1
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM, Giovannuzzi S, Supuran CT. Development of novel amino-benzenesulfonamide derivatives and their analogues as carbonic anhydrase inhibitors: Design, synthesis, anticancer activity assessment, and pharmacokinetic studies using UPLC-MS/MS. Bioorg Chem 2025; 159:108335. [PMID: 40086186 DOI: 10.1016/j.bioorg.2025.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
The present study outlines the design and synthesis of dual-tail analogues of SLC-0111 as carbonic anhydrase inhibitors (CAIs) targeting tumor isoforms IX and XII 4a-h and 5a-h, along with pharmacokinetic studies. The synthesized compounds were evaluated for their inhibitory activity against four carbonic anhydrase isoforms (hCA I, II, IX, and XII), revealing potent activity, particularly against hCA IX and XII. Notably, compounds 4b, 5a, and 5b demonstrated strong inhibition of hCA IX with Ki values of 20.4, 12.9, and 18.2 nM, respectively, compared to acetazolamide (AAZ), which has a Ki of 25 nM. Additionally, compounds 5a, 5b, 5c, and 5d showed selective inhibition of hCA XII, with Ki values of 26.6, 8.7, 17.2, and 10.9 nM, respectively, relative to AAZ (Ki = 5.7 nM). Moreover, both series were tested for their anti-proliferative activity following the US-NCI protocol against a panel of more than fifty cancer cell lines. Compound 5h met the activity criteria and was automatically scheduled for further evaluation at five concentrations with 10-fold dilutions, revealing high toxicity toward leukemia and lower toxicity against melanoma. In addition, the MTT cytotoxicity assay was performed on 5f, 5d and acetazolamide using WI-38 cells. Furthermore, an in vivo pharmacokinetic study was conducted using UPLC-MS/MS on the most potent derivative, 5d, demonstrating a comparable pharmacokinetic profile compared to the reference drug acetazolamide. Furthermore, molecular docking prediction studies were conducted for the most active compounds, 5d and 5h, to elucidate their interactions with the active site hot spots of the CA isoform.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, New Giza University, New Giza, km 22 Cairo- Alexandria Desert Road, Cairo, Egypt.
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Simone Giovannuzzi
- Department NEUROFARBA - Pharmaceutical and Nutraceutical section, University of Firenze, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and Nutraceutical section, University of Firenze, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Allam AA, Rudayni HA, Ahmed NA, Aba Alkhayl FF, Lamsabhi AM, Kamel EM. Comprehensive insights into carbonic anhydrase inhibition: A triad of In vitro, In silico, and In vivo perspectives. Enzyme Microb Technol 2025; 189:110657. [PMID: 40252302 DOI: 10.1016/j.enzmictec.2025.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Carbonic anhydrases (CAs) are zinc-dependent metalloenzymes essential for sustaining physiological balance by facilitating the reversible conversion of carbon dioxide to its hydrated form. Their biological significance, coupled with their involvement in a wide array of pathological conditions, makes them attractive targets for therapeutic intervention. This review presents a comprehensive analysis of carbonic anhydrase inhibition through an integrated triad of in vitro, In silico, and In vivo perspectives. In vitro studies provide critical insights into the mechanisms of enzyme inhibition, enabling the identification and optimization of potent inhibitors while elucidating their structure-activity relationships. In silico methodologies, including docking, molecular dynamics (MD) simulation, virtual screening, ADMET, and QSAR analyses, have emerged as invaluable tools in rational drug design, streamlining the discovery and development of isoform-specific inhibitors. Complementing these efforts, In vivo investigations validate the pharmacokinetics, pharmacodynamics, and therapeutic efficacy of CA inhibitors (CAIs) in disease models, bridging the gap between laboratory findings and clinical applications. The therapeutic relevance of CAIs extends across multiple domains, including glaucoma, epilepsy, cancer, metabolic disorders, and infectious diseases. Emerging applications, such as their potential use in combating antimicrobial resistance and modulating immune responses, further underscore their versatility. However, challenges such as achieving isoform selectivity, minimizing off-target effects, and translating preclinical findings into clinical success persist. Advances in fragment-based drug design, artificial intelligence-driven discovery, and innovative experimental techniques are poised to address these limitations, paving the way for the next generation of CAIs.
Collapse
Affiliation(s)
- Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Noha A Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química and Institute for advanced research in chemical Science (IAdChem), Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
3
|
Taylor M, Mun H, Ho J. Predicting Carbonic Anhydrase Binding Affinity: Insights from QM Cluster Models. J Phys Chem B 2025; 129:1475-1485. [PMID: 39874048 DOI: 10.1021/acs.jpcb.4c06393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
A systematic series of QM cluster models has been developed to predict the trend in the carbonic anhydrase binding affinity of a structurally diverse dataset of ligands. Reference DLPNO-CCSD(T)/CBS binding energies were generated for a cluster model and used to evaluate the performance of contemporary density functional theory methods, including Grimme's "3c" DFT composite methods (r2SCAN-3c and ωB97X-3c). It is demonstrated that when validated QM methods are used, the predictive power of the cluster models improves systematically with the size of the cluster models. This provided valuable insights into the key interactions that need to be modeled quantum mechanically and could inform how the QM region should be defined in hybrid quantum mechanics/molecular mechanics (QM/MM) models. The use of r2SCAN-3c on the largest cluster model composed of 16 residues appears to be an economical approach to predicting binding trends compared with using more robust DFT methods such as ωB97M-V and provides a significant improvement compared with docking.
Collapse
Affiliation(s)
- Mackenzie Taylor
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Haedam Mun
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Singh P, Nerella SG, Swain B, Angeli A, Kausar S, Ullah Q, Supuran CT, Arifuddin M. Synthesis of Chromene-linked Bis-indole Derivatives as Selective Tumor-associated Carbonic Anhydrase IX Inhibitors. Anticancer Agents Med Chem 2025; 25:399-410. [PMID: 39501943 DOI: 10.2174/0118715206341087241029064945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 04/11/2025]
Abstract
BACKGROUND Sulfonamide derivatives are well-reported hCA IX inhibitors; however, they inhibit all types of hCA without any selectivity, leading to severe adverse effects. Hence, developing a novel nonsulfonamide class of tumor-associated hCA IX inhibitors through non-classical inhibition may provide greater selectivity and better pharmacokinetics. OBJECTIVE The objective of this study was to develop non-sulfonamide derivatives as potential human carbonic anhydrase (hCA) inhibitors and develop a new series of chromene-linked bis-indole derivatives. METHODS We synthesized and characterized the chromene-linked bis-indole derivatives and further evaluated them against four hCA isoforms, i.e., hCA I, hCA II, hCA IX, and hCA XII, and determined the ADMET parameters by the In-silico method. RESULTS Most of the compounds showed significantly greater affinity and selectivity towards the tumorassociated hCA IX over other hCA isoforms within the lower micromolar to submicromolar range. In particular, the bromo-substituted bis-indole derivative 6t showed an excellent inhibition of hCA IX isoform with an affinity (Ki) of 2.61 μM. In contrast, the cyano group substituted bis-indole derivative 6s and also displayed a strong inhibition of hCA IX isoform with an affinity (Ki) of 2.73 μM. Many other potential candidates, including 6g, 6i, 6k, 6m, 6o, 6p, and 6r, showed higher affinity at tumor-associated hCA IX with lower than 10 μM compared to other hCA isoforms. CONCLUSION Therefore, the chromene-linked bis-indole derivatives can serve as a novel non-sulfonamide class of tumor-associated hCA IX inhibitors.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Sridhar Goud Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Samreen Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
- Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad, 500 032, India
| |
Collapse
|
6
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Nocentini A, Di Porzio A, Bonardi A, Bazzicalupi C, Petreni A, Biver T, Bua S, Marzano S, Amato J, Pagano B, Iaccarino N, De Tito S, Amente S, Supuran CT, Randazzo A, Gratteri P. Development of a multi-targeted chemotherapeutic approach based on G-quadruplex stabilisation and carbonic anhydrase inhibition. J Enzyme Inhib Med Chem 2024; 39:2366236. [PMID: 38905127 PMCID: PMC11195807 DOI: 10.1080/14756366.2024.2366236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/02/2024] [Indexed: 06/23/2024] Open
Abstract
A novel class of compounds designed to hit two anti-tumour targets, G-quadruplex structures and human carbonic anhydrases (hCAs) IX and XII is proposed. The induction/stabilisation of G-quadruplex structures by small molecules has emerged as an anticancer strategy, disrupting telomere maintenance and reducing oncogene expression. hCAs IX and XII are well-established anti-tumour targets, upregulated in many hypoxic tumours and contributing to metastasis. The ligands reported feature a berberine G-quadruplex stabiliser scaffold connected to a moiety inhibiting hCAs IX and XII. In vitro experiments showed that our compounds selectively stabilise G-quadruplex structures and inhibit hCAs IX and XII. The crystal structure of a telomeric G-quadruplex in complex with one of these ligands was obtained, shedding light on the ligand/target interaction mode. The most promising ligands showed significant cytotoxicity against CA IX-positive HeLa cancer cells in hypoxia, and the ability to stabilise G-quadruplexes within tumour cells.
Collapse
Affiliation(s)
- Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Carla Bazzicalupi
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Andrea Petreni
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Bua
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Novel benzenesulfonamides containing a dual triazole moiety with selective carbonic anhydrase inhibition and anticancer activity. RSC Med Chem 2024; 16:d4md00617h. [PMID: 39493223 PMCID: PMC11525713 DOI: 10.1039/d4md00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
A series of sulfonamides incorporating a 1,2,3-triazolyloxime substituted 1,2,3-triazolyl moiety were conceptualized and synthesized as human carbonic anhydrase (hCA) inhibitors. The synthesized small structures, denoted 7a through 7o, exhibited moderate inhibitory effects against the tumor-associated isoforms hCA IX and hCA XII compared to the well-known hCA inhibitor acetazolamide. In contrast, these molecules demonstrated higher potency and a diverse range of selectivity against the cytosolic isoforms hCA I and hCA II. Notably, the 4-hydroxyphenyl derivative (compound 7dversus cytosolic isoforms), the 4-acetylphenyl derivative (compound 7o), and the phenyl derivative (compound 7a) emerged as the most potent and selective inhibitors in this series, with inhibition constants (K I) of 47.1, 35.9, 170.0, and 149.9 nM, respectively, against hCA I, II, IX, and XII. Further cytotoxicity assays of compounds 7a-o against cancer cell lines Hep3B and A549, as well as normal cell line L929, were conducted to assess their selectivity towards malignant cells. Compounds 7d, 7g, and 7k exhibited selective cytotoxicity towards the Hep3B cell line, with reduced selectivity towards A549, whereas compound 7j demonstrated higher selectivity for the A549 cell line. Additionally, molecular docking studies were performed to elucidate the binding modes of these compounds within the active sites of hCAs, revealing crucial interactions that underpin their significant activity and selectivity for the tumor-specific isoforms.
Collapse
Affiliation(s)
- Aida Buza
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Sciences, Sakarya University Sakarya 54187 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University Ardahan 75700 Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University Samsun 55020 Turkey
| | - Arleta Rifati Nixha
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
9
|
Bua S, Nocentini A, Bonardi A, Palma G, Ciampi G, Giliberti A, Iannelli F, Bruzzese F, Supuran CT, de Nigris F. Harnessing Nitric Oxide-Donating Benzofuroxans for Targeted Inhibition of Carbonic Anhydrase IX in Cancer. J Med Chem 2024; 67:15892-15907. [PMID: 39207927 DOI: 10.1021/acs.jmedchem.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We describe here the design and antitumor evaluation of benzofuroxan-based nitric oxide (NO)-donor hybrid derivatives targeting human carbonic anhydrases (hCAs) IX and XII. The most effective compounds, 27 and 28, demonstrated potent dual action, exhibiting low nanomolar inhibition constants against hCA IX and significant NO release. Notably, compound 27 showed significant antiproliferative effects against various cancer cell lines, particularly renal carcinoma A-498 cells. In these cells, it significantly reduced the expression of CA IX and iron-regulatory proteins, inducing apoptosis via mitochondrial caspase activity and ferroptosis pathways, as evidenced by increases in ROS, nitrite, and down-regulated expression of ferritin-encoding genes. In three-dimensional tumor models, compound 27 effectively reduced spheroid size and viability. In vivo toxicity studies in mice indicated that the compounds were well-tolerated, with no significant alterations in kidney function. These findings underscore the potential of benzofuroxan-based CA inhibitors for further preclinical evaluations as therapeutic agents targeting renal cell carcinoma.
Collapse
Affiliation(s)
- Silvia Bua
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Giuseppe Palma
- Experimental Animal Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli 80131, Italy
| | - Giulia Ciampi
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| | - Angela Giliberti
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale, Napoli 80131, Italy
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli 80131, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| |
Collapse
|
10
|
Bonardi A, Gratteri P. Computational studies of tyrosinase inhibitors. Enzymes 2024; 56:191-229. [PMID: 39304287 DOI: 10.1016/bs.enz.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Computational studies have significantly advanced the understanding of tyrosinase (TYR) function, mechanism, and inhibition, accelerating the development of more effective and selective inhibitors. This chapter provides an overview of in silico studies on TYR inhibitors, emphasizing key inhibitory chemotypes and the main residues involved in ligand-target interactions. The chapter discusses tools applied in the context of TYR inhibitor development, e.g., structure-based virtual screening, molecular docking, artificial intelligence, and machine learning algorithms.
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
11
|
Güleç Ö, Türkeş C, Arslan M, Işık M, Demir Y, Duran HE, Fırat M, Küfrevioğlu Öİ, Beydemir Ş. Dynamics of small molecule-enzyme interactions: Novel benzenesulfonamides as multi-target agents endowed with inhibitory effects against some metabolic enzymes. Arch Biochem Biophys 2024; 759:110099. [PMID: 39009270 DOI: 10.1016/j.abb.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
In contemporary medicinal chemistry, employing a singular small molecule to concurrently multi-target disparate molecular entities is emerging as a potent strategy in the ongoing battle against metabolic disease. In this study, we present the meticulous design, synthesis, and comprehensive biological evaluation of a novel series of 1,2,3-triazolylmethylthio-1,3,4-oxadiazolylbenzenesulfonamide derivatives (8a-m) as potential multi-target inhibitors against human carbonic anhydrase (EC.4.2.1.1, hCA I/II), α-glycosidase (EC.3.2.1.20, α-GLY), and α-amylase (EC.3.2.1.1, α-AMY). Each synthesized sulfonamide underwent rigorous assessment for inhibitory effects against four distinct enzymes, revealing varying degrees of hCA I/II, a-GLY, and a-AMY inhibition across the tested compounds. hCA I was notably susceptible to inhibition by all compounds, demonstrating remarkably low inhibition constants (KI) ranging from 42.20 ± 3.90 nM to 217.90 ± 11.81 nM compared to the reference standard AAZ (KI of 439.17 ± 9.30 nM). The evaluation against hCA II showed that most of the synthesized compounds exhibited potent inhibition effects with KI values spanning the nanomolar range 16.44 ± 1.53-70.82 ± 4.51 nM, while three specific compounds, namely 8a-b and 8d, showcased lower inhibitory potency than other derivatives that did not exceed that of the reference drug AAZ (with a KI of 98.28 ± 1.69 nM). Moreover, across the spectrum of synthesized compounds, potent inhibition profiles were observed against diabetes mellitus-associated α-GLY (KI values spanning from 0.54 ± 0.06 μM to 5.48 ± 0.50 μM), while significant inhibition effects were noted against α-AMY, with IC50 values ranging between 0.16 ± 0.04 μM and 7.81 ± 0.51 μM) compared to reference standard ACR (KI of 23.53 ± 2.72 μM and IC50 of 48.17 ± 2.34 μM, respectively). Subsequently, these inhibitors were evaluated for their DPPH· and ABTS+· radical scavenging activity. Moreover, molecular docking investigations were meticulously conducted within the active sites of hCA I/II, α-GLY, and α-AMY to provide comprehensive elucidation and rationale for the observed inhibitory outcomes.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, 54187, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24002, Turkey.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, 54187, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, 36100, Turkey
| | - Muhammet Fırat
- Department of Biotechnology, Graduate Institute, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| |
Collapse
|
12
|
Hefny SM, El-Moselhy TF, El-Din N, Ammara A, Angeli A, Ferraroni M, El-Dessouki AM, Shaldam MA, Yahya G, Al-Karmalawy AA, Supuran CT, Tawfik HO. A new framework for novel analogues of pazopanib as potent and selective human carbonic anhydrase inhibitors: Design, repurposing rational, synthesis, crystallographic, in vivo and in vitro biological assessments. Eur J Med Chem 2024; 274:116527. [PMID: 38810335 DOI: 10.1016/j.ejmech.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Herein, we describe the design and synthesis of novel aryl pyrimidine benzenesulfonamides APBSs 5a-n, 6a-c, 7a-b, and 8 as pazopanib analogues to explore new potent and selective inhibitors for the CA IX. All APBSs were examined in vitro for their promising inhibition activity against a small panel of hCAs (isoforms I, II, IX, and XII). The X-ray crystal structure of CA I in adduct with a representative APBS analogue was solved. APBS-5m, endowed with the best hCA IX inhibitory efficacy and selectivity, was evaluated for antiproliferative activity against a small panel of different cancer cell lines, SK-MEL-173, MDA-MB-231, A549, HCT-116, and HeLa, and it demonstrated one-digit IC50 values range from 2.93 μM (MDA-MB-231) to 5.86 μM (A549). Furthermore, compound APBS-5m was evaluated for its influence on hypoxia-inducible factor (HIF-1α) production, apoptosis induction, and colony formation in MDA-MB-231 cancer cells. The in vivo efficacy of APBS-5m as an antitumor agent was additionally investigated in an animal model of Solid Ehrlich Carcinoma (SEC). In order to offer perceptions into the conveyed hCA IX inhibitory efficacy and selectivity in silico, a molecular docking investigation was also carried out.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry, Via della Lastruccia, 50019, Sesto Fiorentino, Italy
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, 44519, Egypt; Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), 08028, Barcelona, Catalonia, Spain
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
13
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, Beydemir Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J Biomol Struct Dyn 2024; 42:6359-6377. [PMID: 37540185 DOI: 10.1080/07391102.2023.2240889] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
14
|
Onyilmaz M, Koca M, Ammara A, Degirmenci M, Supuran CT. Isocoumarins incorporating chalcone moieties act as isoform selective tumor-associated carbonic anhydrase inhibitors. Future Med Chem 2024; 16:1347-1355. [PMID: 39109432 PMCID: PMC11318696 DOI: 10.1080/17568919.2024.2350875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: A series of isocoumarin-chalcone hybrids were prepared and assays for the inhibition of four isoforms of human carbonic anhydrase (hCA; EC 4.2.1.1), hCA I, II, IX and XII. Materials & methods: Isocoumarin-chalcone hybrids were synthesized by condensing acetyl-isocoumarin with aromatic aldehydes. They did not significantly inhibit off-target cytosolic isoforms hCA I and II (KI >100 μM) but acted as low micromolar or submicromolar inhibitors for the tumor-associated isoforms hCA IX and XII. Results & conclusion: Our work provides insights into a new and scarcely investigated chemotype which provides interesting tumor-associated CA inhibitors, considering that some such derivatives like sulfonamide SLC-0111 are in advanced clinical trials for the management of metastatic advanced solid tumors.
Collapse
Affiliation(s)
- Mehmet Onyilmaz
- Faculty of Science & Arts, Department of Chemistry, Harran University, Sanliurfa63290, Turkey
| | - Murat Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adıyaman02040, Turkey
| | - Andrea Ammara
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Mustafa Degirmenci
- Faculty of Science & Arts, Department of Chemistry, Harran University, Sanliurfa63290, Turkey
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
15
|
Capasso C, Supuran CT. Carbonic anhydrase and bacterial metabolism: a chance for antibacterial drug discovery. Expert Opin Ther Pat 2024; 34:465-474. [PMID: 38506448 DOI: 10.1080/13543776.2024.2332663] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs, EC 4.2.1.1) play a pivotal role in the regulation of carbon dioxide , bicarbonate, and hydrogen ions within bacterial cells, ensuring pH homeostasis and facilitating energy production. We conducted a systematic literature search (PubMed, Web of Science, and Google Scholar) to examine the intricate interplay between CAs and bacterial metabolism, revealing the potential of CA inhibitors (CAIs) as innovative therapeutic agents against pathogenic bacteria. AREA COVERED Inhibition of bacterial CAs was explored in various pathogens, emphasizing the CA roles in microbial virulence, survival, and adaptability. Escherichia coli, a valid and convenient model microorganism, was recently used to investigate the effects of acetazolamide (AAZ) on the bacterial life cycle. Furthermore, the effectiveness of CAIs against pathogenic bacteria has been further substantiated for Vancomycin-Resistant Enterococci (VRE) and antibiotic-resistant Neisseria gonorrhoeae strains. EXPERT OPINION CAIs target bacterial metabolic pathways, offering alternatives to conventional therapies. They hold promise against drug-resistant microorganisms such as VRE and N. gonorrhoeae strains. CAIs offer promising avenues for addressing antibiotic resistance and underscore their potential as novel antibacterial agents. Recognizing the central role of CAs in bacterial growth and pathogenicity will pave the way for innovative infection control and treatment strategies possibly also for other antibiotic resistant species.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Gamal MA, Fahim SH, Giovannuzzi S, Fouad MA, Bonardi A, Gratteri P, Supuran CT, Hassan GS. Probing benzenesulfonamide-thiazolidinone hybrids as multitarget directed ligands for efficient control of type 2 diabetes mellitus through targeting the enzymes: α-glucosidase and carbonic anhydrase II. Eur J Med Chem 2024; 271:116434. [PMID: 38653067 DOI: 10.1016/j.ejmech.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by improper expression/function of a number of key enzymes that can be regarded as targets for anti-diabetic drug design. Herein, we report the design, synthesis, and biological assessment of two series of thiazolidinone-based sulfonamides 4a-l and 5a-c as multitarget directed ligands (MTDLs) with potential anti-diabetic activity through targeting the enzymes: α-glucosidase and human carbonic anhydrase (hCA) II. The synthesized sulfonamides were evaluated for their inhibitory activity against α-glucosidase where most of the compounds showed good to potent activities. Compounds 4d and 4e showed potent inhibitory activities (IC50 = 0.440 and 0.3456 μM), comparable with that of the positive control (acarbose; IC50 = 0.420 μM). All the synthesized derivatives were also tested for their inhibitory activities against hCA I, II, IX, and XII. They exhibited different levels of inhibition against these isoforms. Compound 4d outstood as the most potent one against hCA II with Ki equals to 7.0 nM, more potent than the reference standard (acetazolamide; Ki = 12.0 nM). In silico studies for the most active compounds within the active sites of α-glucosidase and hCA II revealed good binding modes that can explain their biological activities. MM-GBSA refinements and molecular dynamic simulations were performed on the top-ranking docking pose of the most potent compound 4d to confirm the formation of stable complex with both targets. Compound 4d was screened for its in vivo antihyperglycemic efficacy by using the oral glucose tolerance test. Compound 4d decreased blood glucose level to 217 mg/dl, better than the standard acarbose (234 mg/dl). Hence, this revealed its synergistic mode of action on post prandial hyperglycemia and hepatic gluconeogenesis. Thus, these benzenesulfonamide thiazolidinone hybrids could be considered as promising multi-target candidates for the treatment of type II diabetes mellitus.
Collapse
Affiliation(s)
- Mona A Gamal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Samar H Fahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, New Giza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| |
Collapse
|
17
|
Bose P, Singh M, Gupta A, Kumar S, Ansari FJ, Pandey VK, Singh AS, Tiwari VK. Design, synthesis, and docking study of saccharin N-triazolyl glycoconjugates. Carbohydr Res 2024; 538:109101. [PMID: 38574410 DOI: 10.1016/j.carres.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal Jaah Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anoop S Singh
- Chemistry Innovation Research Center, Jubilant Biosys Ltd, Greater Noida, 201310, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Angeli A, Chelli I, Lucarini L, Sgambellone S, Marri S, Villano S, Ferraroni M, De Luca V, Capasso C, Carta F, Supuran CT. Novel Carbonic Anhydrase Inhibitors with Dual-Tail Core Sulfonamide Show Potent and Lasting Effects for Glaucoma Therapy. J Med Chem 2024; 67:3066-3089. [PMID: 38266245 DOI: 10.1021/acs.jmedchem.3c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glaucoma, a leading cause of irreversible vision loss worldwide, is characterized by elevated intraocular pressure (IOP), a well-established risk factor across all its forms. We present the design and synthesis of 39 novel carbonic anhydrase inhibitors by a dual-tailed approach, strategically crafted to interact with distinct hydrophobic and hydrophilic pockets of CA active sites. The series was investigated against the CA isoforms implicated in glaucoma (hCA II, hCA IV, and hCA XII), and the X-ray crystal structures of compounds 25a, 25f, and 26a with CA II, along with 14b in complex with a hCA XII mimic, were determined. Selected compounds (14a, 25a, and 26a) underwent evaluation for their ability to reduce IOP in rabbits with ocular hypertension. Derivative 26a showed significant potency and sustained IOP-lowering effects, surpassing the efficacy of the drugs dorzolamide and bimatoprost. This positions compound 26a as a promising candidate for the development of a novel anti-glaucoma medication.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Irene Chelli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Marri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Serafina Villano
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, 80131 Naples, Italy
| | | | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| |
Collapse
|
19
|
Huang M, Rueda-Garcia M, Harthorn A, Hackel BJ, Van Deventer JA. Systematic Evaluation of Protein-Small Molecule Hybrids on the Yeast Surface. ACS Chem Biol 2024; 19:325-335. [PMID: 38230650 PMCID: PMC11146673 DOI: 10.1021/acschembio.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Protein-small molecule hybrids are structures that have the potential to combine the inhibitory properties of small molecules and the specificities of binding proteins. However, achieving such synergies is a substantial engineering challenge with fundamental principles yet to be elucidated. Recent work has demonstrated the power of the yeast display-based discovery of hybrids using a combination of fibronectin-binding domains and thiol-mediated conjugations to introduce small-molecule warheads. Here, we systematically study the effects of expanding the chemical diversity of these hybrids on the yeast surface by investigating a combinatorial set of fibronectins, noncanonical amino acid (ncAA) substitutions, and small-molecule pharmacophores. Our results show that previously discovered thiol-fibronectin hybrids are generally tolerant of a range of ncAA substitutions and retain binding functions to carbonic anhydrases following click chemistry-mediated assembly of hybrids with diverse linker structures. Most surprisingly, we identified several cases where replacement of a potent acetazolamide warhead with a substantially weaker benzenesulfonamide warhead still resulted in the assembly of multiple functional hybrids. In addition to these unexpected findings, we expanded the throughput of our system by validating a 96-well plate-based format to produce yeast-displayed hybrid conjugates in parallel. These efficient explorations of hybrid chemical diversity demonstrate that there are abundant opportunities to expand the functions of protein-small molecule hybrids and elucidate principles that dictate their efficient discovery and design.
Collapse
Affiliation(s)
- Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Marina Rueda-Garcia
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Abbigael Harthorn
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Chemical Engineering and Materials Science Department, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
20
|
Pustenko A, Balašova A, Nocentini A, Supuran CT, Žalubovskis R. 3 H-1,2-Benzoxaphosphepine 2-oxides as selective inhibitors of carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2023; 38:216-224. [PMID: 36377338 PMCID: PMC9668280 DOI: 10.1080/14756366.2022.2143496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of 3H-1,2-benzoxaphosphepine 2-oxides and evaluation of their inhibitory activity against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII are described. The target compounds were obtained via a concise synthesis from commercial salicylaldehydes and displayed low to sub-micromolar inhibition levels against the tumour-associated isoforms hCA IX and XII. All obtained benzoxaphosphepine 2-oxides possess remarkable selectivity for inhibition of hCA IX/XII over the off-target cytosolic hCA isoforms I and II, whose inhibition may lead to side effects.
Collapse
Affiliation(s)
| | - Anastasija Balašova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Department of Neurofarba, Università degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, Università degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
21
|
Türkeş C. Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico. J Mol Recognit 2023; 36:e3063. [PMID: 37807620 DOI: 10.1002/jmr.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KI s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KI s in the range of 0.64 ± 0.08-5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug-drug interactions unexpectedly when used in combination with other agents.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
22
|
Naji EM, Naser NH, Hussein SA. In silico study, synthesis, and antineoplastic evaluation of thiazole-based sulfonamide derivatives and their silver complexes with expected carbonic anhydrase inhibitory activity. J Med Life 2023; 16:1857-1863. [PMID: 38585528 PMCID: PMC10994617 DOI: 10.25122/jml-2023-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/26/2023] [Indexed: 04/09/2024] Open
Abstract
This study aimed to design, synthesize, and evaluate the cytotoxic activity of novel thiazole-sulfanilamide derivatives, specifically compounds M3, M4, and M5, through molecular docking and biological assays. The synthesis utilized essential chemical compounds, including sulfanilamide, chloro-acetyl chloride, thiourea, derivatives of benzaldehyde, and silver nitrate. The docking study was carried out using Molecular Operating Environment (MOE) software, and cytotoxic activity was predicted by MTT assay. The synthesized compounds demonstrated a reduction in the viability of cancer cells. Compound M5 had an IC50 of 18.53 µg/ml against MCF-7 cells, comparable to the IC50 of cisplatin. Additionally, compounds M3 and M4 had higher S scores than acetazolamide, indicating greater binding affinity to the active pocket of the receptor. Incorporating the thiazole ring in the synthesized compound augmented their flexibility and affinity for binding to the receptor. The inclusion of the metal complex additionally heightened the compounds' capacity to impede cellular growth.
Collapse
Affiliation(s)
- Esraa Mahdi Naji
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kufa University, Najaf, Iraq
| | - Noor Hatef Naser
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Sahar Aqeel Hussein
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kufa University, Najaf, Iraq
| |
Collapse
|
23
|
Begines P, Bonardi A, Nocentini A, Gratteri P, Giovannuzzi S, Ronca R, Tavani C, Luisa Massardi M, López Ó, Supuran CT. Design and synthesis of sulfonamides incorporating a biotin moiety: Carbonic anhydrase inhibitory effects, antiproliferative activity and molecular modeling studies. Bioorg Med Chem 2023; 94:117467. [PMID: 37722299 DOI: 10.1016/j.bmc.2023.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Sulfonamides constitute an important class of classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Herein we have accomplished the conjugation of biotin with an ample number of sulfonamide motifs with the aim of testing them in vitro as inhibitors of the human carbonic anhydrase (hCA) isoforms I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). Most of these newly synthesized compounds exhibited interesting inhibition profiles, with activities in the nanomolar range. The presence of a 4-F-C6H4 moiety, also found in SLC-0111, afforded an excellent selectivity towards the tumor-associated hypoxia-induced hCA isoform XII with an inhibition constant (KI) of 4.5 nM. The 2-naphthyl derivative was the most potent inhibitor against hCA IX (KI = 6.2 nM), 4-fold stronger than AAZ (KI = 25 nM) with very good selectivity. Some compounds were chosen for antiproliferative activity testing against a panel of 3 human tumor cell lines, one compound showing anti-proliferative activity on glioblastoma, triple-negative breast cancer, and pancreatic carcinoma cell lines.
Collapse
Affiliation(s)
- Paloma Begines
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Seville E-41071, Spain
| | - Alessandro Bonardi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Camilla Tavani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maria Luisa Massardi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Seville E-41071, Spain.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
24
|
Angeli A, Kartsev V, Petrou A, Lichitsky B, Komogortsev A, Geronikaki A, Supuran CT. Substituted furan sulfonamides as carbonic anhydrase inhibitors: Synthesis, biological and in silico studies. Bioorg Chem 2023; 138:106621. [PMID: 37257407 DOI: 10.1016/j.bioorg.2023.106621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Carbonic Anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide involved in several of biological processes, such as respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show wide diversity in tissue distribution and in their subcellular localization. Fifteen novel furyl sulfonamides were designed, synthesized and evaluated against four human isoforms: hCA I, hCA II, hCA IV and hCA IX. Compounds appeared to be very active mostly against hCAI (8) and hCA IV (11) isoforms being more potent than reference drug acetazolamide (AAZ). It should be mentioned that four compounds were more active than AAZ against hCA IX isoform, with compound 13d to be selective against hCA I (SI 70), hCA II (SI 13.5) and hCA IV (SI 20). Furthermore, docking was performed for some of these compounds on all isoforms I order to understand the possible interactions with the active site. The most active compounds showed good bioavailability and drug likeness scores.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania.
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Claudiu T Supuran
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
25
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
26
|
Sobati M, Abdoli M, Bonardi A, Gratteri P, Supuran CT, Žalubovskis R. Inhibition Profiles of Some Novel Sulfonamide-Incorporated α-Aminophosphonates on Human Carbonic Anhydrases. ACS Med Chem Lett 2023; 14:1067-1072. [PMID: 37583824 PMCID: PMC10424312 DOI: 10.1021/acsmedchemlett.3c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
A series of hitherto unknown sulfonamide-incorporated α-aminophosphonate derivatives were synthesized through the one-pot, two-step FeCl3-catalyzed coupling of 4-aminobenzenesulfonamide with the appropriate benzaldehydes and diethyl phosphite. The new sulfonamides inhibition studies were performed on four carbonic anhydrase isoforms, i.e., the cytosolic human (h) hCA I and II (off-targets) as well as transmembrane cancer-related hCA IX and XII (targets). Among the synthesized compounds, derivative 23 resulted in the most selective compound against both cancer-associated isoforms over the off-target hCA I (hCA I/IX = 78; hCA I/XII = 458) and hCA II (hCA II/IX = 10; hCA II/XII = 56) and the binding mode of both enantiomers R and S was investigated in silico.
Collapse
Affiliation(s)
- Marjan Sobati
- Institute
of Technology of Organic Chemistry, Faculty of Materials Science and
Applied Chemistry, Riga Technical University, Riga 1048, Latvia
| | - Morteza Abdoli
- Institute
of Technology of Organic Chemistry, Faculty of Materials Science and
Applied Chemistry, Riga Technical University, Riga 1048, Latvia
| | - Alessandro Bonardi
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paola Gratteri
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Raivis Žalubovskis
- Institute
of Technology of Organic Chemistry, Faculty of Materials Science and
Applied Chemistry, Riga Technical University, Riga 1048, Latvia
- Latvian
Institute of Organic Synthesis, Riga 1006, Latvia
| |
Collapse
|
27
|
Ismail RSM, El Kerdawy AM, Soliman DH, Georgey HH, Abdel Gawad NM, Angeli A, Supuran CT. Discovery of a new potent oxindole multi-kinase inhibitor among a series of designed 3-alkenyl-oxindoles with ancillary carbonic anhydrase inhibitory activity as antiproliferative agents. BMC Chem 2023; 17:81. [PMID: 37461110 DOI: 10.1186/s13065-023-00994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
An optimization strategy was adopted for designing and synthesizing new series of 2-oxindole conjugates. Selected compounds were evaluated for their antiproliferative effect in vitro against NCI-60 cell lines panel, inhibitory effect on carbonic anhydrase (CA) isoforms (hCAI, II, IX and XII), and protein kinases. Compounds 5 and 7 showed promising inhibitory effects on hCA XII, whereas compound 4d was the most potent inhibitor with low nanomolar CA inhibition against all tested isoforms. These results were rationalized by using molecular docking. Despite its lack of CA inhibitory activity, compound 15c was the most active antiproliferative candidate against most of the 60 cell lines with mean growth inhibition 61.83% and with IC50 values of 4.39, 1.06, and 0.34 nM against MCT-7, DU 145, and HCT-116 cell lines, respectively. To uncover the mechanism of action behind its antiproliferative activity, compound 15c was assessed against a panel of protein kinases (RET, KIT, cMet, VEGFR1,2, FGFR1, PDFGR and BRAF) showing % inhibition of 74%, 31%, 62%, 40%, 73%, 74%, 59%, and 69%, respectively, and IC50 of 1.287, 0.117 and 1.185 μM against FGFR1, VEGFR, and RET kinases, respectively. These results were also explained through molecular docking.
Collapse
Affiliation(s)
- Rania S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, P.O. Box 11829, Badr City, Cairo, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Dalia H Soliman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, P.O. Box 11829, Badr City, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11471, Cairo, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Nagwa M Abdel Gawad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt.
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
28
|
Hussain T, Ullah S, Alrokayan S, Alamery S, Mohammed AA, Ejaz SA, Aziz M, Iqbal J. Synthesis, characterization and biological evaluation of pyrazole-based benzene sulfonamides as inhibitors of human carbonic anhydrase II, IX and XII. RSC Adv 2023; 13:18461-18479. [PMID: 37346960 PMCID: PMC10280043 DOI: 10.1039/d3ra03276k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
The aberrant level of the carbonic anhydrase isozymes is linked with various disorders which include glaucoma, epilepsy, altitude sickness and obesity. In the present study, a series of the pyrazole-based benzene sulfonamides derivatives (4a-4l) were designed, synthesized and evaluated as the inhibitors of the three isoforms of human carbonic anhydrases (hCAII, hCAIX and hCAXII). A number of the derivatives were found more active inhibitors than acetazolamide used as a standard against the human hCAII, hCAIX and hCAXII. Among the series, the compound 4k inhibited the hCAII to a submicromolar level presenting the IC50 ± SEM concentration of 0.24 ± 0.18 μM, the inhibitor 4j reduced the activity of the hCAIX to the IC50 ± SEM equals 0.15 ± 0.07 μM, whereas, the molecule 4g blocked the catalytic potential of the isozyme hCAXII with as low as IC50 concentration of 0.12 ± 0.07 μM. In addition, compounds 4e and 4k were screened as the preferential inhibitors of the isoform hCAXII as compared to the hCAIX and hCAXII with half of the maximal concentrations of 0.75 ± 0.13 μM, and 0.24 ± 0.18 μM, respectively. Moreover, the compounds 4k, 4j and 4g were docked inside the active pocket of the crystallographic structure of the isoforms hCAXII, hCAIX and hCAXII, respectively. The docked inhibitors showed the binding interactions with the important amino acid residues such as Leu1198, Thr1199, His1094, and Phe1131 in hCAXII isozyme; residues Val121, Thr200, Pro203, and Gln71 in hCAIX; the amino acids Val119, Leu197, Gln89, and Asn64 in the case of hCAXII. In addition, structural geometries, reactivity descriptors, optimization energy and electronic parameters were calculated to predict the activity of the synthesized compounds.
Collapse
Affiliation(s)
- Tajamul Hussain
- Centre of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan +92-992-383441 +92-992-383591-96
| | - Salman Alrokayan
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Salman Alamery
- Biochemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Arif Ahmed Mohammed
- Centre of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan +92-992-383441 +92-992-383591-96
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| |
Collapse
|
29
|
Peerzada M, Vullo D, Paoletti N, Bonardi A, Gratteri P, Supuran CT, Azam A. Discovery of Novel Hydroxyimine-Tethered Benzenesulfonamides as Potential Human Carbonic Anhydrase IX/XII Inhibitors. ACS Med Chem Lett 2023; 14:810-819. [PMID: 37312840 PMCID: PMC10258898 DOI: 10.1021/acsmedchemlett.3c00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023] Open
Abstract
To discover novel carbonic anhydrase (CA, EC 4.2.1.1) inhibitors for cancer treatment, a series of 4-{4-[(hydroxyimino)methyl]piperazin-1-yl}benzenesulfonamides were designed and synthesized using SLC-0111 as the lead molecule. The developed novel compounds 27-34 were investigated for the inhibition of human (h) isoforms hCA I, hCA II, hCA IX, and hCA XII. The hCA I was inhibited by compound 29 with a Ki value of 3.0 nM, whereas hCA II was inhibited by compound 32 with a Ki value of 4.4 nM. The tumor-associated hCA IX isoform was inhibited by compound 30 effectively with an Ki value of 43 nM, whereas the activity of another cancer-related isoform, hCA XII, was significantly inhibited by 29 and 31 with a Ki value of 5 nM. Molecular modeling showed that drug molecule 30 participates in significant hydrophobic and hydrogen bond interactions with the active site of the investigated hCAs and binds to zinc through the deprotonated sulfonamide group.
Collapse
Affiliation(s)
- Mudasir
Nabi Peerzada
- Medicinal
Chemistry and Drug Discovery Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| | - Daniela Vullo
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Niccolò Paoletti
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandro Bonardi
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paola Gratteri
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Amir Azam
- Medicinal
Chemistry and Drug Discovery Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
30
|
Angeli A, Paoletti N, Supuran CT. Five-Membered Heterocyclic Sulfonamides as Carbonic Anhydrase Inhibitors. Molecules 2023; 28:molecules28073220. [PMID: 37049983 PMCID: PMC10096498 DOI: 10.3390/molecules28073220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
The development of heterocyclic derivatives has progressed considerably over the past decades, and many new carbonic anhydrase inhibitors (CAIs) fall into this field. In particular, five-membered heterocyclic sulfonamides have been generally shown to be more effective inhibitors compared to six-membered rings ones. Despite the importance of oxygen and nitrogen five-membered heterocyclic aromatic rings in medicinal chemistry, the installation of sulfonamide moiety on such heterocycles has not received much attention. On the other hand, 1,3,4-thiadiazole/thiadiazoline ring-bearing sulfonamides are the scaffolds which have been widely used in a variety of pharmaceutically important CAIs such as acetazolamide, metazolamide and their many derivatives obtained by using the tail approach. Here, we reviewed the field focusing on the diverse biological activities of these CAIs, such as antiglaucoma, antiepileptic, antitumor and antiinfective properties. This review highlights developments involving five-membered heterocyclic sulfonamides over the last years, with a focus on their pharmacological/clinical applications.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Niccolò Paoletti
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
31
|
Dorbabu A. Pyrazole/pyrazoline as an excellent pharmacophore in the design of carbonic anhydrase inhibitors (2018-2022). Arch Pharm (Weinheim) 2023; 356:e2200562. [PMID: 36599496 DOI: 10.1002/ardp.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase (CA) is a metalloenzyme that catalyzes the interconversion between carbon dioxide and water and dissociated ions of carbonic acid. In addition, CA performs various other functions in animals and plants, depending on the part of the living being. CAs have been found in almost all organisms. Besides, CAs are associated with several diseases, such as glaucoma, obesity, epilepsy, cancer, and so on. CAs are also involved in tumor cell growth and angiogenesis. Thus, inhibition of CA may be an attractive way of control of such diseases. Hence, CA inhibitors have been designed and developed to cure CA-associated diseases. Some examples of approved CA inhibitors are dorzolamide, methazolamide, brinzolamide, and dichlorphenamide. Furthermore, various heterocyclic scaffolds were utilized for the design of CA inhibitors. Among those, pyrazole/pyrazoline derivatives have exhibited greater potency toward CA inhibition. Hence, research that took place in the field of drug design and discovery of CA inhibition has been systematically reviewed and collated. Alongside, the structure-activity relationship has been described, followed by a description of the most potent molecules and their structural features.
Collapse
Affiliation(s)
- Atukuri Dorbabu
- SRMPP Government First Grade College, Huvina Hadagali, India
| |
Collapse
|
32
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
33
|
MM/GBSA prediction of relative binding affinities of carbonic anhydrase inhibitors: effect of atomic charges and comparison with Autodock4 Zn. J Comput Aided Mol Des 2023; 37:167-182. [PMID: 36930332 PMCID: PMC10050039 DOI: 10.1007/s10822-023-00499-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Carbonic anhydrase is an attractive drug target for the treatment of many diseases. This paper examines the ability of end-state MM/GBSA methods to rank inhibitors of carbonic anhydrase in terms of their binding affinities. The MM/GBSA binding energies were evaluated using different atomic charge schemes (Mulliken, ESP and NPA) at different levels of theories, including Hartree-Fock, B3LYP-D3(BJ), and M06-2X with the 6-31G(d,p) basis set. For a large test set of 32 diverse inhibitors, the use of B3LYP-D3(BJ) ESP atomic charges yielded the strongest correlation with experiment (R2 = 0.77). The use of the recently enhanced Autodock Vina and zinc optimised AD4Zn force field also predicted ligand binding affinities with moderately strong correlation (R2 = 0.64) at significantly lower computational cost. However, the docked poses deviate significantly from crystal structures. Overall, this study demonstrates the applicability of docking to estimate ligand binding affinities for a diverse range of CA inhibitors, and indicates that more theoretically robust MM/GBSA simulations show promise for improving the accuracy of predicted binding affinities, as long as a validated set of parameters is used.
Collapse
|
34
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int J Biol Macromol 2023; 239:124232. [PMID: 37001773 DOI: 10.1016/j.ijbiomac.2023.124232] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Sulfonamides are among the most promising potential inhibitors for carbonic anhydrases (CAs), which are pharmaceutically relevant targets for treating several disease conditions. Herein, a series of benzenesulfonamides bearing 1,2,3-triazole moiety as inhibitors of human (h) α-CAs (hCAs) were designed using the tail approach. The design method combines a benzenesulfonamide moiety with a tail of oxime and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized derivatives, the naphthyl (6m, KI of 68.6 nM, SI of 10.3), and methyl (6a, KI of 56.3 nM, SI of 11.7) derivatives (over hCA IX) and propyl (6c, KI of 95.6 nM, SI of 2.7), and pentyl (6d, KI of 51.1 nM, SI of 6.6) derivatives (over hCA XII) displayed a noticeable selectivity for isoforms hCA I and II, respectively. Meanwhile, derivative 6e displayed a potent inhibitory effect versus the cytosolic isoform hCA I (KI of 47.8 nM) and tumor-associated isoforms hCA IX and XII (KIs of 195.9 and 116.9 nM, respectively) compared with the reference drug acetazolamide (AAZ, KIs of 451.8, 437.2, and 338.9 nM, respectively). Derivative 6b showed higher potency (KI of 33.2 nM) than AAZ (KI of 327.3 nM) towards another cytosolic isoform hCA II. Nevertheless, substituting the lipophilic large naphthyl tail to the 1,2,3-triazole linked benzenesulfonamides (6a-n) raised inhibitory effect versus hCA I and XII and selectivity towards hCA I and II isoforms over hCA IX. Evaluation of the cytotoxic potential of the synthesized derivatives was conducted in L929, MCF-7, and Hep-3B cell lines. Several compounds in the series demonstrated significant antiproliferative activity and minimal cytotoxicity. In the molecular docking study, the sulfonamide moiety interacted with the zinc-ion and neatly fit into the hCAs active sites. The extension of the tail was found to participate in diverse hydrophilic and hydrophobic interactions with adjacent amino acids, ultimately influencing the effectiveness and specificity of the derivatives.
Collapse
|
35
|
O’Herin C, Moriuchi YW, Bemis TA, Kohlbrand AJ, Burkart MD, Cohen SM. Development of Human Carbonic Anhydrase II Heterobifunctional Degraders. J Med Chem 2023; 66:2789-2803. [PMID: 36735827 PMCID: PMC9969396 DOI: 10.1021/acs.jmedchem.2c01843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 02/05/2023]
Abstract
Human carbonic anhydrase II (hCAII) is a metalloenzyme essential to critical physiological processes in the body. hCA inhibitors are used clinically for the treatment of indications ranging from glaucoma to epilepsy. Targeted protein degraders have emerged as a promising means of inducing the degradation of disease-implicated proteins by using the endogenous quality control mechanisms of a cell. Here, a series of heterobifunctional degrader candidates targeting hCAII were developed from a simple aryl sulfonamide fragment. Degrader candidates were functionalized to produce either cereblon E3 ubiquitin ligase (CRBN) recruiting proteolysis targeting chimeras (PROTACs) or adamantyl-based hydrophobic tags (HyTs). Screens in HEK293 cells identified two PROTAC small-molecule degraders of hCA. Optimization of linker length and composition yielded a degrader with sub-nanomolar potency and sustained depletion of hCAII over prolonged treatments. Mechanistic studies suggest that this optimized degrader depletes hCAII through the same mechanism as previously reported CRBN-recruiting heterobifunctional degraders.
Collapse
Affiliation(s)
- Conor
B. O’Herin
- Department of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Yuta W. Moriuchi
- Department of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Troy A. Bemis
- Department of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Alysia J. Kohlbrand
- Department of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Gilbert K, Vuorinen A, Aatkar A, Pogány P, Pettinger J, Grant EK, Kirkpatrick JM, Rittinger K, House D, Burley GA, Bush JT. Profiling Sulfur(VI) Fluorides as Reactive Functionalities for Chemical Biology Tools and Expansion of the Ligandable Proteome. ACS Chem Biol 2023; 18:285-295. [PMID: 36649130 PMCID: PMC9942091 DOI: 10.1021/acschembio.2c00633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Here, we report a comprehensive profiling of sulfur(VI) fluorides (SVI-Fs) as reactive groups for chemical biology applications. SVI-Fs are reactive functionalities that modify lysine, tyrosine, histidine, and serine sidechains. A panel of SVI-Fs were studied with respect to hydrolytic stability and reactivity with nucleophilic amino acid sidechains. The use of SVI-Fs to covalently modify carbonic anhydrase II (CAII) and a range of kinases was then investigated. Finally, the SVI-F panel was used in live cell chemoproteomic workflows, identifying novel protein targets based on the type of SVI-F used. This work highlights how SVI-F reactivity can be used as a tool to expand the liganded proteome.
Collapse
Affiliation(s)
- Katharine
E. Gilbert
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Aini Vuorinen
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Arron Aatkar
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Peter Pogány
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Jonathan Pettinger
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Emma K. Grant
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | | | - Katrin Rittinger
- The
Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
| | - David House
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Glenn A. Burley
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Jacob T. Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| |
Collapse
|
37
|
Zengin Kurt B, Celebi G, Ozturk Civelek D, Angeli A, Akdemir A, Sonmez F, Supuran CT. Tail-Approach-Based Design and Synthesis of Coumarin-Monoterpenes as Carbonic Anhydrase Inhibitors and Anticancer Agents. ACS OMEGA 2023; 8:5787-5807. [PMID: 36816648 PMCID: PMC9933483 DOI: 10.1021/acsomega.2c07459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
In this study, sixty novel coumarin-monoterpene compounds were synthesized in two series [thirty-two compounds (12-43) bearing a triazole ring in the first series, and twenty-eight compounds (44-71) bearing an alkyl chain in the second one]. Their inhibitory effects on the human carbonic anhydrase (hCA) isoforms I, II, IX, and XII and anticancer potentials were determined. All synthesized molecules selectively inhibited CA IX and XII. 23 and 42 were found to be the strongest inhibitors, with K i values of 1.9 nM against hCA IX. Also, 70 showed the highest inhibitory activity with a K i value of 4.9 nM against hCA XII. Moreover, their cytotoxic effects on colon adenocarcinoma (HT-29), prostate adenocarcinoma (PC-3), and breast adenocarcinoma (MCF-7) cell lines were evaluated. According to the cytotoxicity results, 14 (IC50 = 2.48 μM) and 63 (IC50 = 3.91 μM) exhibited the highest cytotoxicity on the MCF-7 cells, while 23 showed the strongest cytotoxic effect on both PC-3 (IC50 = 9.40 μM) and HT-29 (IC50 = 12.10 μM) cell lines. 14, 23, and 66 decreased CA IX and CA XII protein expression in HT-29 cells, while 23 and 66 showed the strongest reduction of both CA IX and CA XII in MCF-7 cells. All of the selected compounds increased total apoptosis in a concentration-dependent manner in HT-29 and MCF-7 cells. 14 has the strongest apoptotic effect in MCF-7 cells. 23 increased early apoptosis primarily, while 14 and 66 increased total apoptosis in HT-29. In addition, PI/Hoechst staining proves that apoptotic cells are increased in HT-29 with an effect of 14, 23, and 66. As a result of the modeling studies, it has been shown that only the open coumarin form of the compounds can interact directly with the active-site Zn2+ ion. It has been shown that coumarin-monoterpene structures with different alkyl and monoterpene groups both specifically inhibit CA IX and XII and exhibit specific cytotoxicity in different cell lines.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Gulsen Celebi
- Faculty
of Medicine, Department of Pharmacology, Kocaeli University, Kocaeli 41001, Türkiye
| | - Dilek Ozturk Civelek
- Faculty
of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Andrea Angeli
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Atilla Akdemir
- Faculty
of Pharmacy, Department of Pharmacology, Computer-Aided Drug Discovery
Laboratory, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Fatih Sonmez
- Pamukova
Vocational School, Sakarya University of
Applied Sciences, Sakarya 54055, Türkiye
| | - Claudiu T. Supuran
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
38
|
Vats L, Siwach K, Angeli A, Bikal P, Bhardwaj JK, Supuran CT, Sharma PK. Tail approach synthesis of triazolylthiazolotriazole bearing benzenesulfonamides as carbonic anhydrase inhibitors capable of inducing apoptosis. Arch Pharm (Weinheim) 2023; 356:e2200439. [PMID: 36344431 DOI: 10.1002/ardp.202200439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Inhibition of human carbonic anhydrase (hCA) isoform IX with concurrent induction of apoptosis is a promising approach for targeting cancer in humans. Prompted by the scope, novel benzenesulfonamides containing the 1,2,3-triazolylthiazolotriazole tail were synthesized and screened as inhibitors of hCA isoforms I, II, IV, and IX. The tumor-associated isoform hCA IX was strongly inhibited by the sulfonamides reported here with KI values ranging from 45 nM to 1.882 μM. Overall, nine compounds showed hCA IX inhibition with KI < 250 nM. The glaucoma-associated isoform hCA II was moderately inhibited while the cytosolic isoform hCA I and membrane-bound isoform hCA IV were weakly inhibited by the synthesized sulfonamides. Compound 6Ac (KI = 3.6 nM) was found to be an almost three times more potent inhibitor of hCA II as compared to the standard drug acetazolamide (KI = 12.1 nM). The selective hCA IX inhibitors were further studied for their apoptotic efficacy in goat ovarian cells and showed better results as compared to the control. A comparative study of previously synthesized compounds and molecular docking study of representative compounds revealed some important generalizations that could prove beneficial in further investigations of isoform-selective hCA inhibitors.
Collapse
Affiliation(s)
- Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India.,Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Kiran Siwach
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Andrea Angeli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Prerna Bikal
- Department of Zoology, Reproductive Physiology Laboratory, Kurukshetra University, Kurukshetra, Haryana, India
| | - Jitender Kumar Bhardwaj
- Department of Zoology, Reproductive Physiology Laboratory, Kurukshetra University, Kurukshetra, Haryana, India
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
39
|
Ialongo D, Messore A, Madia VN, Tudino V, Nocentini A, Gratteri P, Giovannuzzi S, Supuran CT, Nicolai A, Scarpa S, Taurone S, Camarda M, Artico M, Papa V, Saccoliti F, Scipione L, Di Santo R, Costi R. Pyrrolyl and Indolyl α-γ-Diketo Acid Derivatives Acting as Selective Inhibitors of Human Carbonic Anhydrases IX and XII. Pharmaceuticals (Basel) 2023; 16:188. [PMID: 37259337 PMCID: PMC9959269 DOI: 10.3390/ph16020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 05/11/2025] Open
Abstract
Solid tumors are active tissues containing hypoxic regions and producing metabolic acids. By decreasing pH, cancer cells create a hostile environment for surrounding host cells and foster tumor growth and progression. By governing acid/base regulation, carbonic anhydrases (CAs) are involved in several physiological/pathological processes, including tumors. Indeed, CAs are clinically relevant in cancer therapy as among the fifteen human isoforms, two of them, namely CA IX (overexpressed in solid tumors and associated with increased metastasis and poor prognosis) and CA XII (overexpressed in some tumors) are involved in tumorigenesis. Targeting these two isoforms is considered as a pertinent approach to develop new cancer therapeutics. Several CA inhibitors (CAIs) have been described, even though they are unselective inhibitors of different isoforms. Thus, efforts are needed to find new selective CAIs. In this work, we described new diketo acid derivatives as CAIs, with the best acting compounds 1c and 5 as nanomolar inhibitors of CA IX and XII, being also two orders of magnitude selective over CAs I and II. Molecular modeling studies showed the different binding poses of the best acting CAIs within CA II and IX, highlighting the key structural features that could confer the ability to establish specific interactions within the enzymes. In different tumor cell lines overexpressing CA IX and XII, the tested compounds showed antiproliferative activity already at 24 h treatment, with no effects on somatic not transformed cells.
Collapse
Affiliation(s)
- Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Alessio Nocentini
- Laboratory of Molecular Modeling Cheminformatics & QSAR, NEUROFARBA Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, NEUROFARBA Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Alice Nicolai
- Dipartimento Medicina Sperimentale, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Susanna Scarpa
- Dipartimento Medicina Sperimentale, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Samanta Taurone
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Michele Camarda
- Department of Sensory Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Veronica Papa
- Department of Motor Sciences and Wellness, University of Naples “Partenope”, 80133 Naples, Italy
| | - Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
40
|
Combs J, Bozdag M, Cravey LD, Kota A, McKenna R, Angeli A, Carta F, Supuran CT. New Insights into Conformationally Restricted Carbonic Anhydrase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020890. [PMID: 36677947 PMCID: PMC9861757 DOI: 10.3390/molecules28020890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
This paper reports an investigation into the impact of pyridyl functional groups in conjunction with hydroxide-substituted benzenesulfonamides on the inhibition of human carbonic anhydrase (CA; EC 4.2.1.1) enzymes. These compounds were tested in vitro of CA II and CA IX, two physiologically important CA isoforms. The most potent inhibitory molecules against CA IX, 3g, 3h, and 3k, were studied to understand their binding modes via X-ray crystallography in adduct with CA II and CA IX-mimic. This research further adds to the field of CA inhibitors to better understand ligand selectivity between isoforms found in humans.
Collapse
Affiliation(s)
- Jacob Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Murat Bozdag
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Lochlin D. Cravey
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anusha Kota
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence: (R.M.); (F.C.)
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
- Correspondence: (R.M.); (F.C.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| |
Collapse
|
41
|
Oudah KH, Mahmoud WR, Awadallah FM, Taher AT, Abbas SES, Allam HA, Vullo D, Supuran CT. Design and synthesis of some new benzoylthioureido benzenesulfonamide derivatives and their analogues as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2023; 38:12-23. [PMID: 36305274 PMCID: PMC9621292 DOI: 10.1080/14756366.2022.2132485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present investigation reports the design and synthesis of three series of benzoylthioureido derivatives bearing either benzenesulfonamide 7a–f, benzoic acid 8a–f or ethylbenzoate 9a–f moieties. The synthesised compounds were screened for their carbonic anhydrase inhibitory activity (CAI) against four isoforms hCA I, II, IX, and XII. Compounds 7a, 7b, 7c, and 7f exhibited a potent inhibitory activity towards hCAI (Kis = 58.20, 56.30, 33.00, and 43.00 nM), respectively compared to acetazolamide (AAZ) and SLC-0111 (Kis = 250.00 and 5080.00 nM). Compounds 7a, 7b, 7c, 7e, and 7f elicited selectivity over h CA II (Kis = 2.50, 2.10, 56.60,39.60 and 39.00 nM) respectively, relative to AAZ and SLC-0111(Kis = 12.10 and 960.00 nM). Also, compounds 7c, 7f, and 9e displayed selectivity against the tumour-associated isoform hCA IX (Kis = 31.20, 30.00 and 29.00 nM) respectively, compared to AAZ and SLC-0111 (Kis = 25.70 and 45.00 nM). Additionally, compounds 8a and 8f revealed a moderate to superior selectivity towards hCAXII (Kis = 17.00 and 11.00 nM) relative to AAZ and SLC-0111(Kis = 5.70 and 45.00 nM). Molecular docking and ADME prediction studies were performed on the most active compounds to shed light on their interaction with the hot spots of the active site of CA isoforms, in addition to prediction of their pharmacokinetic and physicochemical properties.
Collapse
Affiliation(s)
- Khulood H. Oudah
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Nasiriyah, Iraq
| | - Walaa R. Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fadi M. Awadallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Azza T. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University(O6U), Giza, Egypt
| | - Safinaz E.-S Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Daniela Vullo
- Department NEUROFARBA – Pharmaceutical and Nutraceutical section, University of Firenze, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical section, University of Firenze, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
42
|
Mahapatra M, Mekap SK, Mal S, Sahoo J, Sahoo SK, Paidesetty SK. Coumaryl-sulfonamide moiety: Unraveling their synthetic strategy and specificity toward hCA IX/XII, facilitating anticancer drug development. Arch Pharm (Weinheim) 2023; 356:e2200508. [PMID: 36587981 DOI: 10.1002/ardp.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII. Along with coumarin, the age-old known antibacterial drug sulfonamide, when conjugated at positions 3, 7, and 8 of coumarin either with a linker group or as a single entity, has been reported to enhance the affinity of coumarin toward the overexpressed enzymes in tumor cell lines. The sulfonamides have been listed as obsolete drugs due to the severe side effects caused by them; however, their affinity toward the hCA-zinc-binding core has attracted the attention of researchers. Hence, in the process of drug development, coumarin and sulfonamides have remained the choice of last resort. To unveil the synthetic strategy of coumarin-sulfonamide conjugation, their rationale for inhibiting cancer cells/enzymes, and their affinity toward various types of carcinoma have been the sole goal of the researchers. This review specifically focuses on the mechanism of action and the structure-activity relationship through synthetic strategies and the binding affinity of coumaryl-sulfonamide conjugates with the anticancer targets possessing the highest enzyme affinity, since 2008.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Suman K Mekap
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, R. Sitapur, Odisha, India
| | - Suvadeep Mal
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Jyotirmaya Sahoo
- School of Pharmacy, Arka Jain University, Jameshedpur, Jharkand, India
| | | | - Sudhir K Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
43
|
Sharonova T, Zhmurov P, Kalinin S, Nocentini A, Angeli A, Ferraroni M, Korsakov M, Supuran CT, Krasavin M. Diversely substituted sulfamides for fragment-based drug discovery of carbonic anhydrase inhibitors: synthesis and inhibitory profile. J Enzyme Inhib Med Chem 2022; 37:857-865. [PMID: 35296197 PMCID: PMC8933014 DOI: 10.1080/14756366.2022.2051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022] Open
Abstract
A series of sulfamide fragments has been synthesised and investigated for human carbonic anhydrase inhibition. One of the fragments showing greater selectivity for cancer-related isoforms hCA IX and XII was co-crystalized with hCA II showing significant potential for fragment periphery evolution via fragment growth and linking. These opportunities will be identified in the future via the screening of this fragment structure for co-operative carbonic anhydrase binding with other structurally diverse fragments.[Figure: see text].
Collapse
Affiliation(s)
- Tatiana Sharonova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Petr Zhmurov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alessio Nocentini
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Marta Ferraroni
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Mikhail Korsakov
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, Russia
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
44
|
The potential of chalcone derivatives as human carbonic anhydrase inhibitors in the therapy of glaucoma. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Beatriz Vermelho A, Rodrigues GC, Nocentini A, Mansoldo FRP, Supuran CT. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin Drug Discov 2022; 17:1147-1158. [PMID: 36039500 DOI: 10.1080/17460441.2022.2117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giseli Capaci Rodrigues
- UNIGRANRIO - Universidade do Grande Rio Programa de Pós-Graduação em Ensino das Ciências, Rio de Janeiro, Brazil
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Felipe R P Mansoldo
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| |
Collapse
|
46
|
Sabry E, Mohamed HA, Ewies EF, Kariuki BM, Darwesh OM, Bekheit MS. Microwave-assisted synthesis of novel sulfonamide-based compounds bearing α-aminophosphonate and their antimicrobial properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Synthesis and Antimicrobial Activity of New Heteroaryl(aryl) Thiazole Derivatives Molecular Docking Studies. Antibiotics (Basel) 2022; 11:antibiotics11101337. [PMID: 36289995 PMCID: PMC9658463 DOI: 10.3390/antibiotics11101337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Herein, we report the design, synthesis, and evaluation of the antimicrobial activity of new heteroaryl (aryl) thiazole derivatives. The design was based on a molecular hybridization approach. The in vitro evaluation revealed that these compounds demonstrated moderate antibacterial activity. The best activity was achieved for compound 3, with MIC and MBC in the range of 0.23–0.7 and 0.47–0.94 mg/mL, respectively. Three compounds (2, 3, and 4) were tested against three resistant strains, namely methicillin resistant Staphylococcus aureus, P. aeruginosa, and E. coli, which showed higher potential than the reference drug ampicillin. Antifungal activity of the compounds was better with MIC and MFC in the range of 0.06–0.47 and 0.11–0.94 mg/mL, respectively. The best activity was observed for compound 9, with MIC at 0.06–0.23 mg/mL and MFC at 0.11–0.47 mg/mL. According to docking studies, the predicted inhibition of the E. coli MurB enzyme is a putative mechanism of the antibacterial activity of the compounds, while inhibition of 14a-lanosterol demethylase is probably the mechanism of their antifungal activity.
Collapse
|
48
|
Bonardi A, Micheli L, Di Cesare Mannelli L, Ghelardini C, Gratteri P, Nocentini A, Supuran CT. Development of Hydrogen Sulfide-Releasing Carbonic Anhydrases IX- and XII-Selective Inhibitors with Enhanced Antihyperalgesic Action in a Rat Model of Arthritis. J Med Chem 2022; 65:13143-13157. [PMID: 36121705 PMCID: PMC9574929 DOI: 10.1021/acs.jmedchem.2c00982] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An effective therapeutic approach based on the anti-inflammatory
action of hydrogen sulfide (H2S) and inhibition of carbonic
anhydrases (CAs) IX and XII is proposed here for the management of
arthritis. H2S is a human gasotransmitter that modulates
inflammatory response at low concentrations. Inhibition of CAs IX
and XII can repristinate normal pH in the acidic inflamed synovial
fluid, alleviating arthritis symptoms. We report here the design of
H2S donor—CA inhibitor (CAI) hybrid derivatives.
The latter were tested in vitro as inhibitors of human CAs I, II,
IV, IX, and XII, showing a markedly increased inhibition potency/isoform
selectivity compared to the CAI synthetic precursors. The best compounds
demonstrated the ability to consistently release H2S and
produce a potent pain-relieving effect in a rat model of arthritis.
Compound 26 completely reverted the pain state 45 min
after administration with enhanced antihyperalgesic effect in vivo
compared to the single H2S donor, CAI fragment, or their
co-administration.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department of NEUROFARBA─Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Laura Micheli
- Department NEUROFARBA─Section of Pharmacology and Toxicology, University of Florence, viale Gaetano Pieraccini 6, Firenze, 50139 Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department NEUROFARBA─Section of Pharmacology and Toxicology, University of Florence, viale Gaetano Pieraccini 6, Firenze, 50139 Florence, Italy
| | - Carla Ghelardini
- Department NEUROFARBA─Section of Pharmacology and Toxicology, University of Florence, viale Gaetano Pieraccini 6, Firenze, 50139 Florence, Italy
| | - Paola Gratteri
- Department of NEUROFARBA─Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA─Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA─Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
49
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
50
|
Iwan D, Kamińska K, Denel-Bobrowska M, Olejniczak AB, Wojaczyńska E. Chiral sulfonamides with various N-heterocyclic and aromatic units – Synthesis and antiviral activity evaluation. Biomed Pharmacother 2022; 153:113473. [DOI: 10.1016/j.biopha.2022.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022] Open
|