1
|
Saals BADF, De Bie TH, Osmanoglou E, van de Laar T, Tuin AW, van Orten-Luiten ACB, Witkamp RF. A high-fat meal significantly impacts the bioavailability and biphasic absorption of cannabidiol (CBD) from a CBD-rich extract in men and women. Sci Rep 2025; 15:3678. [PMID: 39880884 PMCID: PMC11779803 DOI: 10.1038/s41598-025-87621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Cannabidiol (CBD), a specialized metabolite (phytocannabinoid) abundant in Cannabis sativa, is attracting increasing attention for its alleged health-promoting properties. The present study aimed to investigate the pharmacokinetics of CBD and its primary metabolite, 7-hydroxy-cannabidiol (7-OH-CBD), following a single oral dose of a CBD-rich Cannabis sativa extract, equivalent to 70 mg CBD, in healthy male (n=5) and female (n=6) participants. Using a randomized crossover design, the study evaluated the impact of a standardized high-fat meal compared to fasting on the oral bioavailability of CBD. Consumption of a high-fat meal significantly increases the bioavailability of CBD. The geometric mean ratio (GMR) of CBD Cmax was 17.4 (90% CI 12.4-24.2 and of the AUC 9.7 (90% CI 7.7-12.3), demonstrating a substantial increase in peak concentration and total CBD exposure under fed conditions. A notable double peak phenomenon was observed after meal consumption, with a less pronounced effect in the fasted state. This contributes to sustained high plasma concentrations and may be (partially) attributed to lymphatic transport, enterohepatic recirculation, and/or a secondary meal effect.This trial was registered on October 19, 2020, with ClinicalTrials.gov under the identifier NCT04589455. The registration title is: Determination of Pharmacokinetics and Food-effect of CBD from a Hemp Extract in Healthy Human Volunteers.
Collapse
Affiliation(s)
| | - Tessa Helena De Bie
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Eral Osmanoglou
- Becanex GmbH, James-Franck-Straße 13, 12489, Berlin, Germany
| | | | | | | | - Renger Frederik Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
2
|
Moya-Utrera F, Fuentes-Ríos D, Romero-Carrasco A, Doña-Flores M, Cheng-Sánchez I, Díaz-Morilla A, Soledad Pino-González M, Martínez-Ferez A, Moreno J, Mesas C, Melguizo C, Prados J, Sarabia F, López-Romero JM. Synthesis of (-)-Cannabidiol (CBD), (-)-Δ 9- and (-)-Δ 8-Tetrahydrocannabinols, Encapsulation of CBD with Nanoparticles for Controlled Delivery and Biological Evaluation. Chemistry 2024; 30:e202402496. [PMID: 39307687 DOI: 10.1002/chem.202402496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/01/2024]
Abstract
Cannabidiol (CBD) is garnering increasing interest due to its significant biological activity. This natural compound is one of the major cannabinoids in Cannabis sativa L. In this work, we describe the encapsulation of CBD in solid and hollow pH-sensitive poly(4-vinylpyridine) (solid@p4VP and hollow@p4VP) nanoparticles, and temperature-sensitive poly(N-isopropylacrylamide) (solid@pNIPAM and hollow@pNIPAM) nanoparticles for transport and release CBD in a controlled manner. The CBD loading into these smart polymeric systems was effective and their release profiles, solubility and resistance to stomach and intestinal conditions were evaluated, showing satisfactory properties and improved bioavailability with respect to free CBD. Finally, the A549 human lung cancer cell line was used as lung adenocarcinoma epithelial cellular model to carry out preliminary assays of the in vitro activity of the vehiculized CBD. For all these studies, synthetic CBD was employed, for which a new efficient and scalable synthesis of cannabinoids has been developed.
Collapse
Affiliation(s)
- Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - David Fuentes-Ríos
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Antonio Romero-Carrasco
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Manuel Doña-Flores
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amelia Díaz-Morilla
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - María Soledad Pino-González
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | | | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - J Manuel López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| |
Collapse
|
3
|
Braga FC, da Silva FLN, de O Ramos T, Rosa JGH, de A Araujo É, Junior NFC, Wendler EP, Beatriz A, de Souza ROMA, Brocksom TJ, de Oliveira KT. Batch and Continuous Flow Total Synthesis of Cannabidiol. Chem Asian J 2024; 19:e202400689. [PMID: 39039021 DOI: 10.1002/asia.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Herein, we present a comprehensive total synthesis of cannabidiol integrating both batch and continuous flow conditions. Our approach is planned to streamline the synthesis of olivetolic acid derivatives and utilize an enantiomerically pure monoterpene moiety obtained from naturally occurring (R)-(+)-limonene by photocatalysis. Key reactions, including the synthesis of olivetolic ester and a Friedel-Crafts alkylation, are successfully adapted to continuous flow, resulting in improved yields and selectivities. This study not only offers a scalable and efficient route for cannabidiol synthesis but also contributes to the synthetic approaches to access cannabinoids (diversity synthesis), with potential applications in medicinal and industrial contexts.
Collapse
Affiliation(s)
- Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Felipe L N da Silva
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tiago de O Ramos
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - João G H Rosa
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Érica de A Araujo
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Nelson F C Junior
- API Manufacturing Process Development Laboratory, Prati, Donaduzzi & Cia. LTDA, Toledo, Paraná, Brazil
| | - Edison P Wendler
- API Manufacturing Process Development Laboratory, Prati, Donaduzzi & Cia. LTDA, Toledo, Paraná, Brazil
| | - Adilson Beatriz
- Research and Innovation Center for Bioprospecting and Synthesis of Products for Human and Animal Health (CIBSINT) - Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| |
Collapse
|
4
|
Peretz E, Musa S. Design, Synthesis, and Characterization of Novel Cannabidiol-Based Derivatives with Potent Antioxidant Activities. Int J Mol Sci 2024; 25:9579. [PMID: 39273525 PMCID: PMC11395037 DOI: 10.3390/ijms25179579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
In recent years, extensive research has focused on cannabidiol (CBD), a well-studied non-psychoactive component of the plant-derived cannabinoids. CBD has shown significant therapeutic potential for treating various diseases and disorders, including antioxidants and anti-inflammatory effects. Due to the promising therapeutic effect of CBD in a wide variety of diseases, synthetic derivatization of this compound has attracted the attention of drug discovery in both industry and academia. In the current research, we focused on the derivatization of CBD by introducing Schiff base moieties, particularly (thio)-semicarbazide and aminoguanidine motifs, at the 3-position of the olivetolic ring. We have designed, synthesized, and characterized new derivatives based on CBD's framework, specifically aminoguanylhydrazone- and (thio)-semicarbazones-CBD-aldehyde compounds. Their antioxidant potential was assessed using FRAP and DPPH assays, alongside an evaluation of their effect on LDL oxidation induced by Cu2+ and AAPH. Our findings suggest that incorporating the thiosemicarbazide motif into the CBD framework produces a potent antioxidant, warranting further investigation.
Collapse
Affiliation(s)
- Eliav Peretz
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Sanaa Musa
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| |
Collapse
|
5
|
Pauvert Y, Charette AB. Asymmetric Synthesis of (-)-Cannabidiol (CBD), (-)-Δ 9-Tetrahydrocannabinol (Δ 9-THC) and Their cis Analogs Using an Enantioselective Organocatalyzed Diels-Alder Reaction. Org Lett 2024; 26:6081-6085. [PMID: 38990710 DOI: 10.1021/acs.orglett.4c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Herein we describe an asymmetric synthesis of the pharmacologically relevant natural (-)-trans-CBD and psychoactive (-)-trans-Δ9-THC, as well as their synthetic cis diastereomers. The key step is an enantioselective Diels-Alder reaction catalyzed by a prolinol-based catalyst, which provides the cyclohexene carbaldehyde intermediate in good yield and high enantiomeric excess. Optimization of the substituted resorcinol protecting groups to avoid harsh and low-yield deprotection of the acid sensitive resorcinol moiety is also described.
Collapse
Affiliation(s)
- Yann Pauvert
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - André B Charette
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
6
|
Cheng A, Zhang S, Meng F, Xing M, Liu H, Yang G, Gao Y. Nanosuspension-Loaded Dissolving Microneedle Patches for Enhanced Transdermal Delivery of a Highly Lipophilic Cannabidiol. Int J Nanomedicine 2024; 19:4061-4079. [PMID: 38736651 PMCID: PMC11088408 DOI: 10.2147/ijn.s452207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Transdermal Drug Delivery System (TDDS) offers a promising alternative for delivering poorly soluble drugs, challenged by the stratum corneum's barrier effect, which restricts the pool of drug candidates suitable for TDDS. This study aims to establish a delivery platform specifically for highly lipophilic drugs requiring high doses (log P > 5, dose > 10 mg/kg/d), to improve their intradermal delivery and enhance solubility. Methods Cannabidiol (CBD, log P = 5.91) served as the model drug. A CBD nanosuspension (CBD-NS) was prepared using a bottom-up method. The particle size, polydispersity index (PDI), zeta potential, and concentration of the CBD-NS were characterized. Subsequently, CBD-NS was incorporated into dissolving microneedles (DMNs) through a one-step manufacturing process. The intradermal dissolution abilities, physicochemical properties, mechanical strength, insertion depth, and release behavior of the DMNs were evaluated. Sprague-Dawley (SD) rats were utilized to assess the efficacy of the DMN patch in treating knee synovitis and to analyze its skin permeation kinetics and pharmacokinetic performance. Results The CBD-NS, stabilized with Tween 80, exhibited a particle size of 166.83 ± 3.33 nm, a PDI of 0.21 ± 0.07, and a concentration of 46.11 ± 0.52 mg/mL. The DMN loaded with CBD-NS demonstrated favorable intradermal dissolution and mechanical properties. It effectively increased the delivery of CBD into the skin, extended the action's duration in vivo, and enhanced bioavailability. CBD-NS DMN exhibited superior therapeutic efficacy and safety in a rat model of knee synovitis, significantly inhibiting TNF-α and IL-1β compared with the methotrexate subcutaneous injection method. Conclusion NS technology effectively enhances the solubility of the poorly soluble drug CBD, while DMN facilitates penetration, extends the duration of action in vivo, and improves bioavailability. Furthermore, CBD has shown promising therapeutic outcomes in treating knee synovitis. This innovative drug delivery system is expected to offer a more efficient solution for the administration of highly lipophilic drugs akin to CBD, thereby facilitating high-dose administration.
Collapse
Affiliation(s)
- Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| | - Fanda Meng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Pharmaceutical Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People’s Republic of China
| | - Han Liu
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Torabi A, Madsen FB, Skov AL. Permeation-Enhancing Strategies for Transdermal Delivery of Cannabinoids. Cannabis Cannabinoid Res 2024; 9:449-463. [PMID: 37751171 DOI: 10.1089/can.2023.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Introduction: This review aims to provide an overview of the advancements and status of clinical studies and potential permeation-enhancing strategies in the transdermal delivery of cannabinoids. Methods: A systematic and comprehensive literature search across academic databases, search engines, and online sources to identify relevant literature on the transdermal administration of cannabinoids. Results: Cannabinoids have proven beneficial in the treatment of wide-ranging physical and psychological disorders. A shift toward legalized cannabinoid products has increased both interests in cannabinoid research and the development of novel medicinal exploitations of cannabinoids in recent years. Oral and pulmonary delivery of cannabinoids has several limitations, including poor bioavailability, low solubility, and potential side effects. This has diverted scientific attention toward the transdermal route, successfully overcoming these hurdles by providing higher bioavailability, safety, and patient compliance. Yet, due to the barrier properties of the skin and the lipophilic nature of cannabinoids, there is a need to increase the permeation of the drugs to the underneath layers of skin to reach desired therapeutic plasma levels. Literature describing detailed clinical trials on cannabinoid transdermal delivery, either with or without permeation-enhancing strategies, is limited. Conclusion: The limited number of reports indicates that increased attention is needed on developing and examining efficient transdermal delivery systems for cannabinoids, including patch design and composition, drug-patch interaction, clinical effectiveness and safety in vivo, and permeation-enhancing strategies.
Collapse
Affiliation(s)
- Atefeh Torabi
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frederikke Bahrt Madsen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne Ladegaard Skov
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Li WC, Meng H, Ming J, Chen S. Rhodium-Catalyzed Asymmetric Addition to 4- or 5-Carbonyl-cycloenones through Dynamic Kinetic Resolution: Enantioselective Synthesis of (-)-Cannabidiol. Org Lett 2024; 26:1364-1369. [PMID: 38358273 DOI: 10.1021/acs.orglett.3c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The reaction of 4/5-carbonyl-cycloalkenone 1 or its achiral isomer 1' with organoboronic acid 2 in the presence of a chiral diene (S,S)-Fc-tfb-rhodium catalyst gave disubstituted trans-cycloalkanone 3 with high diastereo- and enantioselectivity. This highly efficient dynamic kinetic resolution is achieved by fast racemization of 1 through the formation of a dienolate followed by kinetic resolution with the chiral catalyst. The utility is demonstrated by the synthesis of key intermediates en route to (-)-cannabidiol.
Collapse
Affiliation(s)
- Wen-Cong Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
9
|
Fang S, Kang WT, Li H, Cai Q, Liang W, Zeng M, Yu Q, Zhong R, Tao Y, Liu S, Lin S. Development of cannabidiol derivatives as potent broad-spectrum antibacterial agents with membrane-disruptive mechanism. Eur J Med Chem 2024; 266:116149. [PMID: 38266554 DOI: 10.1016/j.ejmech.2024.116149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The emergence of antibiotic resistance has brought a significant burden to public health. Here, we designed and synthesized a series of cannabidiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. This is the first report on the design of cannabidiol derivatives as broad-spectrum antibacterial agents. Through the structure-activity relationship (SAR) study, we found a lead compound 23 that killed both Gram-negative and Gram-positive bacteria via a membrane-targeting mechanism of action with low resistance frequencies. Compound 23 also exhibited very weak hemolytic activity, low toxicity toward mammalian cells, and rapid bactericidal properties. To further validate the membrane action mechanism of compound 23, we performed transcriptomic analysis using RNA-seq, which revealed that treatment with compound 23 altered many cell wall/membrane/envelope biogenesis-related genes in Gram-positive and Gram-negative bacteria. More importantly, compound 23 showed potent in vivo antibacterial efficacy in murine corneal infection models caused by Staphylococcus aureus or Pseudomonas aeruginosa. These findings would provide a new design idea for the discovery of novel broad-spectrum antibacterial agents to overcome the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Shanfang Fang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Tyng Kang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Haizhou Li
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiongna Cai
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wanxin Liang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Minghui Zeng
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qian Yu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rongcui Zhong
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiwen Tao
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shouping Liu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuimu Lin
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
10
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
11
|
Millimaci AM, Trilles RV, McNeely J, Brown LE, Beeler AB, Porco JA. Synthesis of Neocannabinoids Using Controlled Friedel-Crafts Reactions. J Org Chem 2023; 88:13135-13141. [PMID: 37657122 PMCID: PMC10696561 DOI: 10.1021/acs.joc.3c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
A one-step transformation to produce 8,9-dihydrocannabidiol (H2CBD) and related "neocannabinoids" via controlled Friedel-Crafts reactions is reported. Experimental and computational studies probing the mechanism of neocannabinoid synthesis from cyclic allylic alcohol and substituted resorcinol reaction partners provide understanding of the kinetic and thermodynamic factors driving regioselectivity for the reaction. Herein, we present the reaction scope for neocannabinoid synthesis including the production of both normal and abnormal isomers under both kinetic and thermodynamic control. Discovery and optimization of this one-step protocol between various allylic alcohols and resorcinol derivatives are discussed and supported with density functional theory calculations.
Collapse
Affiliation(s)
| | - Richard V. Trilles
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - James McNeely
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Aaron B. Beeler
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
12
|
Stone HV, Topping FJ, Veiga AX, Pop A, Miles D, Knych D, Warren J, Loft MS, López AM, Silcock A, Mann IS, Millet A. Diastereoselective and Scalable Synthesis of 6-( S)-Hydroxycannabidivarin. J Org Chem 2023; 88:11767-11777. [PMID: 37525362 DOI: 10.1021/acs.joc.3c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The synthesis of 6-(S)-hydroxycannabidivarin was required to assess its biological activity in the treatment of neurological disorders. A novel and scalable synthesis has been developed where the key step involves a Friedel-Crafts alkylation of phloroglucinol with (1S,2R,5R)-2-hydroxy-2-methyl-5-(prop-1-en-2-yl)cyclohex-3-en-1-ylbenzoate. Careful optimization of the reaction conditions identified trifluoromethanesulfonic acid in isopropyl acetate as the best catalyst/solvent combination, providing optimum regioselectivity, diastereoselectivity, and yield for this step. This enabled the multigram synthesis of 6-(S)-hydroxycannabidivarin in 10 steps from S-(+)-carvone.
Collapse
Affiliation(s)
- Hannah V Stone
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Frederick J Topping
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alberte X Veiga
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alexandru Pop
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Daniel Miles
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Dominika Knych
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - John Warren
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Michael S Loft
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alejandro Montellano López
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alan Silcock
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Inderjit S Mann
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Antoine Millet
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| |
Collapse
|
13
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
14
|
Chelminiak-Dudkiewicz D, Smolarkiewicz-Wyczachowski A, Mylkie K, Wujak M, Mlynarczyk DT, Nowak P, Bocian S, Goslinski T, Ziegler-Borowska M. Chitosan-based films with cannabis oil as a base material for wound dressing application. Sci Rep 2022; 12:18658. [PMID: 36333591 PMCID: PMC9636169 DOI: 10.1038/s41598-022-23506-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
This study focuses on obtaining and characterizing novel chitosan-based biomaterials containing cannabis oil to potentially promote wound healing. The primary active substance in cannabis oil is the non-psychoactive cannabidiol, which has many beneficial properties. In this study, three chitosan-based films containing different concentrations of cannabis oil were prepared. As the amount of oil increased, the obtained biomaterials became rougher as tested by atomic force microscopy. Such rough surfaces promote protein adsorption, confirmed by experiments assessing the interaction between human albumin with the obtained materials. Increased oil concentration also improved the films' mechanical parameters, swelling capacity, and hydrophilic properties, which were checked by the wetting angle measurement. On the other hand, higher oil content resulted in decreased water vapour permeability, which is essential in wound dressing. Furthermore, the prepared films were subjected to an acute toxicity test using a Microtox. Significantly, the film's increased cannabis oil content enhanced the antimicrobial effect against A. fischeri for films in direct contact with bacteria. More importantly, cell culture studies revealed that the obtained materials are biocompatible and, therefore, they might be potential candidates for application in wound dressing materials.
Collapse
Affiliation(s)
- Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| | - Aleksander Smolarkiewicz-Wyczachowski
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Collegium Medicum, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Pawel Nowak
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Szymon Bocian
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| |
Collapse
|
15
|
Maiocchi A, Barbieri J, Fasano V, Passarella D. Stereoselective Synthetic Strategies to (−)‐Cannabidiol. ChemistrySelect 2022. [DOI: 10.1002/slct.202202400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alice Maiocchi
- Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Jacopo Barbieri
- Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | | | - Daniele Passarella
- Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| |
Collapse
|
16
|
Dave R, Randhawa G, Kim D, Simpson M, Hoare T. Microgels and Nanogels for the Delivery of Poorly Water-Soluble Drugs. Mol Pharm 2022; 19:1704-1721. [PMID: 35319212 DOI: 10.1021/acs.molpharmaceut.1c00967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While microgels and nanogels are most commonly used for the delivery of hydrophilic therapeutics, the water-swollen structure, size, deformability, colloidal stability, functionality, and physicochemical tunability of microgels can also offer benefits for addressing many of the barriers of conventional vehicles for the delivery of hydrophobic therapeutics. In this review, we describe approaches for designing microgels with the potential to load and subsequently deliver hydrophobic drugs by creating compartmentalized microgels (e.g., core-shell structures), introducing hydrophobic domains in microgels, leveraging host-guest interactions, and/or applying "smart" environmentally responsive materials with switchable hydrophobicity. In particular, the challenge of promoting hydrophobic drug loading without compromising the inherent advantages of microgels as delivery vehicles and ensuring practically relevant release kinetics from such structures is highlighted, with an eye toward the practical translation of such vehicles to the clinic.
Collapse
Affiliation(s)
- Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gurpreet Randhawa
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Daeun Kim
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Madeline Simpson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
17
|
Huang ZY, Jiao MR, Gu X, Zhai ZR, Li JQ, Zhang QW. Asymmetric Synthesis of 1,2-Limonene Epoxides by Jacobsen Epoxidation. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
This study reported an asymmetric synthesis of 1,2-limonene epoxides. The absolute stereochemistry was controlled by a Jacobsen epoxidation of cis-1,2-limonene epoxide (with diastereomeric excess of 98%) and trans-1,2-limonene epoxide (with diastereomeric excess of 94%), which could be used as important raw materials for the preparation of related cannabinoid drugs.
Collapse
Affiliation(s)
- Zi-Yi Huang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Min-Ru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Xiu Gu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
| | - Zi-Ran Zhai
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- School of Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jian-Qi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Qing-Wei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Agua AR, Barr PJ, Marlowe CK, Pirrung MC. Cannabichromene Racemization and Absolute Stereochemistry Based on a Cannabicyclol Analog. J Org Chem 2021; 86:8036-8040. [PMID: 34078070 DOI: 10.1021/acs.joc.1c00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cannabichromene (CBC) is unusual among cannabinoids in having been described as both a racemic and a scalemic compound from natural Cannabis sources. Several explanations are available for this circumstance, including facile racemization. Cannabichromene was resolved chromatographically, and the enantiomer matching CBC from local Cannabis was identified. To preclude racemization, CBC was converted to cannabicyclol for further stereochemical analysis. This permitted the (R) absolute stereochemistry to be assigned to natural CBC based on chiroptical data for related natural products and the absolute configuration of a cannabicyclol analog determined by X-ray crystallography. The racemization of CBC was found to be rather slow in the laboratory, but handling practices for natural cannabis products can be inferred to promote the process.
Collapse
Affiliation(s)
- Alon R Agua
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Philip J Barr
- BayMedica, 458 Carlton Court, South San Francisco, California 94080, United States
| | - Charles K Marlowe
- BayMedica, 458 Carlton Court, South San Francisco, California 94080, United States
| | - Michael C Pirrung
- Department of Chemistry, University of California, Riverside, California 92521, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
19
|
Aguillón AR, Leão RAC, Miranda LSM, de Souza ROMA. Cannabidiol Discovery and Synthesis-a Target-Oriented Analysis in Drug Production Processes. Chemistry 2021; 27:5577-5600. [PMID: 32780909 DOI: 10.1002/chem.202002887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Indexed: 01/13/2023]
Abstract
The current state of evidence and recommendations for cannabidiol (CBD) and its health effects change the legal landscape and aim to destigmatize its phytotherapeutic research. Recently, some countries have included CBD as an antiepileptic product for compassionate use in children with refractory epilepsy. The growing demand for CBD has led to the need for high-purity cannabinoids on the emerging market. The discovery and development of approaches toward CBD synthesis have arisen from the successful extraction of Cannabis plants for cannabinoid fermentation in brewer's yeast. To understand different contributions to the design and enhancement of the synthesis of CBD and its key intermediates, a detailed analysis of the history behind cannabinoid compounds and their optimization is provided herein.
Collapse
Affiliation(s)
- Anderson R Aguillón
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Raquel A C Leão
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| | - Leandro S M Miranda
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| |
Collapse
|
20
|
Golliher AE, Tenorio AJ, Dimauro NO, Mairata NR, Holguin FO, Maio W. Using (+)-Carvone to access novel derivatives of (+)- ent-Cannabidiol: the first asymmetric syntheses of (+)- ent-CBDP and (+)- ent-CBDV. Tetrahedron Lett 2021; 67:152891. [PMID: 34658452 PMCID: PMC8513745 DOI: 10.1016/j.tetlet.2021.152891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(-)-Cannabidiol [(-)-CBD] has recently gained prominence as a treatment for neuro-inflammation and other neurodegenerative disorders; interest is also developing in its synthetic enantiomer, (+)-CBD, which has a higher affinity to CB1 / CB2 receptors than the natural stereoisomer. We have developed an inexpensive, stereoselective route to access ent-CBD derivatives using (+)-carvone as a starting material. In addition to (+)-CBD, we report the first syntheses of (+)-cannabidivarin, (+)-cannabidiphorol as well as C-6 / C-8 homologues.
Collapse
Affiliation(s)
- Alexandra E. Golliher
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - Antonio J. Tenorio
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - Nina O. Dimauro
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - Nicolas R. Mairata
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - F. Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003
| | - William Maio
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| |
Collapse
|