-fluorescence complementation assay in Nicotiana benthamiana revealed no direct interaction of these JRL/DIR pairs. Since transgenic Arabidopsis plants expressing OsJAC1-GFP also did not show increased resistance to G. orontii, it was concluded that the resistance mediated by the synergistic activities of DIR and JRL proteins is specific for members of the Poaceae, at least regarding the resistance against powdery mildew. Arabidopsis lacks the essential components of the DIR-JRL-dependent resistance pathway.
Collapse
Affiliation(s)
- Lara Esch
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Christian Kirsch
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Lara Vogel
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Jana Kelm
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Nikolai Huwa
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Maike Schmitz
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Thomas Classen
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
15
|
Pourhassan N. Z, Hachani E, Spitz O, Smits SHJ, Schmitt L. Investigations on the substrate binding sites of hemolysin B, an ABC transporter, of a type 1 secretion system. Front Microbiol 2022; 13:1055032. [PMID: 36532430 PMCID: PMC9751043 DOI: 10.3389/fmicb.2022.1055032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 03/23/2024] Open
Abstract
The ABC transporter hemolysin B (HlyB) is the key protein of the HlyA secretion system, a paradigm of type 1 secretion systems (T1SS). T1SS catalyze the one-step substrate transport across both membranes of Gram-negative bacteria. The HlyA T1SS is composed of the ABC transporter (HlyB), the membrane fusion protein (HlyD), and the outer membrane protein TolC. HlyA is a member of the RTX (repeats in toxins) family harboring GG repeats that bind Ca2+ in the C-terminus upstream of the secretion signal. Beside the GG repeats, the presence of an amphipathic helix (AH) in the C-terminus of HlyA is essential for secretion. Here, we propose that a consensus length between the GG repeats and the AH affects the secretion efficiency of the heterologous RTX secreted by the HlyA T1SS. Our in silico studies along with mutagenesis and biochemical analysis demonstrate that there are two binding pockets in the nucleotide binding domain of HlyB for HlyA. The distances between the domains of HlyB implied to interact with HlyA indicated that simultaneous binding of the substrate to both cytosolic domains of HlyB, the NBD and CLD, is possible and required for efficient substrate secretion.
Collapse
Affiliation(s)
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
16
|
Masson P, Lushchekina S. Conformational Stability and Denaturation Processes of Proteins Investigated by Electrophoresis under Extreme Conditions. Molecules 2022; 27:6861. [PMID: 36296453 PMCID: PMC9610776 DOI: 10.3390/molecules27206861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The functional structure of proteins results from marginally stable folded conformations. Reversible unfolding, irreversible denaturation, and deterioration can be caused by chemical and physical agents due to changes in the physicochemical conditions of pH, ionic strength, temperature, pressure, and electric field or due to the presence of a cosolvent that perturbs the delicate balance between stabilizing and destabilizing interactions and eventually induces chemical modifications. For most proteins, denaturation is a complex process involving transient intermediates in several reversible and eventually irreversible steps. Knowledge of protein stability and denaturation processes is mandatory for the development of enzymes as industrial catalysts, biopharmaceuticals, analytical and medical bioreagents, and safe industrial food. Electrophoresis techniques operating under extreme conditions are convenient tools for analyzing unfolding transitions, trapping transient intermediates, and gaining insight into the mechanisms of denaturation processes. Moreover, quantitative analysis of electrophoretic mobility transition curves allows the estimation of the conformational stability of proteins. These approaches include polyacrylamide gel electrophoresis and capillary zone electrophoresis under cold, heat, and hydrostatic pressure and in the presence of non-ionic denaturing agents or stabilizers such as polyols and heavy water. Lastly, after exposure to extremes of physical conditions, electrophoresis under standard conditions provides information on irreversible processes, slow conformational drifts, and slow renaturation processes. The impressive developments of enzyme technology with multiple applications in fine chemistry, biopharmaceutics, and nanomedicine prompted us to revisit the potentialities of these electrophoretic approaches. This feature review is illustrated with published and unpublished results obtained by the authors on cholinesterases and paraoxonase, two physiologically and toxicologically important enzymes.
Collapse
Affiliation(s)
- Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlievskaya Str. 18, 420111 Kazan, Russia
| | - Sofya Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia
| |
Collapse
|
17
|
Soleymani F, Paquet E, Viktor H, Michalowski W, Spinello D. Protein-protein interaction prediction with deep learning: A comprehensive review. Comput Struct Biotechnol J 2022; 20:5316-5341. [PMID: 36212542 PMCID: PMC9520216 DOI: 10.1016/j.csbj.2022.08.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein-protein interactions (PPI). However, finding the interacting and non-interacting protein pairs through experimental approaches is labour-intensive and time-consuming, owing to the variety of proteins. Hence, protein-protein interaction and protein-ligand binding problems have drawn attention in the fields of bioinformatics and computer-aided drug discovery. Deep learning methods paved the way for scientists to predict the 3-D structure of proteins from genomes, predict the functions and attributes of a protein, and modify and design new proteins to provide desired functions. This review focuses on recent deep learning methods applied to problems including predicting protein functions, protein-protein interaction and their sites, protein-ligand binding, and protein design.
Collapse
Affiliation(s)
- Farzan Soleymani
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Eric Paquet
- National Research Council, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Herna Viktor
- School of Electrical Engineering and Computer Science, University of Ottawa, ON, Canada
| | | | - Davide Spinello
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Jayaraman K, Trachtmann N, Sprenger GA, Gohlke H. Protein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. Appl Microbiol Biotechnol 2022; 106:6505-6517. [PMID: 36109385 PMCID: PMC9529685 DOI: 10.1007/s00253-022-12166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
Abstract The shikimate pathway delivers aromatic amino acids (AAAs) in prokaryotes, fungi, and plants and is highly utilized in the industrial synthesis of bioactive compounds. Carbon flow into this pathway is controlled by the initial enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS). AAAs produced further downstream, phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), regulate DAHPS by feedback inhibition. Corynebacterium glutamicum, the industrial workhorse for amino acid production, has two isoenzymes of DAHPS, AroF (Tyr sensitive) and AroG (Phe and Tyr sensitive). Here, we introduce feedback resistance against Tyr in the class I DAHPS AroF (AroFcg). We pursued a consensus approach by drawing on structural modeling, sequence and structural comparisons, knowledge of feedback-resistant variants in E. coli homologs, and computed folding free energy changes. Two types of variants were predicted: Those where substitutions putatively either destabilize the inhibitor binding site or directly interfere with inhibitor binding. The recombinant variants were purified and assessed in enzyme activity assays in the presence or absence of Tyr. Of eight AroFcg variants, two yielded > 80% (E154N) and > 50% (P155L) residual activity at 5 mM Tyr and showed > 50% specific activity of the wt AroFcg in the absence of Tyr. Evaluation of two and four further variants at positions 154 and 155 yielded E154S, completely resistant to 5 mM Tyr, and P155I, which behaves similarly to P155L. Hence, feedback-resistant variants were found that are unlikely to evolve by point mutations from the parental gene and, thus, would be missed by classical strain engineering. Key points • We introduce feedback resistance against Tyr in the class I DAHPS AroF • Variants at position 154 (155) yield > 80% (> 50%) residual activity at 5 mM Tyr • The variants found are unlikely to evolve by point mutations from the parental gene Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12166-9.
Collapse
|
19
|
Dittrich J, Brethauer C, Goncharenko L, Bührmann J, Zeisler-Diehl V, Pariyar S, Jakob F, Kurkina T, Schreiber L, Schwaneberg U, Gohlke H. Rational Design Yields Molecular Insights on Leaf-Binding of Anchor Peptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28412-28426. [PMID: 35604777 DOI: 10.1021/acsami.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted. To date, rainfastness of plant protection products has been achieved by adding polymeric adjuvants to the agrochemicals. However, polymeric adjuvants will be regarded as microplastics in the future, and environmentally friendly alternatives are needed. Anchor peptides (APs) are promising biobased and biodegradable adhesion promoters. Although the adhesion of anchor peptides to artificial surfaces, such as polymers, has already been investigated in theory and experimentally, exploiting the adhesion to biological surfaces remains challenging. The complex nature and composition of biological surfaces such as plant leaves and fruit surfaces complicate the generation of accurate models. Here, we present the first detailed three-layered atomistic model of the surface of apple leaves and use it to compute free energy profiles of the adhesion and desorption of APs to and from that surface. Our model is validated by a novel fluorescence-based microtiter plate (MTP) assay that mimics these complex processes and allows for quantifying them. For the AP Macaque Histatin, we demonstrate that aromatic and positively charged amino acids are essential for binding to the waxy apple leaf surface. The established protocols should generally be applicable for tailoring the binding properties of APs to biological interfaces.
Collapse
Affiliation(s)
- Jonas Dittrich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Christin Brethauer
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Liudmyla Goncharenko
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Jens Bührmann
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | | | - Shyam Pariyar
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn 53115, Germany
| | - Felix Jakob
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Tetiana Kurkina
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | - Lukas Schreiber
- Department of Ecophysiology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Schwaneberg
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Holger Gohlke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
20
|
Devan SK, Schott-Verdugo S, Müntjes K, Bismar L, Reiners J, Hachani E, Schmitt L, Höppner A, Smits SHJ, Gohlke H, Feldbrügge M. A MademoiseLLE domain binding platform links the key RNA transporter to endosomes. PLoS Genet 2022; 18:e1010269. [PMID: 35727840 PMCID: PMC9249222 DOI: 10.1371/journal.pgen.1010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.
Collapse
Affiliation(s)
- Senthil-Kumar Devan
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kira Müntjes
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Lilli Bismar
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eymen Hachani
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander HJ Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| |
Collapse
|
21
|
Zhang H, Perez-Garcia P, Dierkes RF, Applegate V, Schumacher J, Chibani CM, Sternagel S, Preuss L, Weigert S, Schmeisser C, Danso D, Pleiss J, Almeida A, Höcker B, Hallam SJ, Schmitz RA, Smits SHJ, Chow J, Streit WR. The Bacteroidetes Aequorivita sp. and Kaistella jeonii Produce Promiscuous Esterases With PET-Hydrolyzing Activity. Front Microbiol 2022; 12:803896. [PMID: 35069509 PMCID: PMC8767016 DOI: 10.3389/fmicb.2021.803896] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil® DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30°C from a 7 mg PET foil platelet in a 200 μl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30ΔPorC) was solved at 2.1 Å and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.
Collapse
Affiliation(s)
- Hongli Zhang
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Pablo Perez-Garcia
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Robert F Dierkes
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Violetta Applegate
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Schumacher
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
| | - Cynthia Maria Chibani
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Stefanie Sternagel
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Lena Preuss
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Sebastian Weigert
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Juergen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Alexandre Almeida
- European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Ruth A Schmitz
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Mulnaes D, Schott-Verdugo S, Koenig F, Gohlke H. TopProperty: Robust Metaprediction of Transmembrane and Globular Protein Features Using Deep Neural Networks. J Chem Theory Comput 2021; 17:7281-7289. [PMID: 34663069 DOI: 10.1021/acs.jctc.1c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transmembrane proteins (TMPs) are critical components of cellular life. However, due to experimental challenges, the number of experimentally resolved TMP structures is severely underrepresented in databases compared to their cellular abundance. Prediction of (per-residue) features such as transmembrane topology, membrane exposure, secondary structure, and solvent accessibility can be a useful starting point for experimental design or protein structure prediction but often requires different computational tools for different features or types of proteins. We present TopProperty, a metapredictor that predicts all of these features for TMPs or globular proteins. TopProperty is trained on datasets without bias toward a high number of sequence homologs, and the predictions are significantly better than the evaluated state-of-the-art primary predictors on all quality metrics. TopProperty eliminates the need for protein type- or feature-tailored tools, specifically for TMPs. TopProperty is freely available as a web server and standalone at https://cpclab.uni-duesseldorf.de/topsuite/.
Collapse
Affiliation(s)
- Daniel Mulnaes
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Stephan Schott-Verdugo
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52425, Germany
| | - Filip Koenig
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52425, Germany
| |
Collapse
|
23
|
Becker D, Bharatam PV, Gohlke H. F/G Region Rigidity is Inversely Correlated to Substrate Promiscuity of Human CYP Isoforms Involved in Metabolism. J Chem Inf Model 2021; 61:4023-4030. [PMID: 34370479 DOI: 10.1021/acs.jcim.1c00558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Of 57 human cytochrome P450 (CYP) enzymes, 12 metabolize 90% of xenobiotics. To our knowledge, no study has addressed the relation between enzyme dynamics and substrate promiscuity for more than three CYPs. Here, we show by constraint dilution simulations with the Constraint Network Analysis for the 12 isoforms that structural rigidity of the F/G region is significantly inversely correlated to the enzymes' substrate promiscuity. This highlights the functional importance of structural dynamics of the substrate tunnel.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Sahibzada Ajit Singh Nagar, Mohali 160062, Punjab, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
24
|
Kamel M, Löwe M, Schott-Verdugo S, Gohlke H, Kedrov A. Unsaturated fatty acids augment protein transport via the SecA:SecYEG translocon. FEBS J 2021; 289:140-162. [PMID: 34312977 DOI: 10.1111/febs.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
The translocon SecYEG and the associated ATPase SecA form the primary protein secretion system in the cytoplasmic membrane of bacteria. The secretion is essentially dependent on the surrounding lipids, but the mechanistic understanding of their role in SecA : SecYEG activity is sparse. Here, we reveal that the unsaturated fatty acids (UFAs) of the membrane phospholipids, including tetraoleoyl-cardiolipin, stimulate SecA : SecYEG-mediated protein translocation up to ten-fold. Biophysical analysis and molecular dynamics simulations show that UFAs increase the area per lipid and cause loose packing of lipid head groups, where the N-terminal amphipathic helix of SecA docks. While UFAs do not affect the translocon folding, they promote SecA binding to the membrane, and the effect is enhanced up to fivefold at elevated ionic strength. Tight SecA : lipid interactions convert into the augmented translocation. Our results identify the fatty acid structure as a notable factor in SecA : SecYEG activity, which may be crucial for protein secretion in bacteria, which actively change their membrane composition in response to their habitat.
Collapse
Affiliation(s)
- Michael Kamel
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Maryna Löwe
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
25
|
Nutschel C, Coscolín C, David B, Mulnaes D, Ferrer M, Jaeger KE, Gohlke H. Promiscuous Esterases Counterintuitively Are Less Flexible than Specific Ones. J Chem Inf Model 2021; 61:2383-2395. [PMID: 33949194 DOI: 10.1021/acs.jcim.1c00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding mechanisms of promiscuity is increasingly important from a fundamental and application point of view. As to enzyme structural dynamics, more promiscuous enzymes generally have been recognized to also be more flexible. However, examples for the opposite received much less attention. Here, we exploit comprehensive experimental information on the substrate promiscuity of 147 esterases tested against 96 esters together with computationally efficient rigidity analyses to understand the molecular origin of the observed promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly less flexible than specific ones, are significantly more thermostable, and have a significantly increased specific activity. These results may be reconciled with a model according to which structural flexibility in the case of specific esterases serves for conformational proofreading. Our results signify that an esterase sequence space can be screened by rigidity analyses for promiscuous esterases as starting points for further exploration in biotechnology and synthetic chemistry.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Cristina Coscolín
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Benoit David
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Mulnaes
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
27
|
Mulnaes D, Koenig F, Gohlke H. TopSuite Web Server: A Meta-Suite for Deep-Learning-Based Protein Structure and Quality Prediction. J Chem Inf Model 2021; 61:548-553. [PMID: 33464891 DOI: 10.1021/acs.jcim.0c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins carry out the most fundamental processes of life such as cellular metabolism, regulation, and communication. Understanding these processes at a molecular level requires knowledge of their three-dimensional structures. Experimental techniques such as X-ray crystallography, NMR spectroscopy, and cryogenic electron microscopy can resolve protein structures but are costly and time-consuming and do not work for all proteins. Computational protein structure prediction tries to overcome these problems by predicting the structure of a new protein using existing protein structures as a resource. Here we present TopSuite, a web server for protein model quality assessment (TopScore) and template-based protein structure prediction (TopModel). TopScore provides meta-predictions for global and residue-wise model quality estimation using deep neural networks. TopModel predicts protein structures using a top-down consensus approach to aid the template selection and subsequently uses TopScore to refine and assess the predicted structures. The TopSuite Web server is freely available at https://cpclab.uni-duesseldorf.de/topsuite/.
Collapse
Affiliation(s)
- Daniel Mulnaes
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Filip Koenig
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
28
|
Culka M, Kalvoda T, Gutten O, Rulíšek L. Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains? J Phys Chem B 2021; 125:58-69. [PMID: 33393778 DOI: 10.1021/acs.jpcb.0c09251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To gain more insight into the physicochemical aspects of a protein structure from the first principles, conformational space of all 8000 "capped" tripeptides (i.e., N-Ac-X1X2X3-NH-CH3, where Xi is one of the 20 natural amino acids) was investigated computationally. An enormous dataset (denoted P-CONF_1.6M and containing close to 1 600 000 conformers in total) has been obtained by employing a composite protocol combining density functional theory, semiempirical quantum mechanics (SQM), and state-of-the-art solvation methods with 1000 K molecular dynamics (MD) used to generate initial structures (200 snapshots for each tripeptide). This allowed us to present the first rigorous QM-based glimpse at the vast conformational space spanned by small protein fragments. The same computational procedure was repeated for tripeptide fragments taken from the SCOPe database of three-dimensional protein folds, by restraining them to their geometry in a protein. Such complementary data allowed us to compare the distribution of conformational strain energies of unrestrained tripeptidic fragments "in solvent" with those in existing protein chains. Besides providing a rigorous (ab initio) proof of a few well-known concepts and hypotheses concerning protein structures, such as the distribution of (φ, ψ) angles in Ramachandran plots, we have made several observations that came as a certain surprise: (1) distribution of conformational energies does not significantly differ between the "unbiased/unrestrained" conformers obtained from MD sampling in solvent and the biased conformers, i.e., those of a given tripeptide obtained from protein structures; (2) conformational (strain) energy window up to ∼20 to 25 kcal·mol-1 is readily available to tripeptide fragments within the context of a protein chain; (3) overpopulation in certain regions of Ramachandran plot was observed for the unbiased conformers. Last but not least, the massive dataset of accurate (DFT-D3//COSMO-RS) conformational (free) energies of ∼1.6 M peptide conformers, P-CONF_1.6M, obtained throughout this work may serve as excellent dataset for calibrating and benchmarking of popular force fields.
Collapse
Affiliation(s)
- Martin Culka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| |
Collapse
|
29
|
Barbarino F, Wäschenbach L, Cavalho-Lemos V, Dillenberger M, Becker K, Gohlke H, Cortese-Krott MM. Targeting spectrin redox switches to regulate the mechanoproperties of red blood cells. Biol Chem 2020; 402:317-331. [PMID: 33544503 DOI: 10.1515/hsz-2020-0293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The mechanical properties of red blood cells (RBCs) are fundamental for their physiological role as gas transporters. RBC flexibility and elasticity allow them to survive the hemodynamic changes in the different regions of the vascular tree, to dynamically contribute to the flow thereby decreasing vascular resistance, and to deform during the passage through narrower vessels. RBC mechanoproperties are conferred mainly by the structural characteristics of their cytoskeleton, which consists predominantly of a spectrin scaffold connected to the membrane via nodes of actin, ankyrin and adducin. Changes in redox state and treatment with thiol-targeting molecules decrease the deformability of RBCs and affect the structure and stability of the spectrin cytoskeleton, indicating that the spectrin cytoskeleton may contain redox switches. In this perspective review, we revise current knowledge about the structural and functional characterization of spectrin cysteine redox switches and discuss the current lines of research aiming to understand the role of redox regulation on RBC mechanical properties. These studies may provide novel functional targets to modulate RBC function, blood viscosity and flow, and tissue perfusion in disease conditions.
Collapse
Affiliation(s)
- Frederik Barbarino
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Lucas Wäschenbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Virginia Cavalho-Lemos
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
30
|
Cell Type-Dependent Escape of Capsid Inhibitors by Simian Immunodeficiency Virus SIVcpz. J Virol 2020; 94:JVI.01338-20. [PMID: 32907979 DOI: 10.1128/jvi.01338-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytes troglodytes (SIVcpzPtt). The related subspecies Pan troglodytes schweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.
Collapse
|
31
|
Characterization of the nucleotide-binding domain NsrF from the BceAB-type ABC-transporter NsrFP from the human pathogen Streptococcus agalactiae. Sci Rep 2020; 10:15208. [PMID: 32938989 PMCID: PMC7494861 DOI: 10.1038/s41598-020-72237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023] Open
Abstract
Treatment of bacterial infections is a great challenge of our era due to the various resistance mechanisms against antibiotics. Antimicrobial peptides are considered to be potential novel compound as antibiotic treatment. However, some bacteria, especially many human pathogens, are inherently resistant to these compounds, due to the expression of BceAB-type ABC transporters. This rather new transporter family is not very well studied. Here, we report the first full characterization of the nucleotide binding domain of a BceAB type transporter from Streptococcus agalactiae, namely SaNsrF of the transporter SaNsrFP, which confers resistance against nisin and gallidermin. We determined the NTP hydrolysis kinetics and used molecular modeling and simulations in combination with small angle X-ray scattering to obtain structural models of the SaNsrF monomer and dimer. The fact that the SaNsrFH202A variant displayed no ATPase activity was rationalized in terms of changes of the structural dynamics of the dimeric interface. Kinetic data show a clear preference for ATP as a substrate, and the prediction of binding modes allowed us to explain this selectivity over other NTPs.
Collapse
|
32
|
Small design from big alignment: engineering proteins with multiple sequence alignment as the starting point. Biotechnol Lett 2020; 42:1305-1315. [PMID: 32430802 DOI: 10.1007/s10529-020-02914-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Multiple sequence alignment (MSA) is a fundamental way to gain information that cannot be obtained from the analysis of any individual sequence included in the alignment. It provides ways to investigate the relationship between sequence and function from a perspective of evolution. Thus, the MSA of proteins can be employed as a reference for protein engineering. In this paper, we reviewed the recent advances to highlight how protein engineering was benefited from the MSA of proteins. These methods include (1) engineering the thermostability or solubility of proteins by making it closer to the consensus sequence of the alignment through introducing site mutations; (2) structure-based engineering proteins with comparative modeling; (3) creating paleoenzymes featured with high thermostability and promiscuity by constructing the ancestral sequences derived from multiple sequence alignment; and (4) incorporating site-mutations targeting the evolutionarily coupled sites identified from multiple sequence alignment.
Collapse
|