1
|
Xiao Y, Shi Y, Shao C, Tang W, Liu H, Chen J, Wang S, Cheng B. Discovery of bifunctional small molecules targeting PD-L1/VISTA with favorable pharmacokinetics for cancer immunotherapy. Bioorg Chem 2025; 157:108323. [PMID: 40049048 DOI: 10.1016/j.bioorg.2025.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
In this work, we designed and synthesized a series of bifunctional PD-L1/VISTA (V-domain immunoglobulin suppressor of T-cell activation) small molecule inhibitors. Among them, S8 showed acceptable PD-L1 inhibitory effects (IC50 = 1.4 μM, HTRF assay) and VISTA binding activity (KD = 2.1 μM, ITC assay). BLI, ITC, and DSF assays further confirmed its dual action mode. Notably, S8 exhibited desirable in vivo pharmacokinetic properties, featuring a respectable oral bioavailability of 34.2 %. Moreover, oral administration of S8 led to a 40 % reduction in tumor weight and a 51 % decrease in tumor volume in a B16-F10 tumor model, better than the positive control an anti-PD-L1 antibody, and CA-170. PK-PD studies show that the plasma level of unbound S8 covered the biochemical IC50 concentration determined by ITC and HTRF assays, which is consistent with the strong antitumor activity observed in vivo. Analysis of tumor-infiltrating lymphocytes (TILs) via flow cytometry suggested that S8 activated the tumor immune microenvironment to exert its anti-cancer effects. In summary, S8 represents a dual PD-L1/VISTA inhibitor with potential for further investigation as a dual-function immunotherapeutic agent.
Collapse
Affiliation(s)
- Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, PR China
| | - Yaru Shi
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China
| | - Wubing Tang
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, PR China.
| | - Hao Liu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, PR China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China.
| | - Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China; Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi 435003, PR China.
| |
Collapse
|
2
|
Hu Z, Li S, He H, Pan W, Liu T, Liang H, Xu C, Lu B, Tao C, Qi Z, Cheng B, Hu Y, Jiang F, Chen J, Peng X. Discovery of Novel and Highly Potent Dual PD-L1/Histone Deacetylase 6 Inhibitors with Favorable Pharmacokinetics for Cancer Immunotherapy. J Med Chem 2025; 68:5426-5454. [PMID: 39979078 DOI: 10.1021/acs.jmedchem.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A series of novel PD-L1/HDAC6 dual inhibitors were designed and synthesized, and compound HP29 was identified as the most potent candidate, which demonstrated excellent and selective HDAC6 inhibitory activity (IC50 = 78 nM, SI > 1282), and high anti-PD-1/PD-L1 activity (IC50 = 26.8 nM). Further studies showed that HP29 could bind with high affinity to PD-L1 and HDAC6 protein. Furthermore, HP29 possessed favorable in vivo pharmacokinetic properties, such as decent oral bioavailability (F = 15.3%). Moreover, HP29 exhibited significant in vivo antitumor efficacy in a melanoma tumor model with a greater tumor growth inhibition (TGI) (65.5%) than that of NP19 (43.2%), ACY-1215 (45.6%), and the combination group (53.9%). Mechanistically, the percentages of tumor-infiltrating lymphocytes (TILs) in the HP29-treated tumor tissues were significantly higher than the combination group or PD-L1 inhibitor monotherapy group, suggesting potential synergistic antitumor immune effects. Collectively, HP29 represents a novel PD-L1/HDAC6 dual inhibitor deserving further investigation as a potential cancer immunomodulating agent.
Collapse
Affiliation(s)
- Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Haiqi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailiu Liang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Congcong Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Benyan Lu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Chengpeng Tao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zetao Qi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Ying Hu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 314000, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
3
|
Qi Z, Cheng Y, Wang K, Cai S, Ni X, Wang T, Zhang K, Jiang S, Xiao Y, Zhang X. Discovery, Synthesis, and Activity Evaluation of Novel Small-Molecule Inhibitors Targeting VISTA for Cancer Immunotherapy. J Med Chem 2025; 68:5222-5237. [PMID: 40014385 DOI: 10.1021/acs.jmedchem.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have been potent therapeutic options for the treatment of multiple types of cancer. However, not all patients experience benefits from ICIs, and discovering inhibitors targeting novel immune checkpoints is necessary. V-domain Ig suppressor of T-cell activation (VISTA) is a novel immune checkpoint. Blockade of the VISTA pathway enhances antitumor immunity in multiple tumor types. Herein, a series of VISTA inhibitors based on the benzimidazole scaffold were discovered. B3 showed the strongest binding affinity to the VISTA protein with a KD value of 0.452 ± 0.12 μM. In vitro, B3 could effectively activate VISTA-mediated immunosuppression and induce effective VISTA degradation in HepG2 cells. In vivo, B3 improved pharmacokinetics compared to the lead compound 4. Moreover, compound B3 significantly inhibited tumor growth in a CT26 colon cancer model. These results suggest that compound B3 is a promising VISTA small molecule inhibitor and degrader worthy of further development as an antitumor agent.
Collapse
Affiliation(s)
- Zhihao Qi
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- Department of Biomedical Engineering and Diagnostic Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Gu F, Lin B, Peng Z, Liu S, Wu Y, Luo M, Ding N, Zhan Q, Cao P, Zhou Z, Cao T. Ring Transformation of Cyclopropenes to Benzo-Fused Five-Membered Oxa- and Aza-Heterocycles via a Formal [4+1] Cyclization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407931. [PMID: 39206752 PMCID: PMC11516165 DOI: 10.1002/advs.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
In the context of the growing importance of heterocyclic compounds across various disciplines, numerous strategies for their construction have emerged. Exploiting the distinctive properties of cyclopropenes, this study introduces an innovative approach for the synthesis of benzo-fused five-membered oxa- and aza-heterocycles through a formal [4+1] cyclization and subsequent acid-catalyzed intramolecular O- to N- rearrangement. These transformations exhibit mild reaction conditions and a wide substrate scope. The applications in the late-stage modification of complex molecules and in the synthesis of a potential PD-L1 gene down-regulator, make this method highly appealing in related fields. Combined experimental mechanistic studies and DFT calculations demonstrate Rh(III)-mediated sequential C─H coupling/π-allylation/dynamically favorable O-attack route.
Collapse
Affiliation(s)
- Fengyan Gu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Binyan Lin
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Zhi‐Huan Peng
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Shijie Liu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Yuanqing Wu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Mei Luo
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Ning Ding
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Qichen Zhan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
- Jiangsu Provincial Medicinal Innovation CenterAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsu210028China
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhouZhejiang324000China
- Gaoyou Hospital of Traditional Chinese MedicineYangzhouJiangsu225600China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Tao Cao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| |
Collapse
|
5
|
Cao R, Xu T. Steven-Johnson Syndrome/Toxic Epidermal Necrolysis is Associated with PD-1/PD-L1 Inhibitors Usage: A Case Series. Br J Hosp Med (Lond) 2024; 85:1-11. [PMID: 39347662 DOI: 10.12968/hmed.2024.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Aims/Background The increasing adoption of inhibitors of programmed cell death-1 (PD-1) and its ligand, programmed death-ligand 1 (PD-L1), in the treatment of multiple cancer types in China has started to garner broader attention due to the occurrence of immune-related adverse events (irAEs), especially life-threatening skin reactions such as Steven-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). Isolated case reports have described SJS/TEN associated with PD-1/PD-L1 inhibitors usage. In this paper, we presented a series of cases of SJS/TEN following the use of PD-1/PD-L1 inhibitors in a dermatology hospital located in Zhejiang Province of China in the past several years, summarizing characteristics of these cases and providing a reference of management. Methods We retrospectively reviewed all the medical records of inpatients diagnosed with SJS/TEN in the Hangzhou Third People's Hospital from 2012 to 2024. We analyzed and compared the situation of SJS/TEN onset, types of PD-1/PD-L1 inhibitors used, score of severity, laboratory findings, and essential therapies of the patients who had received PD-1/PD-L1. Results We identified 12 SJS/TEN patients who had been treated with PD1/PD-L1 inhibitors: sintilimab had been used in six patients; tislelizumab in two cases; toripalimab, keytruda and cadonilimab each in one case; and an unknown prescription in one case. The longest duration between the first PD-1/PD-L1 inhibitor dose and the SJS/TEN diagnosis recorded was nine months whereas the shortest was 11 days. Half of the selected patients received chemotherapy at the same time. More than two types of therapies were applied to the cases, except for two cases with mild SJS. Conclusion This study unveils a potential, under-recognized cause of SJS/TEN in the cancer patients after analyzing the cases of SJS/TEN in cancer patients with prior exposure to PD-1/PD-L1 inhibitors. This paper also provides clue about the prominent features of SJS/TEN aforesaid, offering insights on the effective management measures for optimizing clinical safety.
Collapse
Affiliation(s)
- Riqu Cao
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Tianhong Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Gao J, Xie Y, Zhang J, Chen H, Zou Y, Cen S, Zhou J. A novel hydrophobic tag leads to the efficient degradation of programmed death-ligand 1. RSC Med Chem 2024; 15:3038-3047. [PMID: 39309365 PMCID: PMC11411611 DOI: 10.1039/d4md00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
The interaction of PD-L1 and PD-1 transmits the inhibitory signal to reduce the proliferation of antigen-specific T-cells in lymph nodes. The expression of PD-L1 confers a potential escaping mechanism of tumors from the host immune system. Blocking the interaction of PD-1 and PD-L1 enables tumor-reactive T cells to overcome regulatory mechanisms and induce an effective antitumor response. The hydrophobic tag tethering degrader (HyTTD) contains a hydrophobic moiety, binding to the protein of interest (POI) to mimic the misfolding state of the POI, thereby inducing the degradation of POI. In this work, using the HyTTD strategy, we selected the diphenylmethyl derivatives as the PD-L1 binding motif for PD-L1 to develop the degraders for PD-L1, and multiple hydrophobic tags were attached. As a result, two HyTTDs Z2d and Z3d efficiently decreased the protein level of PD-L1 in both NCI-H460 and HT-1080 cells with low cytotoxicity. Meanwhile, the reduction of PD-L1 protein levels by Z2d/Z3d was counteracted by MG132, which indicated that Z2d/Z3d degraded PD-L1 through the proteasome pathway. Moreover, the molecular modeling results indicated that the HyT group of Z2d or Z3d extended the surface of the protein to mimic the misfold. Importantly, our work also identified a novel HyT, which could be applied to develop the HyTTD for other target proteins.
Collapse
Affiliation(s)
- Jieke Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science Beijing China
| | - Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Huirong Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science Beijing China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
7
|
Li Z, Yu X, Yuan Z, Li L, Yin P. New horizons in the mechanisms and therapeutic strategies for PD-L1 protein degradation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189152. [PMID: 38992509 DOI: 10.1016/j.bbcan.2024.189152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Programmed death-ligand 1 (PD-L1) has become a crucial focus in cancer immunotherapy considering it is found in many different cells. Cancer cells enhance the suppressive impact of programmed death receptor 1 (PD-1) through elevating PD-L1 expression, which allows them to escape immune detection. Although there have been significant improvements, the effectiveness of anti-PD-1/PD-L1 treatment is still limited to a specific group of patients. An important advancement in cancer immunotherapy involves improving the PD-L1 protein degradation. This review thoroughly examined the processes by which PD-L1 breaks down, including the intracellular pathways of ubiquitination-proteasome and autophagy-lysosome. In addition, the analysis revealed changes that affect PD-L1 stability, such as phosphorylation and glycosylation. The significant consequences of these procedures on cancer immunotherapy and their potential role in innovative therapeutic approaches are emphasised. Our future efforts will focus on understanding new ways in which PD-L1 degradation is controlled and developing innovative treatments, such as proteolysis-targeting chimeras designed specifically to degrade PD-L1. It is crucial to have a thorough comprehension of these pathways in order to improve cancer immunotherapy strategies and hopefully improve therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
8
|
Wang S, Kong Z, Shi Y, Shao C, Wang W, Su Z, Liu J, Zhou Y, Fei X, Cheng B, Chen J, Lu Y, Xiao J. Discovery of Small and Bifunctional Molecules Targeting PD-L1/CD73 for Cancer Dual Immunotherapy. J Med Chem 2024; 67:9447-9464. [PMID: 38748913 DOI: 10.1021/acs.jmedchem.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this work, a series of bifunctional PD-L1/CD73 (cluster of differentiation 73) small-molecule inhibitors were designed and synthesized. Among them, CC-5 showed the strongest PD-L1 inhibitory effects with an IC50 of 6 nM and potent anti-CD73 activity with an IC50 of 0.773 μM. The high PD-L1/CD73 inhibitory activity of CC-5 was further confirmed by SPR assays with KD of 182 nM for human PD-L1 and 101 nM for CD73, respectively. Importantly, CC-5 significantly suppressed tumor growth in a CT26 and B16-F10 tumor model with TGI of 64.3% and 39.6%, respectively. Immunohistochemical (IHC) and flow cytometry analysis of tumor-infiltrating lymphocytes (TILs) indicated that CC-5 exerted anticancer effects via activating the tumor immune microenvironment. Collectively, CC-5 represents the first dual PD-L1/CD73 inhibitor worthy of further research as a bifunctional immunotherapeutic agent.
Collapse
Affiliation(s)
- Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou 528200, China
| | - Yaru Shi
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Wei Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhenhong Su
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jin Liu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Yingxing Zhou
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Xiaoting Fei
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Pharmacy, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yiyu Lu
- Oncology Department, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
9
|
Guo J, Yu F, Zhang K, Jiang S, Zhang X, Wang T. Beyond inhibition against the PD-1/PD-L1 pathway: development of PD-L1 inhibitors targeting internalization and degradation of PD-L1. RSC Med Chem 2024; 15:1096-1108. [PMID: 38665824 PMCID: PMC11042118 DOI: 10.1039/d3md00636k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 04/28/2024] Open
Abstract
Tumor cells hijack the programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway to suppress the immune response through overexpressing PD-L1 to interact with PD-1 of T cells. With in-depth ongoing research, tumor-intrinsic PD-L1 is found to play important roles in tumor progression without interaction with PD-1 expressed on T cells, which provides an additional important target and therapeutic approach for development of PD-L1 inhibitors. Existing monoclonal antibody (mAb) drugs against the PD-1/PD-L1 pathway generally behave by conformationally blocking the interactions of PD-1 with PD-L1 on the cell surface. Beyond general inhibition of the protein-protein interaction (PPI), inhibitors targeting PD-L1 currently focus on the functional inhibition of the interaction between PD-1/PD-L1 and degradation of tumor-intrinsic PD-L1. This perspective will clarify the evolution of PD-L1 inhibitors and provide insights into the current development of PD-L1 inhibitors, especially targeting internalization and degradation of PD-L1.
Collapse
Affiliation(s)
- Jiazheng Guo
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Fengyi Yu
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
10
|
Wang K, Zhang X, Cheng Y, Qi Z, Ye K, Zhang K, Jiang S, Liu Y, Xiao Y, Wang T. Discovery of Novel PD-L1 Inhibitors That Induce the Dimerization, Internalization, and Degradation of PD-L1 Based on the Fragment Coupling Strategy. J Med Chem 2023; 66:16807-16827. [PMID: 38109261 DOI: 10.1021/acs.jmedchem.3c01534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Tumor cells can evade immune surveillance through overexpressing programmed cell death-ligand 1 (PD-L1) to interact with programmed cell death-1 (PD-1). Besides, tumor-intrinsic PD-L1 is involved in tumor progression without interaction with PD-1, which provides more challenges for the discovery of PD-L1 inhibitors. Herein, we report the discovery of novel PD-L1 inhibitors using the fragment coupling strategy. Among them, B9 was found to inhibit the PD-1/PD-L1 interaction with the best IC50 value of 1.8 ± 0.7 nM. Beyond the blockade of the PD-1/PD-L1 axis, B9 promotes the dimerization, internalization, and degradation of PD-L1. Furthermore, B9 displayed high in vivo antitumor efficacy in the CT26 mouse model and activated the immune microenvironment and induced PD-L1 degradation of PD-L1 in the tumor. These results show that B9 is a promising lead PD-L1 inhibitor through the blockade of PD-1/PD-L1 interaction and functional inhibition of the PD-L1 signal pathway.
Collapse
Affiliation(s)
- Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Yang Z, Liu Z, Xu C, Xu J, Liu T, He H, Li L, Ren Y, Chen J. Discovery of novel resorcinol biphenyl ether-based macrocyclic small molecules as PD-1/PD-L1 inhibitors with favorable pharmacokinetics for cancer immunotherapy. Bioorg Chem 2023; 139:106740. [PMID: 37478546 DOI: 10.1016/j.bioorg.2023.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Programmed death protein 1 (PD-1)/programmed death protein ligand 1 (PD-L1) is one of the most promising immune checkpoints (ICs) in tumor immunology and has been actively pursued as a target for anticancer drug discovery. Based on our previous research in small molecule PD-1/PD-L1 modulators, we designed and synthesized a series of resorcinol biphenyl ether-bearing macrocyclic compounds and evaluated their anti-PD-1/PD-L1 activities. Among them, compound 8d exhibited the highest inhibitory activity against PD-1/PD-L1 interaction with IC50 of 259.7 nM in the homogenous time-resolved fluorescence (HTRF) assay. In addition, 8d displayed in vitro immunomodulatory effects by promoting HepG2 cell death in a HepG2/Jurkat cell co-culture model. Furthermore, 8d effectively inhibited tumor growth (TGI = 74.6% at 40 mg/kg) in a melanoma tumor model in mice without causing obvious toxicity. Moreover, 8d exhibited favorable pharmacokinetics [e.g. high stability, reasonable half-life, and good oral bioavailability (F = 21.5%)]. Finally, molecular modeling studies showed that 8d bound to PD-L1 with high affinity. These results suggest that 8d may serve as a starting point for further development of macrocyclic small molecule-based PD-1/PD-L1 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziqing Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiqi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- The Eighth Affiliated Hospital, Sun Yat sen University, Shenzhen 518033, China
| | - Yichang Ren
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
13
|
Wang T, Wang K, Zhang Y, Zhang K, Cai S, Jiang S, Xiao Y, Zhang X. Novel Benzimidazoles as Potent Small-Molecule Inhibitors and Degraders of V-Domain Ig Suppressor of T-Cell Activation (VISTA). J Med Chem 2023; 66:11881-11892. [PMID: 37594853 DOI: 10.1021/acs.jmedchem.3c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The V-domain Ig suppressor of T-cell activation (VISTA) is a promising negative immune checkpoint and plays a critical role in the regulation of the quiescence of naïve T lymphocytes. Most patients however do not experience durable disease control from current immune checkpoint inhibitors and discovery of inhibitors targeting novel immune checkpoints is necessary. Herein, we report our discovery and optimization of benzimidazoles as the bifunctional inhibitors of VISTA. Compound 1 is identified as a bifunctional inhibitor targeting VISTA, which shows good binding affinity to VISTA and induces VISTA degradation in HepG2 cells through an autophagic mechanism. Compound 1 rescues VISTA-mediated immunosuppression effectively and enhances antitumor activity of immune cells. 1 activates the antitumor immunity in vivo and suppresses tumor growth in a CT26 mouse model significantly. Our results show that compound 1 is a promising VISTA inhibitor and degrader and offers novel approach for cancer immunotherapy through VISTA degradation.
Collapse
Affiliation(s)
- Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Ding Z, Wang S, Shi Y, Fei X, Cheng B, Lu Y, Chen J. Discovery of Novel d-(+)-Biotin-Conjugated Resorcinol Dibenzyl Ether-Based PD-L1 Inhibitors for Targeted Cancer Immunotherapy. J Med Chem 2023; 66:10364-10380. [PMID: 37480153 DOI: 10.1021/acs.jmedchem.3c00479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
In this work, we rationally designed, synthesized, and evaluated a series of novel d-(+)-biotin-conjugated PD-L1 inhibitors for targeted cancer therapy. Among them, SWS1 exhibited the highest anti-PD-1/PD-L1 activity with an IC50 of 1.8 nM. In addition, SWS1 dose-dependently promoted tumor cell death in a HepG2/Jurkat cell co-culture model. Importantly, SWS1 displayed high antitumor efficacy in a B16-F10 mouse model with tumor growth inhibition of 66.1%, which was better than that of P18 (44.3%). Furthermore, SWS1 exerted antitumor effects by increasing the number of tumor-infiltrating lymphocytes and reducing the expression of PD-L1 in tumor tissues. Moreover, tissue distribution studies revealed a substantial accumulation of SWS1 in tumors (404.1 ng/mL). Lastly, the safety profiles of SWS1 were better (e.g., less immune-mediated colitis) than those of P18, indicating the advantages of biotin-enabled tumor targeting capability. Taken together, our results suggest that these novel tumor-targeted PD-L1 inhibitors are worthy of further investigation as potential anticancer agents for targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Zongbao Ding
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, P. R. China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China
| | - Yaru Shi
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China
| | - Xiaoting Fei
- School of Medicine, Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi 435003, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi 435003, China
| | - Yiyu Lu
- Oncology Department, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Shi W, Zhang Y, Hao C, Guo X, Yang Q, Du J, Hou Y, Cao G, Li J, Wang H, Fang W. The significance of PD-1/PD-L1 imbalance in ulcerative colitis. PeerJ 2023; 11:e15481. [PMID: 37273534 PMCID: PMC10239227 DOI: 10.7717/peerj.15481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Objectives To investigate the expression and significance of programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1) in the mucosal tissues and peripheral blood of patients with ulcerative colitis (UC). Methods Eighty patients with UC were recruited from January 2021 to August 2022 from the Shanxi Province People's Hospital. PD-1 and PD-L1 expression was assessed by immunohistochemistry in mucosal tissues. An enzyme-linked immunosorbent assay was used to measure soluble PD-1 and PD-L1 levels in peripheral blood serum, and the membrane-bound forms of PD-1 (mPD-1), (T-helper cell) Th1 and Th17, in peripheral blood were determined by flow cytometry. Result PD-1 expression was observed only in the monocytes of the mucosal lamina propria of UC patients, while PD-L1 was mainly located in both epithelial cells and monocytes on the cell membrane. The expression level of PD-1/PD-L1 in the monocytes and epithelial cells of mucosal lamina propria increased with disease activity (P < 0.05). The percentages of PD-1/T and PD-1/CD4+T in the peripheral blood of moderate UC patients (PD-1/T 12.83 ± 6.15% and PD-1/CD4+T 19.67 ± 9.95%) and severe UC patients (PD-1/T 14.29 ± 5.71% and PD-1/CD4+T 21.63 ± 11.44%) were higher than in mild UC patients (PD-1/T 8.17 ± 2.80% and PD-1/CD4+T 12.44 ± 4.73%; P < 0.05). There were no significant differences in PD-1/CD8+T cells between mild and severe UC patients (P > 0.05). There was a statistically significant difference in the expression level of sPD-L1 between the UC groups and healthy controls, and the expression level of sPD-L1 increased with disease severity (P < 0.05); however, there was no statistically significant difference in sPD-1 expression levels between the UC groups and healthy controls (P > 0.05). The correlation coefficients between Th1 and sPD-L1, PD-1/T, PD-1/CD4+T and PD-1/CD8+T were 0.427, 0.589, 0.486, and 0.329, respectively (P < 0.001). The correlation coefficients between Th17 and sPD-L1, PD-1/T, PD-1/CD4+T and PD-1/CD8+T were 0.323, 0.452, 0.320, and 0.250, respectively (P < 0.05). Conclusion The expression level of PD-1/PD-L1 was correlated with UC disease activity, and two forms of PD-1 and PD-L1 may be used as a potential marker for predicting UC and assessing disease progression in UC patients. PD-1/PD-L1 imbalance was a significant phenomenon of UC immune dysfunction. Future research should focus on two forms of PD-1/PD-L1 signaling molecules to better understand the pathogenesis of UC and to identify potential drug therapies.
Collapse
Affiliation(s)
- Wei Shi
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chonghua Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Guo
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Qin Yang
- Department of Pathology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Junfang Du
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yabin Hou
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Gaigai Cao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jingru Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Haijiao Wang
- Shanxi Center for Disease Control and Prevention, Taiyuan, China
| | - Wei Fang
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
16
|
Forsythiaside A prevents zymosan A-induced cell migration in neutrophil-differentiated HL-60 cells via PD-1/PD-L1 pathway. Heliyon 2023; 9:e13490. [PMID: 36865477 PMCID: PMC9970906 DOI: 10.1016/j.heliyon.2023.e13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Neutrophils, which account for more than 80% of leukocyte, play an important role in resolution of inflammation. Immune checkpoint molecules could be potential biomarkers in immunosuppression. Forsythiaside A (FTA), a main constituent of Forsythia suspensa (Thunb.) Vahl, provides a very significant anti-inflammatory activity. Here we defined the immunological mechanisms of FTA by taking programmed cell death-1 (PD-1)/programmed cell death-Ligand 1 (PD-L1) pathway into consideration. FTA could inhibited cell migration in HL-60-derived neutrophils in vitro, and this action appeared to be mediated via PD-1/PD-L1 depended JNK and p38 MAPK pathways. In vivo, FTA prevented PD-L1+ neutrophils infiltration and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and interferon-gamma (IFN-γ) after zymosan A-induced peritonitis. PD-1/PD-L1 inhibitor could abolish the suppression of FTA. The expression of inflammatory cytokines and chemokines were positively correlated with PD-L1. Molecular docking showed that FTA could bind to PD-L1. Taken together, FTA might prevent neutrophils infiltration to exert inflammation resolution through PD-1/PD-L1 pathway.
Collapse
|
17
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
18
|
Li JH, Huang LJ, Zhou HL, Shan YM, Chen FM, Lehto VP, Xu WJ, Luo LQ, Yu HJ. Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy. Acta Pharmacol Sin 2022; 43:2749-2758. [PMID: 35484402 PMCID: PMC9622913 DOI: 10.1038/s41401-022-00910-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Immunotherapy, in particular immune checkpoint blockade (ICB) therapy targeting the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, has remarkably revolutionized cancer treatment in the clinic. Anti-PD-1/PD-L1 therapy is designed to restore the antitumor response of cytotoxic T cells (CTLs) by blocking the interaction between PD-L1 on tumour cells and PD-1 on CTLs. Nevertheless, current anti-PD-1/PD-L1 therapy suffers from poor therapeutic outcomes in a large variety of solid tumours due to insufficient tumour specificity, severe cytotoxic effects, and the occurrence of immune resistance. In recent years, nanosized drug delivery systems (NDDSs), endowed with highly efficient tumour targeting and versatility for combination therapy, have paved a new avenue for cancer immunotherapy. In this review article, we summarized the recent advances in NDDSs for anti-PD-1/PD-L1 therapy. We then discussed the challenges and further provided perspectives to promote the clinical application of NDDS-based anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Jun-Hao Li
- College of Sciences, Shanghai University, Shanghai, 200444, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu-Jia Huang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui-Ling Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Ming Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Min Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70211, Kuopio, Finland
| | - Wu-Jun Xu
- Department of Applied Physics, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Li-Qiang Luo
- College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hai-Jun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:3368. [PMID: 35884428 PMCID: PMC9322126 DOI: 10.3390/cancers14143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.
Collapse
Affiliation(s)
- Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Hassiba El-Bouazzati
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE—U1286, 3 Rue du Professeur Laguesse, BP-83, F-59006 Lille, France;
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | | |
Collapse
|
20
|
Liu J, Yuan L, Ruan Y, Deng B, Yang Z, Ren Y, Li L, Liu T, Zhao H, Mai R, Chen J. Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of Interferon Genes with In Vivo Anti-Inflammatory Efficacy. J Med Chem 2022; 65:6593-6611. [PMID: 35452223 DOI: 10.1021/acs.jmedchem.1c01948] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The activation of the cyclic GMP-AMP synthase-stimulator of interferon gene (STING) pathway has been associated with the pathogenesis of many autoimmune and inflammatory disorders, and small molecules targeting STING have emerged as a new therapeutic strategy for the treatment of these diseases. While several STING inhibitors have been identified with potent anti-inflammatory effects, we would like to explore STING degraders based on the proteolysis-targeting chimera (PROTAC) technology as an alternative strategy to target the STING pathway. Thus, we designed and synthesized a series of STING protein degraders based on a small-molecule STING inhibitor (C-170) and pomalidomide (a CRBN ligand). These compounds demonstrated moderate STING-degrading activities. Among them, SP23 achieved the highest degradation potency with a DC50 of 3.2 μM. Importantly, SP23 exerted high anti-inflammatory efficacy in a cisplatin-induced acute kidney injury mouse model by modulating the STING signaling pathway. Taken together, SP23 represents the first PROTAC degrader of STING deserving further investigation as a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yong Ruan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zicao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Huiting Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Vergoten G, Bailly C. Molecular docking study of britannin binding to PD-L1 and related anticancer pseudoguaianolide sesquiterpene lactones. J Recept Signal Transduct Res 2021; 42:454-461. [PMID: 34789056 DOI: 10.1080/10799893.2021.2003816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pseudoguaianolide-type sesquiterpene lactone (SL) britannin (BRT), found in different Inula species, has been characterized as a potent anticancer agent acting via modulation of the transcription factor NFkB and the Nrf2-Keap1 signaling pathway. In addition, a BRT-induced down-regulation of the immune checkpoint PD-L1 (programmed cell death ligand 1) expressed on cancer cells has been evidenced. Here we have performed a docking analysis of the direct binding of BRT to the PD-L1 protein, both in its monomeric and dimeric state. BRT appears to form stable complexes with PD-L1, with a preference for the dimeric form, binding at the interface of the two monomers. The calculated empirical energy of interaction (ΔE) value reaches -63.1 kcal/mol for the BRT-PD-L1 dimer complex, not far from the value calculated with the reference PD-L1 ligand BMS-202 (ΔE = -73.4 kcal/mol) under identical conditions. We also studied the potential PD-L1 dimer binding of 15 pseudoguaianolide sesquiterpene lactones analogues to BRT, including helenalin, gaillardin, bigelovin, coronopilin, and others. The docking analysis predicted that the SL chamissonolide (CHM) can also form equally stable complexes with PD-L1 dimer (ΔE = -64.8 kcal/mol). Preliminary compound structure-PD-L1 binding relationships have been delineated. This computational study supports the proposed interaction of BRT with PD-L1 and provides a guidance to the design of novel PD-L1 binders incorporating a SL-like tricyclic core unit.
Collapse
Affiliation(s)
- Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, Lille, France
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), France
| |
Collapse
|
22
|
Huang X, Chen H, Dai X, Xu M, Wang K, Feng Z. Design, synthesis, and structure-activity relationship of PD-1/PD-L1 inhibitors with a benzo[d]isoxazole scaffold. Bioorg Med Chem Lett 2021; 52:128403. [PMID: 34610423 DOI: 10.1016/j.bmcl.2021.128403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Blocking the programmed cell death protein 1 (PD-1) and programmed death-ligand (PD-L1) interaction has emerged as one of the most promising treatments for cancer immunotherapy. A novel series of compounds bearing a benzo[d]isoxazole scaffold was developed as PD-1/PD-L1 inhibitors, among them, compound P20 exhibited the most potent inhibitory activity, with an IC50 value of 26.8 nM. The preliminary structure-activity relationship was also investigated. The docking analysis of compound P20 with the PD-L1 dimer complex (PDB ID: 5j89) indicated that compound P20 was bound to the PD-L1 dimer with high affinity. These results suggest that compound P20 is a promising lead compound for the development of inhibitors of the PD-1/PD-L1 interaction.
Collapse
Affiliation(s)
- Xupeng Huang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hao Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinyan Dai
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Meiqin Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ke Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhiqiang Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
23
|
Russomanno P, Assoni G, Amato J, D'Amore VM, Scaglia R, Brancaccio D, Pedrini M, Polcaro G, La Pietra V, Orlando P, Falzoni M, Cerofolini L, Giuntini S, Fragai M, Pagano B, Donati G, Novellino E, Quintavalle C, Condorelli G, Sabbatino F, Seneci P, Arosio D, Pepe S, Marinelli L. Interfering with the Tumor-Immune Interface: Making Way for Triazine-Based Small Molecules as Novel PD-L1 Inhibitors. J Med Chem 2021; 64:16020-16045. [PMID: 34670084 DOI: 10.1021/acs.jmedchem.1c01409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inhibition of the PD-1/PD-L1 axis by monoclonal antibodies has achieved remarkable success in treating a growing number of cancers. However, a novel class of small organic molecules, with BMS-202 (1) as the lead, is emerging as direct PD-L1 inhibitors. Herein, we report a series of 2,4,6-tri- and 2,4-disubstituted 1,3,5-triazines, which were synthesized and assayed for their PD-L1 binding by NMR and homogeneous time-resolved fluorescence. Among them, compound 10 demonstrated to strongly bind with the PD-L1 protein and challenged it in a co-culture of PD-L1 expressing cancer cells (PC9 and HCC827 cells) and peripheral blood mononuclear cells enhanced antitumor immune activity of the latter. Compound 10 significantly increased interferon γ release and apoptotic induction of cancer cells, with low cytotoxicity in healthy cells when compared to 1, thus paving the way for subsequent preclinical optimization and medical applications.
Collapse
Affiliation(s)
- Pasquale Russomanno
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Giulia Assoni
- Department of Cellular, Computational and Integrative Biology, (CIBIO), Università degli Studi di Trento, Via Sommarive 9, Povo I-38123, Trento, Italy.,Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Jussara Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Vincenzo Maria D'Amore
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Riccardo Scaglia
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Martina Pedrini
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Giovanna Polcaro
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Paolo Orlando
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Marianna Falzoni
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Linda Cerofolini
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Stefano Giuntini
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Marco Fragai
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Bruno Pagano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Greta Donati
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | | | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples, Italy; Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples, Italy; Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy.,Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples 80131, Italy
| | - Francesco Sabbatino
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Pierfausto Seneci
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via C. Golgi 19, Milan 20133, Italy
| | - Stefano Pepe
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| |
Collapse
|
24
|
Bailly C, Thuru X, Quesnel B. Soluble Programmed Death Ligand-1 (sPD-L1): A Pool of Circulating Proteins Implicated in Health and Diseases. Cancers (Basel) 2021; 13:3034. [PMID: 34204509 PMCID: PMC8233757 DOI: 10.3390/cancers13123034] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Upon T-cell receptor stimulation, the Programmed cell Death-1 receptor (PD-1) expressed on T-cells can interact with its ligand PD-L1 expressed at the surface of cancer cells or antigen-presenting cells. Monoclonal antibodies targeting PD-1 or PD-L1 are routinely used for the treatment of cancers, but their clinical efficacy varies largely across the variety of tumor types. A part of the variability is linked to the existence of several forms of PD-L1, either expressed on the plasma membrane (mPD-L1), at the surface of secreted cellular exosomes (exoPD-L1), in cell nuclei (nPD-L1), or as a circulating, soluble protein (sPD-L1). Here, we have reviewed the different origins and roles of sPD-L1 in humans to highlight the biochemical and functional heterogeneity of the soluble protein. sPD-L1 isoforms can be generated essentially by two non-exclusive processes: (i) proteolysis of m/exoPD-L1 by metalloproteases, such as metalloproteinases (MMP) and A disintegrin and metalloproteases (ADAM), which are capable of shedding membrane PD-L1 to release an active soluble form, and (ii) the alternative splicing of PD-L1 pre-mRNA, leading in some cases to the release of sPD-L1 protein isoforms lacking the transmembrane domain. The expression and secretion of sPD-L1 have been observed in a large variety of pathologies, well beyond cancer, notably in different pulmonary diseases, chronic inflammatory and autoimmune disorders, and viral diseases. The expression and role of sPD-L1 during pregnancy are also evoked. The structural heterogeneity of sPD-L1 proteins, and associated functional/cellular plurality, should be kept in mind when considering sPD-L1 as a biomarker or as a drug target. The membrane, exosomal and soluble forms of PD-L1 are all integral parts of the highly dynamic PD-1/PD-L1 signaling pathway, essential for immune-tolerance or immune-escape.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
25
|
OuYang Y, Gao J, Zhao L, Lu J, Zhong H, Tang H, Jin S, Yue L, Li Y, Guo W, Xu Q, Lai Y. Design, Synthesis, and Evaluation of o-(Biphenyl-3-ylmethoxy)nitrophenyl Derivatives as PD-1/PD-L1 Inhibitors with Potent Anticancer Efficacy In Vivo. J Med Chem 2021; 64:7646-7666. [PMID: 34037385 DOI: 10.1021/acs.jmedchem.1c00370] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two series of novel o-(biphenyl-3-ylmethoxy)nitrophenyl compounds (A1-31 and B1-17) were designed as programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) inhibitors. All compounds showed significant inhibitory activity with IC50 values ranging from 2.7 to 87.4 nM except compound A17, and compound B2 displayed the best activity. Further experiments showed that B2 bound to the PD-L1 protein without obvious toxicity in Lewis lung carcinoma (LLC) cells. Furthermore, B2 significantly promoted interferon-gamma secretion in a dose-dependent manner in vitro and in vivo. Especially, B2 exhibited potent in vivo anticancer efficacy in an LLC-bearing allograft mouse model at a low dose of 5 mg/kg, which was more active than BMS-1018 (tumor growth inhibition rate: 48.5% vs 17.8%). A panel of immunohistochemistry and flow cytometry assays demonstrated that B2 effectively counteracted PD-1-induced immunosuppression in the tumor microenvironment, thereby triggering antitumor immunity. These results indicate that B2 is a promising PD-1/PD-L1 inhibitor worthy of further development.
Collapse
Affiliation(s)
- Yiqiang OuYang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Lei Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| | - Junfeng Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Shuanglong Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu Yue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuezhen Li
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
26
|
Chen H, Wang K, Yang Y, Huang X, Dai X, Feng Z. Design, synthesis, and structure-activity relationship of programmed cell death-1/programmed cell death-ligand 1 interaction inhibitors bearing a benzo[d]isothiazole scaffold. Eur J Med Chem 2021; 217:113377. [PMID: 33770574 DOI: 10.1016/j.ejmech.2021.113377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Blockade of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy. A novel series of compounds bearing a benzo[d]isothiazole scaffold were developed, among which CH20 exhibited promising activity, with an IC50 value of 8.5 nM. Further cell-based PD-1/PD-L1 blockade bioassays indicated that CH20 can inhibit the PD-1/PD-L1 interaction at the cellular level, with an EC50 value of 5.6 μM CH20 could have better potency in restoring the activity of effector cells, as the maximal luminescence values (RLUmax) of CH20 were equivalent to those of PD-L1 mAbs. The docking analysis of CH20 with the PD-L1 dimer complex (PDB ID: 6R3K) confirmed that CH20 is a promising lead compound for the development of inhibitors of the PD-1/PD-L1 interaction. The preliminary structure-activity relationship was investigated in this paper, with the aim of future drug development.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Ke Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yang Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xupeng Huang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyan Dai
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhiqiang Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|