1
|
Pires GS, Tolomeu HV, Rodrigues DA, Lima LM, Fraga CAM, Pinheiro PDSM. Drug Discovery for Histone Deacetylase Inhibition: Past, Present and Future of Zinc-Binding Groups. Pharmaceuticals (Basel) 2025; 18:577. [PMID: 40284012 PMCID: PMC12030391 DOI: 10.3390/ph18040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Histone deacetylases (HDACs) are key regulators of gene expression, influencing chromatin remodeling and playing a crucial role in various physiological and pathological processes. Aberrant HDAC activity has been linked to cancer, neurodegenerative disorders, and inflammatory diseases, making these enzymes attractive therapeutic targets. HDAC inhibitors (HDACis) have gained significant attention, particularly those containing zinc-binding groups (ZBGs), which interact directly with the catalytic zinc ion in the enzyme's active site. The structural diversity of ZBGs profoundly impacts the potency, selectivity, and pharmacokinetics of HDACis. While hydroxamic acids remain the most widely used ZBGs, their limitations, such as metabolic instability and off-target effects, have driven the development of alternative scaffolds, including ortho-aminoanilides, mercaptoacetamides, alkylhydrazides, oxadiazoles, and more. This review explores the structural and mechanistic aspects of different ZBGs, their interactions with HDAC isoforms, and their influence on inhibitor selectivity. Advances in structure-based drug design have allowed the fine-tuning of HDACi pharmacophores, leading to more selective and efficacious compounds with improved drug-like properties. Understanding the nuances of ZBG interactions is essential for the rational design of next-generation HDACis, with potential applications in oncology, neuroprotection, and immunotherapy.
Collapse
Affiliation(s)
- Gustavo Salgado Pires
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
| | - Daniel Alencar Rodrigues
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland, 1st Floor Ardilaun House Block B, 111 St Stephen’s Green, Dublin 2, Ireland;
| | - Lídia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Lu Z, Jiang Z, Huang X, Chen Y, Feng L, Mai J, Lao L, Li L, Chen WH, Hu J. Anti-Alzheimer effects of an HDAC6 inhibitor, WY118, alone and in combination of lithium chloride: Synergistic suppression of ferroptosis via the modulation of tau phosphorylation and MAPK signaling. Eur J Pharmacol 2025; 997:177605. [PMID: 40204225 DOI: 10.1016/j.ejphar.2025.177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, and current therapies mainly offer symptomatic relief. Given that the pathophysiology of AD is multifaceted, a multimodal therapeutic strategy targeting multiple molecular pathways implicated in AD-related pathogenesis represents a pragmatic avenue for impeding the advancement of AD. In this study, we evaluated the anti-Alzheimer effects of an HDAC6 inhibitor WY118, both alone and in combination with lithium chloride (LiCl), a GSK-3β inhibitor, to synergistically suppress ferroptosis. The combination of compound WY118 and LiCl demonstrated significant synergistic effects in both cellular models of AD induced by glutamate and streptozotocin. The findings suggest that compound WY118, in particular in combination with LiCl, exhibits potent anti-Alzheimer effects by synergistically suppressing ferroptosis. Studies on the mechanism of action indicated that the combination treatment significantly reduced tau phosphorylation and inhibited p38 MAPK signaling. This combination therapy holds promise for developing more effective treatments for AD.
Collapse
Affiliation(s)
- Zhonghui Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Zixing Jiang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Xiaoling Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Yu Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Luanqi Feng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Jielin Mai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Linghui Lao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
3
|
Chen JT, Qiu H, Ran XX, Cao W, Chen X, Gao JM, Cao CY. The diphenylpyrimidine derivative as a novel HDAC6 inhibitor alleviates atopic dermatitis through anti-inflammatory effects facilitated via TLR4/MAPK, STAT3 and NF-κB pathways. Bioorg Chem 2025; 160:108451. [PMID: 40250253 DOI: 10.1016/j.bioorg.2025.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Atopic dermatitis (AD) is a systemic immune disease that primarily affects infants and children, characterized by recurring severe pruritus and chronic eczema. Studies have demonstrated that histone deacetylase 6 inhibitors (HDAC6is) can exhibit anti-inflammatory activities by regulating the acetylation level of target proteins. Building on these findings, our research focused on a synthetic diphenylpyrimidine derivative, specifically 15b, which we identified as a potent HDAC6i and an effective anti-inflammatory agent. This designation was determined by its safety profile, HDAC6 inhibitory activity, selectivity, and its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In 2,4-dinitrochlorobenzene (DNCB)-induced AD mice, daily intraperitoneal injections of 15b significantly alleviated symptoms such as skin edema, dryness, crusting, and peeling, and reduced the frequency of scratching. Moreover, 15b mitigated ear swelling, addressed the increase in epidermal thickness, and reduced mast cell infiltration. Further mechanistic studies revealed that 15b selectively inhibited HDAC6, enhanced the acetylation of α-tubulin and heat shock protein 90 (HSP90) in RAW264.7 cells and BALB/c mice back skin tissue, and attenuated the activation of TLR4/MAPK, STAT3, NF-κB pathways. Consequently, both inflammatory cytokines (IL-4 and IFN-γ) and proteins (iNOS and COX-2) were dose-dependently decreased. These findings suggest that the HDAC6 inhibitor 15b can serve as a potential anti-inflammatory agent for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ting Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Qiu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin-Xin Ran
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China; Northwest A&F University ShenZhen Research Institute, ShenZhen 518000, Guangdong, China.
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Yue K, Sun S, Yin Z, Liu E, Jia G, Jiang Y, Duan Y, Chen Y, Li X. Development of Hydrazide-Based HDAC6 Selective Inhibitors for Treating NLRP3 Inflammasome-Related Diseases. J Med Chem 2025. [PMID: 40193276 DOI: 10.1021/acs.jmedchem.4c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previously, we found that hydrazide can serve as zinc binding groups for selective HDAC6 inhibitors and identified the first hydrazide-based HDAC6 inhibitor, 35m, which exhibited modest isoform selectivity. This study aimed to improve the HDAC6 selectivity of 35m, thereby reducing its side effects. Extensive structure-activity relationship studies revealed that the introduction of fluorine atoms at the 2 and 5 positions of the linker phenyl ring in compound 35m significantly enhanced its HDAC6 selectivity while maintaining its potency. The representative compound 9m demonstrated an IC50 of 0.021 μM against HDAC6, exhibiting at least 335-fold selectivity over other isoforms, along with favorable pharmacokinetic properties and improved safety profiles. Compound 9m inhibits the activation of NLRP3 inflammasome and significantly alleviates symptoms in multiple NLRP3 inflammasome-related disease models, including acute peritoneal, inflammatory bowel disease, and psoriasis. This study enriches the design strategies for selective HDAC6 inhibitors and provides a lead compound for NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Enqiang Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yuxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
5
|
Morales-Herrejón G, García-Vázquez JB, Fernández-Pomares C, Bakalara N, Correa-Basurto J, Mendoza-Figueroa HL. Computationally Guided Design, Synthesis, and Evaluation of Novel Non-Hydroxamic Histone Deacetylase Inhibitors, Based on N-Trifluoroacetamide as a Zinc-Binding Group, Against Breast Cancer. Pharmaceuticals (Basel) 2025; 18:351. [PMID: 40143128 PMCID: PMC11944851 DOI: 10.3390/ph18030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Histone deacetylases (HDACs) are enzymes that deacetylate histone proteins, impacting the transcriptional repression and activation of cancer-associated genes such as P53 and Ras. The overexpression of HDACs in breast cancer (BC) underscores their significance as therapeutic targets for modulating gene expression through epigenetic regulation. Methods: In this study, a novel series of SAHA (suberoylanilide hydroxamic acid) analogs were designed using an in silico ligand-based strategy. These analogs were then synthesized and evaluated for their HDAC-inhibitory capacity as well as their antiproliferative capacity on breast cancer cells. These compounds retained an aliphatic LINKER, mimicking the natural substrate acetyl-lysine, while differing from the hydroxamic fragment present in SAHA. Results: The synthesized compounds exhibited HDAC inhibitory activity, suggesting potential for binding to these pharmacological targets. Compounds 5b, 6a, and 6b were identified as promising candidates in the evaluation on breast cancer cell lines MCF-7 and MDA-MB-231 at 72 h. Specifically, compound 6b, which contains an N-trifluoroacetyl group as a zinc-binding group (ZBG), demonstrated an IC50 of 76.7 µM in the MDA-MB-231 cell line and 45.7 µM in the MCF-7 cell line. In the non-tumorigenic cell line, the compound exhibited an IC50 of 154.6 µM. Conversely, SAHA exhibited an almost negligible safety margin with regard to its cytotoxic activity when compared to breast cancer cells and healthy cells (MCF-10A). This observation underscores the elevated toxicity exhibited by hydroxamic acid-derived molecules. Conclusions: The bioisosteric modification of ZBG by N-trifluoroacetyl in 6a and 6b demonstrated favorable cytotoxic activity, exhibiting a higher safety margin. This study underscores the challenge of identifying novel ZBGs to replace hydroxamic acid in the development of HDAC inhibitors, with the objective of enhancing their physicochemical and toxicological profile for utilization in BC treatment.
Collapse
Affiliation(s)
- Gerardo Morales-Herrejón
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
- Investigadoras e Investigadores por México CONAHCyT-Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Cynthia Fernández-Pomares
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Norbert Bakalara
- University Bordeaux, CNRS, Bordeaux INP-ENSTBB, CBMN, UMR 5248, F-33600 Pessac, France;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| |
Collapse
|
6
|
Tran C, Hamze A. Recent Advancements in the Development of HDAC/Tubulin Dual-Targeting Inhibitors. Pharmaceuticals (Basel) 2025; 18:341. [PMID: 40143119 PMCID: PMC11945613 DOI: 10.3390/ph18030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Histone deacetylases (HDACs) have become one of the main targets in cancer therapy due to their involvement in various biological processes, including gene regulation, cell proliferation, and differentiation. Microtubules, as key elements of the cell cytoskeleton, also represent important therapeutic targets in anticancer drugs research. These proteins are involved in diverse cellular functions, especially mitosis, cell signaling, and intracellular trafficking. With the emergence of multi-target therapy during the last decades, the combination of HDAC and tubulin inhibitors has been envisioned as a practical approach for optimizing the therapeutic efficacy of antitumor molecules. HDAC/tubulin dual-targeting inhibitors offer the advantages of the synergistic action of both compounds, along with a significant decrease in their respective toxicities and drug resistance. This review will detail the major recent advancements in the development of HDAC/tubulin dual inhibitors over the last decade and their impact on anticancer drugs discovery.
Collapse
Affiliation(s)
- Christine Tran
- BioCIS, CNRS (Centre National de Recherche Scientifique), Université Paris-Saclay, 91400 Orsay, France
| | - Abdallah Hamze
- BioCIS, CNRS (Centre National de Recherche Scientifique), Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
7
|
Zhang J, Ren X, Song Y, Yu B. JBI-802: the first orally available LSD1/HDAC6 dual inhibitor to enter clinical trials. Expert Opin Ther Pat 2025:1-9. [PMID: 39960216 DOI: 10.1080/13543776.2025.2468792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION Lysine-specific demethylase 1 (LSD1) and histone deacetylase 6 (HDAC6) are key epigenetic regulators involved in histone demethylation and deacetylation processes that impact chromatin structure and gene expression. JBI-802 marks a major advancement as the first novel, orally available LSD1/HDAC6 dual inhibitor currently in clinical trials. AREAS COVERED This review provides a comprehensive overview of the discovery and development of JBI-802, detailing its structure-activity relationship (SARs), chemical synthesis, biological activity, and clinical progress. Other dual LSD1/HDAC6 inhibitors and the challenges are briefly discussed, underscoring the therapeutic potential of dual inhibition in disease treatment. The literature search is performed using SciFinder, Google patent, ClinicalTrials databases, and PubMed. EXPERT OPINION The dual LSD1/HDAC6 inhibitor JBI-802 demonstrates robust anti-proliferative activity, significant antitumor effects in multiple hematologic malignancies, and superior efficacy in combination with checkpoint inhibitors in the CT-26 syngeneic mouse model. JBI-802 is currently undergoing phase I/II clinical trials in patients with advanced solid tumors, myeloproliferative neoplasms (MPN), and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) with thrombocytosis. However, the potential on-target toxicity, off-target interactions and selectivity concerns deservee more attention.
Collapse
Affiliation(s)
- Jingya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangli Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Pham KY, Khanal S, Bohara G, Rimal N, Song SH, Nguyen TTK, Hong IS, Cho J, Kang JS, Lee S, Choi DY, Yook S. HDAC6 inhibitor-loaded brain-targeted nanocarrier-mediated neuroprotection in methamphetamine-driven Parkinson's disease. Redox Biol 2025; 79:103457. [PMID: 39700694 PMCID: PMC11722933 DOI: 10.1016/j.redox.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The dynamic equilibrium between acetylation and deacetylation is vital for cellular homeostasis. Parkinson's disease (PD), a neurodegenerative disorder marked by α-synuclein (α-syn) accumulation and dopaminergic neuron loss in the substantia nigra, is associated with a disruption of this balance. Therefore, correcting this imbalance with histone deacetylase (HDAC) inhibitors represents a promising treatment strategy for PD. CAY10603 (CAY) is a potent and selective HDAC6 inhibitor. However, because of its poor water solubility and short biological half-life, it faces clinical limitations. Herein, we engineered lactoferrin-decorated CAY-loaded poly(lactic-co-glycolic acid) nanoparticles (denoted as PLGA@CAY@Lf NPs) to effectively counter methamphetamine (Meth)-induced PD. PLGA@CAY@Lf NPs showed enhanced blood-brain barrier crossing and significant brain accumulation. Notably, CAY released from PLGA@CAY@Lf NPs restored the disrupted acetylation balance in PD, resulting in neuroprotection by reversing mitochondrial dysfunction, suppressing reactive oxygen species, and inhibiting α-syn accumulation. Additionally, PLGA@CAY@Lf NPs treatment normalized dopamine and tyrosine hydroxylase levels, reduced neuroinflammation, and improved behavioral impairments. These findings underscore the potential of PLGA@CAY@Lf NPs in treating Meth-induced PD and suggest that an innovative HDAC6-inhibitor-based strategy can be used to treat PD.
Collapse
Affiliation(s)
- Khang-Yen Pham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Nikesh Rimal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Thoa Thi Kim Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
9
|
Deng M, Tan X, Peng X, Zheng W, Fu R, Tao S. HDAC6 promotes inflammation in lupus nephritis mice by regulating transcription factors MAFF and KLF5 in renal fibrosis. Ren Fail 2024; 46:2415517. [PMID: 39412062 PMCID: PMC11485742 DOI: 10.1080/0886022x.2024.2415517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
AIM This study explored the effect and mechanism of MAFF and HDAC6 on renal fibrosis and inflammation in lupus nephritis (LN). METHODS IL-33 treated renal epithelial cells and MRL/lpr mice were respectively used for in vitro and in vivo experiments. The expressions of HDAC6, MAFF, and KLF5 were measured in cells and renal tissues. Before and after cell transfection, the morphological changes in renal tissues were observed using Hematoxylin and eosin (H&E) and Masson staining. The proteinuria, serum creatinine (SCr), blood urea nitrogen (BUN), and double-stranded DNA (dsDNA) levels were detected by biochemical analysis. The expressions of fibrosis and inflammation related proteins (including α-SMA, Vimentin, IL-1β, IL-6, and TNF-α), p65, and iNOS were also detected. The relationship among MAFF, HDAC6, and KLF5 was determined by chromatin immunoprecipitation and dual luciferase reporter gene assay. RESULTS Renal tissues and cell models had elevated expressions of HDAC6 and KLF5, and decreased MAFF expression. HDAC6 suppression or MAFF overexpression led to suppression of proteinuria, SCr, BUN, and dsDNA levels, as well as attenuation of inflammatory infiltration and collagen deposition. HDAC6 can suppress MAFF expression via deacetylation to abolish its suppression of KLF5 expression, thus increasing KLF5 expression. In vivo and in vitro experiments showed the suppressive effect of HDAC6 suppression on renal fibrosis and inflammation can be abolished by KLF5 overexpression. CONCLUSION HDAC6 suppresses MAFF expression via deacetylation to elevate KLF5 expression, which consequently enhances fibrosis and inflammatory response in LN.
Collapse
Affiliation(s)
- Meihui Deng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiao Tan
- Department of Hematology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiaojie Peng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Weimin Zheng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Rui Fu
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Shanshan Tao
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
10
|
Shamsi A, Shahwan M, Zuberi A, Altwaijry N. Identification of Potential Inhibitors of Histone Deacetylase 6 Through Virtual Screening and Molecular Dynamics Simulation Approach: Implications in Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1536. [PMID: 39598445 PMCID: PMC11597257 DOI: 10.3390/ph17111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Histone deacetylase 6 (HDAC6) plays a crucial role in neurological, inflammatory, and other diseases; thus, it has emerged as an important target for therapeutic intervention. To date, there are no FDA-approved HDAC6-targeting drugs, and most pipeline candidates suffer from poor target engagement, inadequate brain penetration, and low tolerability. There are a few HDAC6 clinical candidates for the treatment of mostly non-CNS cancers as their pharmacokinetic liabilities exclude them from targeting HDAC6-implicated neurological diseases, urging development to address these challenges. They also demonstrate off-target toxicity due to limited selectivity, leading to adverse effects in patients. Selective inhibitors have thus been the focus of development over the past decade, though no selective and potent HDAC6 inhibitor has yet been approved. METHODS This study involved an integrated virtual screening against HDAC6 using the DrugBank database to identify repurposed drugs capable of inhibiting HDAC6 activity. The primary assessment involved the determination of the ability of molecules to bind with HDAC6. Subsequently, interaction analyses and 500 ns molecular dynamics (MD) simulations followed by essential dynamics were carried out to study the conformational flexibility and stability of HDAC6 in the presence of the screened molecules, i.e., penfluridol and pimozide. RESULTS The virtual screening results pinpointed penfluridol and pimozide as potential repurposed drugs against HDAC6 based on their binding efficiency and appropriate drug profiles. The docking results indicate that penfluridol and pimozide share the same binding site as the reference inhibitor with HDAC6. The MD simulation results showed that stable protein-ligand complexes of penfluridol and pimozide with HDAC6 were formed. Additionally, MMPBSA analysis revealed favorable binding free energies for all HDAC6-ligand complexes, confirming the stability of their interactions. CONCLUSIONS The study implies that both penfluridol and pimozide have strong and favorable binding with HDAC6, which supports the idea of repositioning these drugs for the management of neurodegenerative disorders. However, further in-depth studies are needed to explore their efficacy and safety in biological systems.
Collapse
Affiliation(s)
- Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh 14511, Saudi Arabia;
| |
Collapse
|
11
|
Scheuerer S, Motlova L, Schäker-Hübner L, Sellmer A, Feller F, Ertl FJ, Koch P, Hansen FK, Barinka C, Mahboobi S. Biological and structural investigation of tetrahydro-β-carboline-based selective HDAC6 inhibitors with improved stability. Eur J Med Chem 2024; 276:116676. [PMID: 39067437 DOI: 10.1016/j.ejmech.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.
Collapse
Affiliation(s)
- Simon Scheuerer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Lucia Motlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Felix Feller
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
12
|
Zhang H, Shen Q, Hu Z, Wu PQ, Chen Y, Zhao JX, Yue JM. Design, Synthesis, and Biological Evaluation of HDAC Inhibitors Containing Natural Product-Inspired N-Linked 2-Acetylpyrrole Cap. Molecules 2024; 29:4653. [PMID: 39407581 PMCID: PMC11477621 DOI: 10.3390/molecules29194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 μM, which was better than chidamide (IC50 = 10.23 ± 1.02 μM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate.
Collapse
Affiliation(s)
- Han Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
| | - Zhu Hu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| |
Collapse
|
13
|
Raucci A, Castiello C, Mai A, Zwergel C, Valente S. Heterocycles-Containing HDAC Inhibitors Active in Cancer: An Overview of the Last Fifteen Years. ChemMedChem 2024; 19:e202400194. [PMID: 38726979 DOI: 10.1002/cmdc.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Indexed: 08/30/2024]
Abstract
Cancer is one of the primary causes of mortality worldwide. Despite nowadays are numerous therapeutic treatments to fight tumor progression, it is still challenging to completely overcome it. It is known that Histone Deacetylases (HDACs), epigenetic enzymes that remove acetyl groups from lysines on histone's tails, are overexpressed in various types of cancer, and their inhibition represents a valid therapeutic strategy. To date, some HDAC inhibitors have achieved FDA approval. Nevertheless, several other potential drug candidates have been developed. This review aims primarily to be comprehensive of the studies done so far regarding HDAC inhibitors bearing heterocyclic rings since their therapeutic potential is well known and has gained increasing interest in recent years. Hence, inserting heterocyclic moieties in the HDAC-inhibiting scaffold can be a valuable strategy to provide potent and/or selective compounds. Here, in addition to summarizing the properties of novel heterocyclic HDAC inhibiting compounds, we also provide ideas for developing new, more potent, and selective compounds for treating cancer.
Collapse
Affiliation(s)
- Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carola Castiello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
14
|
Peng J, Liu H, Liu Y, Liu J, Zhao Q, Liu W, Niu H, Xue H, Sun J, Wu J. HDAC6 mediates tumorigenesis during mitosis and the development of targeted deactivating agents. Bioorg Chem 2024; 153:107818. [PMID: 39288633 DOI: 10.1016/j.bioorg.2024.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown. Herein, we review and summarize HDAC6-associated proteins that have been implicated in important roles in mitosis. We also discuss the development of medicinal agents targeting HDAC6.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan 265400, Shandong Province, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
15
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
16
|
van Eyll J, Prior R, Celanire S, Van Den Bosch L, Rombouts F. Therapeutic indications for HDAC6 inhibitors in the peripheral and central nervous disorders. Expert Opin Ther Targets 2024; 28:719-737. [PMID: 39305025 DOI: 10.1080/14728222.2024.2404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.
Collapse
Affiliation(s)
| | | | - Sylvain Celanire
- Augustine Therapeutics, Research and Development, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | | |
Collapse
|
17
|
Carreiras MDC, Marco-Contelles J. Hydrazides as Inhibitors of Histone Deacetylases. J Med Chem 2024; 67:13512-13533. [PMID: 39092855 DOI: 10.1021/acs.jmedchem.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In this Perspective, we have brought together available biological evidence on hydrazides as histone deacetylase inhibitors (HDACis) and as a distinct type of Zn-binding group (ZBG) to be reviewed for the first time in the literature. N-Alkyl hydrazides have transformed the field, providing innovative and practical chemical tools for selective and effective inhibition of specific histone deacetylase (HDAC) enzymes, in addition to the usual hydroxamic acid and o-aminoanilide ZBG-bearing HDACis. This has enabled efficient targeting of neurodegenerative diseases such as Alzheimer's disease, cancer, cardiovascular diseases, and protozoal pathologies.
Collapse
Affiliation(s)
- Maria do Carmo Carreiras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
18
|
Zhao C, Zhang J, Zhou H, Setroikromo R, Poelarends GJ, Dekker FJ. Exploration of Hydrazide-Based HDAC8 PROTACs for the Treatment of Hematological Malignancies and Solid Tumors. J Med Chem 2024; 67:14016-14039. [PMID: 39089850 PMCID: PMC11345830 DOI: 10.1021/acs.jmedchem.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
HDAC8 can mediate signals by using its enzymatic or nonenzymatic functions, which are expected to be critical for various types of cancer. Herein, we employed proteolysis targeting chimera (PROTAC) technology to target the enzymatic as well as the nonenzymatic functions of HDAC8. A potent and selective HDAC8 PROTAC Z16 (CZH-726) with low nanomolar DC50 values in various cell lines was identified. Interestingly, Z16 induced structural maintenance of chromosomes protein 3 (SMC3) hyperacetylation at low concentrations and histone hyperacetylation at high concentrations, which can be explained by HDAC8 degradation and off-target HDAC inhibition, respectively. Notably, Z16 potently inhibited proliferation of various cancer cell lines and the antiproliferative mechanisms proved to be cell-type-dependent, which, to a large extent, is due to off-target HDAC inhibition. In conclusion, we report a hydrazide-based HDAC8 PROTAC Z16, which can be used as a probe to investigate the biological functions of HDAC8.
Collapse
Affiliation(s)
| | | | - Hangyu Zhou
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
19
|
Yang FF, Liu JJ, Xu XL, Hu T, Liu JQ, He ZX, Zhao GY, Wei B, Ma LY. Discovery of Novel Imidazo[1,2- a]pyridine-Based HDAC6 Inhibitors as an Anticarcinogen with a Cardioprotective Effect. J Med Chem 2024; 67:14345-14369. [PMID: 39102466 DOI: 10.1021/acs.jmedchem.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cardiotoxicity associated with chemotherapy has gradually become the major cause of death in cancer patients. The development of bifunctional drugs with both cardioprotective and antitumor effects has become the future direction. HDAC6 plays important roles in the progression, treatment, and prognosis of cancer and cardiovascular diseases, but bifunctional inhibitors have not been reported. Herein, structure-activity relationship studies driven by pharmacophore-based remodification and fragment-based design were performed to yield highly potent HDAC6 inhibitor I-c4 containing imidazo[1,2-a]pyridine. Importantly, I-c4 effectively suppressed the growth of MGC-803 xenografts in vitro and in vivo by inhibiting the deacetylation pathway without causing myocardial damage after long-term administration. Meanwhile, I-c4 could mitigate severe myocardial damage against H2O2 or myocardial ischemia/reperfusion in vitro and in vivo. Further studies revealed that the cardioprotective effect of I-c4 was associated with reduction of inflammatory cytokines. Taken together, I-c4 may represent a novel lead compound for further development of an anticarcinogen with a cardioprotective effect.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Jing-Jing Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhang-Xu He
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Guang-Yuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- China Meheco Topfond Pharmaceutical Co.; Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian 463000, China
| |
Collapse
|
20
|
Li X, Wang C, Chai X, Liu X, Qiao K, Fu Y, Jin Y, Jia Q, Zhu F, Zhang Y. Discovery of Potent Selective HDAC6 Inhibitors with 5-Phenyl-1 H-indole Fragment: Virtual Screening, Rational Design, and Biological Evaluation. J Chem Inf Model 2024; 64:6147-6161. [PMID: 39042494 DOI: 10.1021/acs.jcim.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Among the HDACs family, histone deacetylase 6 (HDAC6) has attracted extensive attention due to its unique structure and biological functions. Numerous studies have shown that compared with broad-spectrum HDACs inhibitors, selective HDAC6 inhibitors exert ideal efficacy in tumor treatment with insignificant toxic and side effects, demonstrating promising clinical application prospect. Herein, we carried out rational drug design by integrating a deep learning model, molecular docking, and molecular dynamics simulation technology to construct a virtual screening process. The designed derivatives with 5-phenyl-1H-indole fragment as Cap showed desirable cytotoxicity to the various tumor cell lines, all of which were within 15 μM (ranging from 0.35 to 14.87 μM), among which compound 5i had the best antiproliferative activities against HL-60 (IC50 = 0.35 ± 0.07 μM) and arrested HL-60 cells in the G0/G1 phase. In addition, 5i exhibited better isotype selective inhibitory activities due to the potent potency against HDAC6 (IC50 = 5.16 ± 0.25 nM) and the reduced inhibitory activities against HDAC1 (selective index ≈ 124), which was further verified by immunoblotting results. Moreover, the representative binding conformation of 5i on HDAC6 was revealed and the key residues contributing 5i's binding were also identified via decomposition free-energy analysis. The discovery of lead compound 5i also indicates that virtual screening is still a beneficial tool in drug discovery and can provide more molecular skeletons with research potential for drug design, which is worthy of widespread application.
Collapse
Affiliation(s)
- Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengzhao Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Kening Qiao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yan Fu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yanzhao Jin
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd, Shijiazhuang 050024, PR China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| |
Collapse
|
21
|
Moraes JR, Barrinha A, Gonçalves de Lima LS, Vidal JC, Costa Catta-Preta CM, de Souza W, Zuma AA, Motta MCM. Endosymbiosis in trypanosomatids: The bacterium division depends on microtubule dynamism. Exp Cell Res 2024; 440:114126. [PMID: 38857838 DOI: 10.1016/j.yexcr.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.
Collapse
Affiliation(s)
- Júlia Ribeiro Moraes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Azuil Barrinha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Luan Santana Gonçalves de Lima
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Juliana Cunha Vidal
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil.
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil.
| |
Collapse
|
22
|
Wu Y, Li B, Yu X, Liu Y, Chui R, Sun K, Geng D, Ma L. Histone deacetylase 6 as a novel promising target to treat cardiovascular disease. CANCER INNOVATION 2024; 3:e114. [PMID: 38947757 PMCID: PMC11212282 DOI: 10.1002/cai2.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 07/02/2024]
Abstract
Histone deacetylase 6 (HDAC6) belongs to a class of epigenetic targets that have been found to be a key protein in the association between tumors and cardiovascular disease. Recent studies have focused on the crucial role of HDAC6 in regulating cardiovascular diseases such as atherosclerosis, myocardial infarction, myocardial hypertrophy, myocardial fibrosis, hypertension, pulmonary hypertension, and arrhythmia. Here, we review the association between HDAC6 and cardiovascular disease, the research progress of HDAC6 inhibitors in the treatment of cardiovascular disease, and discuss the feasibility of combining HDAC6 inhibitors with other therapeutic agents to treat cardiovascular disease.
Collapse
Affiliation(s)
- Ya‐Xi Wu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Bing‐Qian Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Xiao‐Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Yu‐Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Rui‐Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Kai Sun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Dian‐Guang Geng
- Key Laboratory of Cardio‐Cerebrovascular Drugs'China Meheco Topfond Pharmaceutical Co.ZhumadianHenanChina
| | - Li‐Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardio‐Cerebrovascular Drugs'China Meheco Topfond Pharmaceutical Co.ZhumadianHenanChina
| |
Collapse
|
23
|
Banerjee S, Jana S, Jha T, Ghosh B, Adhikari N. An assessment of crucial structural contributors of HDAC6 inhibitors through fragment-based non-linear pattern recognition and molecular dynamics simulation approaches. Comput Biol Chem 2024; 110:108051. [PMID: 38520883 DOI: 10.1016/j.compbiolchem.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sandeep Jana
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
24
|
Wen W, Hu J, Wang C, Yang R, Zhang Y, Huang B, Qiao T, Wang J, Chen X. Re-exploration of tetrahydro-β-carboline scaffold: Discovery of selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting and neuroprotective activities. Bioorg Med Chem Lett 2024; 102:129670. [PMID: 38387692 DOI: 10.1016/j.bmcl.2024.129670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-β-carboline (THβC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.
Collapse
Affiliation(s)
- Wen Wen
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China.
| | - Chenxi Wang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Rui Yang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Yabo Zhang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Baibei Huang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Tingting Qiao
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Jiayun Wang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
25
|
Li Z, Xiao W, Yang Z, Guo J, Zhou J, Xiao S, Fang P, Fang L. Cleavage of HDAC6 to dampen its antiviral activity by nsp5 is a common strategy of swine enteric coronaviruses. J Virol 2024; 98:e0181423. [PMID: 38289103 PMCID: PMC10878235 DOI: 10.1128/jvi.01814-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
26
|
Jha S, Kim JH, Kim M, Nguyen AH, Ali KH, Gupta SK, Park SY, Ha E, Seo YH. Design, synthesis, and biological evaluation of HDAC6 inhibitors targeting L1 loop and serine 531 residue. Eur J Med Chem 2024; 265:116057. [PMID: 38142511 DOI: 10.1016/j.ejmech.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.
Collapse
Affiliation(s)
- Sonam Jha
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Ji Hyun Kim
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea
| | - Ai-Han Nguyen
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sun You Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 41061, South Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea.
| |
Collapse
|
27
|
Dai C, Wang X, Liu R, Gao W, Zhang H, Yin Z, Ding Z. ACY1215 Exerts Anti-inflammatory Effects by Inhibition of NF-κB and STAT3 Signaling Pathway to Repair Spinal Cord Injury. Biol Pharm Bull 2024; 47:1734-1745. [PMID: 39477466 DOI: 10.1248/bpb.b23-00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Spinal cord injury (SCI), a public health problem caused by mechanical injury, leads to secondary excessive inflammatory reactions and long-term damage to neurological function. ACY1215 is a highly selective histone deacetylase 6 (HDAC6) inhibitor and reportedly has anti-inflammatory effects; however, its regulatory role in SCI has not been studied. The purpose of this study was to explore the role of ACY1215 in preventing inflammation, inhibiting astrogliosis, enhancing remyelination and preserving axons after spinal cord injury and further exploring the possible cellular signaling pathways involved. First, lipopolysaccharide (LPS) was utilized to stimulate rat astrocytes in vitro. Quantitative RT (qRT)-PCR and Western blotting showed that ACY1215 inhibited the expression of glial fibrillary acidic protein (GFAP), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) in LPS-activated astrocytes. In addition, Western blotting results showed that ACY1215 could inhibit the signal transduction pathway of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3). In vivo, ACY1215 could exert anti-inflammatory effects by inhibiting the expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, ACY1215 repaired spinal cord injury by reducing the formation of glial scars and promoting remyelination and nerve recovery. In summary, ACY1215 can inhibit the NF-κB and STAT3 signaling pathways in astrocytes, reduce inflammation and ameliorate SCI. Our results provide a novel strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Ce Dai
- Department of Orthopaedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University
| | - Xiaohe Wang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, the First Affiliated Hospital, Jinan University
| | - Rui Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Zhenfei Ding
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical University
| |
Collapse
|
28
|
Peng X, Yu Z, Surineni G, Deng B, Zhang M, Li C, Sun Z, Pan W, Liu Y, Liu S, Yu B, Chen J. Discovery of novel benzohydroxamate-based histone deacetylase 6 (HDAC6) inhibitors with the ability to potentiate anti-PD-L1 immunotherapy in melanoma. J Enzyme Inhib Med Chem 2023; 38:2201408. [PMID: 37096557 PMCID: PMC10132229 DOI: 10.1080/14756366.2023.2201408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
In this study, a novel series of histone deacetylases 6 (HDAC6) inhibitors containing polycyclic aromatic rings were discovered and evaluated for their pharmacological activities. The most potent compound 10c exhibited high HDAC6 inhibitory activity (IC50 = 261 nM) and excellent HDAC6 selectivity (SI = 109 for HDAC6 over HDAC3). 10c also showed decent antiproliferative activity in vitro with IC50 of 7.37-21.84 μM against four cancer cell lines, comparable to that of tubastatin A (average IC50 = 6.10 μM). Further mechanism studies revealed that 10c efficiently induced apoptosis and S-phase arrest in B16-F10 cells. In addition, 10c markedly increased the expression of acetylated-α-tubulin both in vitro and in vivo, without affecting the levels of acetylated-H3 (marker of HDAC1 inhibition). Furthermore, 10c (80 mg/kg) exhibited moderate antitumor efficacy in a melanoma tumour model with a tumour growth inhibition (TGI) of 32.9%, comparable to that (TGI = 31.3%) of tubastatin A. Importantly, the combination of 10c with NP19 (a small molecule PD-L1 inhibitor discovered by us before) decreased tumour burden substantially (TGI% = 60.1%) as compared to monotherapy groups. Moreover, the combination of 10c with NP19 enhanced the anti-tumour immune response, mediated by a decrease of PD-L1 expression levels and increased infiltration of anti-tumour CD8+ T cells in tumour tissues. Collectively, 10c represents a novel HDAC6 inhibitor deserving further investigation as a potential anti-cancer agent.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Ziwen Yu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Goverdhan Surineni
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Bulian Deng
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Meizhu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Chuan Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Zhiqiang Sun
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Wanyi Pan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Yao Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjun Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Jia G, Qi K, Hou B, Yue K, Xu T, Jiang Y, Li X. Design, synthesis, and biological evaluation of novel HDAC/CD13 dual inhibitors for the treatment of cancer. Eur J Med Chem 2023; 260:115752. [PMID: 37647727 DOI: 10.1016/j.ejmech.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Aminopeptidase N (APN/CD13) plays a role in tumors progression, but its inhibitor lacks cytotoxicity and is used as an adjuvant drug in cancer treatment. Histone deacetylases (HDACs) are a type of epigenetic targets, and HDAC inhibitors are cytotoxic and exhibit synergistic effects with other anticancer agents. Herein, a novel series of HDAC/CD13 dual inhibitors were rationally designed and synthesized to combine the anti-metastasis and anti-invasion of CD13 inhibitor with the cytotoxic of HDAC inhibitor. The representative compound 12 exhibited more potent inhibitory activity against human CD13, HDAC1-3, and antiproliferative activity than positive controls bestatin and SAHA. Compound 12 effectively induced apoptosis in MV4-11 cells, while arresting A549 cells in G2/M phase. Moreover, 12 exhibited significantly better anti-metastasis and anti-invasion effects than mono-inhibitors 32 and 38, indicating that it is a promising anti-cancer agent for further investigation.
Collapse
Affiliation(s)
- Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kangjing Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Baogeng Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tongqiang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
30
|
Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, König P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M. Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation. J Med Chem 2023; 66:14787-14814. [PMID: 37902787 PMCID: PMC10641818 DOI: 10.1021/acs.jmedchem.3c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Anja Vogelmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Florian Friedrich
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Margarita A. Tararina
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emilia Neuwirt
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Arianna Colcerasa
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Philipp König
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Talha Z. Yesiloglu
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Sebastian Hilscher
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Lena Gaitzsch
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Niklas Papenkordt
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Shiyang Zhai
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lin Zhang
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christophe Romier
- Institut
de Génétique et de Biologie Moléculaire et Cellulaire
(IGBMC), Université de Strasbourg,
CNRS UMR 7104, Inserm UMR-S 1258, 1 rue Laurent Fries, F-67400 Illkirch, France
| | - Oliver Einsle
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Olaf Gross
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Center
for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| | - Gerd Bendas
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K. Hansen
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
31
|
Zhang WX, Huang J, Tian XY, Liu YH, Jia MQ, Wang W, Jin CY, Song J, Zhang SY. A review of progress in o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities for cancer therapy. Eur J Med Chem 2023; 259:115673. [PMID: 37487305 DOI: 10.1016/j.ejmech.2023.115673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Histone deacetylases, as a new class of anticancer targets, could maintain homeostasis by catalyzing histone deacetylation and play important roles in regulating the expression of target genes. Due to the fact that simultaneous intervention with dual tumor related targets could improve treatment effects, researches on innovative design of dual-target drugs are underway. HDAC is known as a "sensitizer" for the synergistic effects with other anticancer-target drugs because of its flexible structure design. The synergistic effects of HDAC inhibitor and other target inhibitors usually show enhanced inhibitory effects on tumor cells, and also provide new strategies to overcome multidrug resistance. Many research groups have reported that simultaneously inhibiting HDAC and other targets, such as tubulin, EGFR, could enhance the therapeutic effects. The o-aminobenzamide group is often used as a ZBG group in the design of HDAC inhibitors with potent antitumor effects. Given the prolonged inhibitory effects and reduced toxic side effects of HDAC inhibitors using o-aminobenzamide as the ZBG group, the o-aminobenzamide group is expected to become a more promising alternative to hydroxamic acid. In fact, o-aminobenzamide-based dual inhibitors of HDAC with different chemical structures have been extensively prepared and reported with synergistic and enhanced anti-tumor effects. In this work, we first time reviewed the rational design, molecular docking, inhibitory activities and potential application of o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities in cancer therapy, which might provide a reference for developing new and more effective anticancer drugs.
Collapse
Affiliation(s)
- Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jiao Huang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Yi Tian
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wang Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Esther Rubavathy SM, Palanisamy K, Priyankha S, Thilagavathi R, Prakash M, Selvam C. Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening. J Biomol Struct Dyn 2023; 41:9492-9502. [PMID: 36369945 DOI: 10.1080/07391102.2022.2142668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/14/2022]
Abstract
A class I histone deacetylase HDAC8 is associated with several diseases, including cancer, intellectual impairment and parasite infection. Most of the HDAC inhibitors that have so far been found to inhibit HDAC8 limit their efficacy in the clinic by producing toxicities. It is therefore very desirable to develop specific HDAC8 inhibitors. The emergence of HDAC inhibitors derived from natural sources has become quite popular. In recent decades, it has been shown that naturally occurring HDAC inhibitors have strong anticancer properties. A total of 0.2 million natural compounds were screened against HDAC8 from the Universal Natural Product Database (UNPD). Molecular docking was performed for these natural compounds and the top six hits were obtained. In addition, molecular dynamics (MD) simulations were used to evaluate the structural stability and binding affinity of the inhibitors, which showed that the protein-ligand complexes remained stable throughout the 100 ns simulation. MM-PBSA method demonstrated that the selected compounds have high affinity towards HDAC8. We infer from our findings that Hit-1 (-29.35 kcal mol-1), Hit-2 (-29.15 kcal mol-1) and Hit-6 (-30.28 kcal mol-1) have better binding affinity and adhesion to ADMET (absorption, distribution, metabolism, excretion and toxicity) characteristics against HDAC8. To compare our discussions and result in an effective way. We performed molecular docking, MD and MM-PBSA analysis for the FDA-approved drug romidepsin. The above results show that our hits show better binding affinity than the compound romidepsin (-12.03 ± 4.66 kcal mol-1). The important hotspot residues Asp29, Ile34, Trp141, Phe152, Asp267, Met274 and Tyr306 have significantly contributed to the protein-ligand interaction. These findings suggest that in vitro testing and additional optimization may lead to the development of HDAC8 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S M Esther Rubavathy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - S Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| |
Collapse
|
33
|
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, Pemberton N, Mogemark M, Xiong Y, Li Q, Tångefjord S, Ek M, Åstrand A. Selective and Bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole Substrate Inhibitors and Modeling of Their Bioactivation Mechanism. J Med Chem 2023; 66:14188-14207. [PMID: 37797307 DOI: 10.1021/acs.jmedchem.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jenny Sandmark
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Glyn Hughes
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Igor Shamovsky
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Julia Johansson
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Antonio Llinas
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mia Collins
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Bomi Jung
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anna Novén
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Nils Pemberton
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Yao Xiong
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Qing Li
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Stefan Tångefjord
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Margareta Ek
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Annika Åstrand
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| |
Collapse
|
34
|
Li Y, Liu S, Xu X, Xu J, Yang L, Hu L. Integrated molecular modeling and dynamics approaches revealed the mechanism of selective inhibition of HDAC6/8. J Biomol Struct Dyn 2023; 42:12689-12702. [PMID: 37870047 DOI: 10.1080/07391102.2023.2272751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
The high structural homology of histone deacetylases 6 and 8 (HDAC6/8) poses a challenge in achieving isoform selectivity and has resulted in adverse side effects due to pan-inhibition in clinical applications. Additionally, the rational design of dual-target inhibitors, centered on HDAC6/8, demands a profound understanding of their selectivity mechanisms. Addressing the urgent need for enhanced specificity in the development of inhibitors targeting specific isoforms, we elucidate the mechanism underpinning the selective inhibition of HDAC6/8 inhibitors through in-silico strategies. The hydrogen bonding interaction with Asp101 and Tyr306 is a key factor that enables compound 12b to selectively inhibit HDAC8. Its favorable spatial orientation places the Cap group of 12b between Tyr306 and Tyr100, resulting in an overall L-shaped conformation. These two factors significantly contribute to the selective inhibitory activity of 12b against HDAC8. The zinc binding group (ZBG) of compound NN-390 forms a hydrogen bond with His610, a key residue of HDAC6, facilitating stable chelation with zinc ions. In addition, the Cap group of NN-390 interacts with Phe620 and Phe680 via van der Waals forces, leading to an overall Y-shaped conformation. The aforementioned factors are the main reasons for the selective inhibition of HDAC6 by NN-390. Furthermore, whether the Cap group is in the para or meta-position will influence the selective inhibition of either HDAC6 or HDAC8. We believe these clues can offer valuable insights for the rational design of selective inhibitors targeting HDAC6/8 and pave the way for rational design of dual-target HDAC6/8-based inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yaxin Li
- Beijing Key Laboratory of Environmental and Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Sisi Liu
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jiamin Xu
- Beijing Key Laboratory of Environmental and Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Leifu Yang
- Beijing Key Laboratory of Environmental and Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Liming Hu
- Beijing Key Laboratory of Environmental and Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
35
|
König B, Watson PR, Reßing N, Cragin AD, Schäker-Hübner L, Christianson DW, Hansen FK. Difluoromethyl-1,3,4-oxadiazoles Are Selective, Mechanism-Based, and Essentially Irreversible Inhibitors of Histone Deacetylase 6. J Med Chem 2023; 66:13821-13837. [PMID: 37782298 PMCID: PMC10591924 DOI: 10.1021/acs.jmedchem.3c01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.
Collapse
Affiliation(s)
- Beate König
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Abigail D Cragin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| |
Collapse
|
36
|
Badran MM, Abbas SH, Fujita M, Abdel-Aziz M. Harnessing pyrimidine as a building block for histone deacetylase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2300208. [PMID: 37462396 DOI: 10.1002/ardp.202300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 10/06/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are well-established multifaceted bioactive agents against tumors and neurodegenerative disorders. Pyrimidine and its fused and substituted derivatives were employed as a surface recognition moiety of HDAC inhibitors. De facto, the literature was loaded with different success stories of pyrimidine-based HDAC inhibitors that garnered much interest. Provoked by our continuous interest in HDAC inhibitors, we summarized and elaborated on the successful harnessing of the pyrimidine scaffold in this regard. Furthermore, we dissect our perspective that may guide medicinal chemists for an effective future design of more active chemotherapeutic agents with potential clinical applications.
Collapse
Affiliation(s)
- Mostafa M Badran
- Department of Medicinal Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
37
|
Toro TB, Skripnikova EV, Bornes KE, Zhang K, Watt TJ. Endogenous expression of inactive lysine deacetylases reveals deacetylation-dependent cellular mechanisms. PLoS One 2023; 18:e0291779. [PMID: 37721967 PMCID: PMC10506724 DOI: 10.1371/journal.pone.0291779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Acetylation of lysine residues is an important and common post-translational regulatory mechanism occurring on thousands of non-histone proteins. Lysine deacetylases (KDACs or HDACs) are a family of enzymes responsible for removing acetylation. To identify the biological mechanisms regulated by individual KDACs, we created HT1080 cell lines containing chromosomal point mutations, which endogenously express either KDAC6 or KDAC8 having single inactivated catalytic domain. Engineered HT1080 cells expressing inactive KDA6 or KDAC8 domains remained viable and exhibited enhanced acetylation on known substrate proteins. RNA-seq analysis revealed that many changes in gene expression were observed when KDACs were inactivated, and that these gene sets differed significantly from knockdown and knockout cell lines. Using GO ontology, we identified several critical biological processes associated specifically with catalytic activity and others attributable to non-catalytic interactions. Treatment of wild-type cells with KDAC-specific inhibitors Tubastatin A and PCI-34051 resulted in gene expression changes distinct from those of the engineered cell lines, validating this approach as a tool for evaluating in-cell inhibitor specificity and identifying off-target effects of KDAC inhibitors. Probing the functions of specific KDAC domains using these cell lines is not equivalent to doing so using previously existing methods and provides novel insight into the catalytic functions of individual KDACs by investigating the molecular and cellular changes upon genetic inactivation.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Elena V. Skripnikova
- Division of Basic and Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kiara E. Bornes
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States of America
- Bioinformatics Core, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| |
Collapse
|
38
|
Jin G, Wang K, Zhao Y, Yuan S, He Z, Zhang J. Targeting histone deacetylases for heart diseases. Bioorg Chem 2023; 138:106601. [PMID: 37224740 DOI: 10.1016/j.bioorg.2023.106601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone or non-histone substrates, leading to the regulation of many biological functions, such as gene transcription, translation and remodeling chromatin. Targeting HDACs for drug development is a promising way for human diseases, including cancers and heart diseases. In particular, numerous HDAC inhibitors have revealed potential clinical value for the treatment of cardiac diseases in recent years. In this review, we systematically summarize the therapeutic roles of HDAC inhibitors with different chemotypes on heart diseases. Additionally, we discuss the opportunities and challenges in developing HDAC inhibitors for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Yaohui Zhao
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
39
|
Lai Z, Ni H, Hu X, Cui S. Discovery of Novel 1,2,3,4-Tetrahydrobenzofuro[2,3- c]pyridine Histone Deacetylase Inhibitors for Efficient Treatment of Hepatocellular Carcinoma. J Med Chem 2023; 66:10791-10807. [PMID: 37498552 DOI: 10.1021/acs.jmedchem.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of histone deacetylase (HDAC) inhibitors for treating hematologic malignancies has been widely investigated, while their role in hepatocellular carcinoma (HCC) remains unexplored. In this study, we employed a scaffold-hopping design and a multicomponent synthesis approach to develop a novel series of 1,2,3,4-tetrahydrobenzofuro[2,3-c]pyridines as HDAC inhibitors. There were a total of 29 compounds achieved with flexible linkers and zinc-binding groups, wherein compound 12k was identified as a promising candidate with good HDAC inhibitory activity, pharmacokinetic profiles, and potency. It exhibited significant therapeutic efficacy in HCC cell lines (IC50 = 30 nM for Bel-7402) and xenograft models (76% inhibition for Bel-7402 xenografts, P.O. at 20 mg/kg, QOD, for 14 days) and was found to upregulate the acetylation of histone H3 and α-tubulin, leading to apoptosis and autophagy in HCC models. Molecular docking studies indicated a unique T-shaped conformation of 12k with the catalytic domain of HDAC1. Therefore, this work provides a new structure design for HDAC inhibitors and also offers a promising treatment for HCC.
Collapse
Affiliation(s)
- Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Ni
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang Province 321299, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang Province 321299, China
| |
Collapse
|
40
|
Liu F, Liu C, Chai Q, Zhao C, Meng H, Xue X, Yao TP, Zhang Y. Discovery of the First Irreversible HDAC6 Isoform Selective Inhibitor with Potent Anti-Multiple Myeloma Activity. J Med Chem 2023; 66:10080-10091. [PMID: 37463038 DOI: 10.1021/acs.jmedchem.3c00977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
In our previous research, a series of phenylsulfonylfuroxan-based hydroxamates were developed, among which compound 1 exhibited remarkable in vitro and in vivo antitumor potency due to its histone deacetylase (HDAC) inhibitory and nitric oxide (NO)-donating activities. Herein, the in-depth study of compound 1 revealed that this HDAC inhibitor-NO donor hybrid could enduringly increase the intracellular levels of acetyl histones and acetyl α-tubulin, which could be ascribed to its irreversible inhibition toward class I HDACs and HDAC6. Structural modification of compound 1 led to a novel phenylsulfonylfuroxan-based hydroxamate 4, which exhibited considerable HDAC6 inhibitory activity and selectivity. Furthermore, compound 4 could inhibit intracellular HDAC6 both selectively and irreversibly. To the best of our knowledge, this is the first research reporting the irreversible inhibition of HDAC6. It was also demonstrated that compared with ACY-241 (a reversible HDAC6 inhibitor in clinical trials), the irreversible HDAC6 selective inhibitor 4 exhibited not only superior anti-multiple myeloma activity but also improved therapeutic index.
Collapse
Affiliation(s)
- Fengling Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunxi Liu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qipeng Chai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongwei Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
41
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
42
|
Motlová L, Šnajdr I, Kutil Z, Andris E, Ptáček J, Novotná A, Nováková Z, Havlínová B, Tueckmantel W, Dráberová H, Majer P, Schutkowski M, Kozikowski A, Rulíšek L, Bařinka C. Comprehensive Mechanistic View of the Hydrolysis of Oxadiazole-Based Inhibitors by Histone Deacetylase 6 (HDAC6). ACS Chem Biol 2023. [PMID: 37392419 PMCID: PMC10367051 DOI: 10.1021/acschembio.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG‡ ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.
Collapse
Affiliation(s)
- Lucia Motlová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Šnajdr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jakub Ptáček
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Adéla Novotná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlínová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, Wisconsin 53719, United States
| | - Helena Dráberová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, Wisconsin 53719, United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
43
|
Liu G, Mondal P, Sang N, Li Z, Ding W, Yang L, Liu Y, Birar VC, Gomm A, Tanzi RE, Zhang C, Shen S, Wang C, Lu X, Bai P. Design, synthesis, and anti-inflammatory activity characterization of novel brain-permeable HDAC6 inhibitors. Eur J Med Chem 2023; 254:115327. [PMID: 37098307 DOI: 10.1016/j.ejmech.2023.115327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Targeting histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic approach for anti-inflammation and related biological pathways, including inflammatory events associated with the brain. In this study, in order to develop brain-permeable HDAC6 inhibitors for anti-neuroinflammation, we report here the design, synthesis, and characterization of a number of N-heterobicyclic analogues that can inhibit HDAC6 with high specificity and strong potency. Among our analogues, PB131 exhibits potent binding affinity and selectivity against HDAC6, with an IC50 value of 1.8 nM and more than 116-fold selectivity over other HDAC isoforms. In addition, PB131 shows good brain penetration, binding specificity, and reasonable biodistribution through our positron emission tomography (PET) imaging studies of [18F]PB131 in mice. Furthermore, we characterized the efficacy of PB131 on regulating neuroinflammation using the mouse microglia model BV2 cells in vitro and the LPS-induced inflammation mouse model in vivo. These data not only indicate the anti-inflammatory activity of our novel HDAC6 inhibitor PB131, but also strengthen the biological functions of HDAC6 and further extend the therapeutic approach inhibiting HDAC6. Our findings show that PB131 displays good brain permeability, high specificity, and strong potency toward inhibiting HDAC6 and is a potential HDAC6 inhibitor for inflammation-related disease treatment, especially neuroinflammation.
Collapse
Affiliation(s)
- Gang Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Na Sang
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zihua Li
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Vishal C Birar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Ping Bai
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Liu X, Yan W, Wang S, Lu M, Yang H, Chai X, Shi H, Zhang Y, Jia Q. Discovery of selective HDAC6 inhibitors based on a multi-layer virtual screening strategy. Comput Biol Med 2023; 160:107036. [PMID: 37196455 DOI: 10.1016/j.compbiomed.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The abnormal enhancement of histone deacetylase 6 (HDAC6) has been demonstrated to be closely related to the occurrence and development of various malignant tumors, attracting extensive attention as a promising target for cancer therapy. Currently, only limited selective HDAC6 inhibitors have entered clinical trials, making the rapid discovery of selective HDAC6 inhibitors with safety profiles particularly urgent. In this study, a multi-layer virtual screening workflow was established, and the representative compounds screened were biologically evaluated in combination with enzyme inhibitory and anti-tumor cell proliferation experiments. The experimental results showed that the screened compounds L-25, L-32, L-45 and L-81 exhibited nanomolar inhibitory activity against HDAC6, and exerted a certain degree of anti-proliferative activities against tumor cells, especially the cytotoxicity of L-45 to A375 (IC50 = 11.23 ± 1.27 μM) and the cytotoxicity of L-81 against HCT-116 (IC50 = 12.25 ± 1.13 μM). Additionally, the molecular mechanisms underlying the subtype selective inhibitory activities of the selected compounds were further elucidated using computational approaches, and the hotspot residues on HDAC6 contributing to the ligands' binding were identified. In summary, this study established a multi-layer screening scheme to quickly and effectively screen out hit compounds with enzyme inhibitory activity and anti-tumor cell proliferation, providing novel scaffolds for the subsequent anti-tumor drug design based on HDAC6 target.
Collapse
Affiliation(s)
- Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of Innovative Drug Research and Evaluation of Hebei Province, Shijiazhuang, 050017, China
| | - Wenying Yan
- Department of Clinical Pharmacy, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Songsong Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of Innovative Drug Research and Evaluation of Hebei Province, Shijiazhuang, 050017, China
| | - Ming Lu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hao Yang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - He Shi
- The Fourth Hospital of Shijiazhuang, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050000, China.
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of Innovative Drug Research and Evaluation of Hebei Province, Shijiazhuang, 050017, China.
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of Innovative Drug Research and Evaluation of Hebei Province, Shijiazhuang, 050017, China.
| |
Collapse
|
45
|
Zhu Y, Feng M, Wang B, Zheng Y, Jiang D, Zhao L, Mamun MAA, Kang H, Nie H, Zhang X, Guo N, Qin S, Wang N, Liu H, Gao Y. New insights into the non-enzymatic function of HDAC6. Biomed Pharmacother 2023; 161:114438. [PMID: 37002569 DOI: 10.1016/j.biopha.2023.114438] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that contains two catalytic domains and a zinc-finger ubiquitin binding domain (ZnF-UBP) domain. The deacetylation function of HDAC6 has been extensively studied with common substrates such as α-tubulin, cortactin, and Hsp90. Apart from its deacetylase activity, HDAC6 ZnF-UBP binds to unanchored ubiquitin of specific sequences and serves as a carrier for transporting aggregated proteins. As a result, aggresomes are formed and protein degradation is facilitated by the autophagy-lysosome pathway. This HDAC6-dependent microtubule transport can be used by cells to assemble and activate inflammasomes, which play a critical role in immune regulation. Even viruses can benefit from the carrier of HDAC6 to assist in uncoating their surfaces during their infection cycle. However, HDAC6 is also capable of blocking virus invasion and replication in a non-enzymatic manner. Given these non-enzymatic functions, HDAC6 is closely associated with various diseases, including neurodegeneration, inflammasome-associated diseases, cancer, and viral infections. Small molecule inhibitors targeting the ubiquitin binding pocket of HDAC6 have been investigated. In this review, we focus on mechanisms in non-enzymatic functions of HDAC6 and discuss the rationality and prospects of therapeutic strategies by intervening the activation of HDAC6 ZnF-UBP in concrete diseases.
Collapse
Affiliation(s)
- Yuanzai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengkai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dandan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Huiqin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Haiqian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ningjie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shangshang Qin
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
46
|
Duan Y, Yu T, Jin L, Zhang S, Shi X, Zhang Y, Zhou N, Xu Y, Lu W, Zhou H, Zhu H, Bai S, Hu K, Guan Y. Discovery of novel, potent, and orally bioavailable HDACs inhibitors with LSD1 inhibitory activity for the treatment of solid tumors. Eur J Med Chem 2023; 254:115367. [PMID: 37086699 DOI: 10.1016/j.ejmech.2023.115367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Histone deacetylases (HDACs) and lysine-specific demethylase 1 (LSD1) are attractive targets for epigenetic cancer therapy. There is an intimate interplay between the two enzymes. HDACs inhibitors have shown synergistic anticancer effects in combination with LSD1 inhibitors in several types of cancer. Herein, we describe the discovery of compound 5e, a highly potent HDACs inhibitor (HDAC1/2/6/8; IC50 = 2.07/4.71/2.40/107 nM) with anti-LSD1 potency (IC50 = 1.34 μM). Compound 5e exhibited marked antiproliferative activity in several cancer cell lines. 5e effectively induced mitochondrial apoptosis with G2/M phase arrest, inhibiting cell migration and invasion in MGC-803 and HCT-116 cancer cells. It also showed good liver microsomal stability and acceptable pharmacokinetic parameters in SD rats. More importantly, orally administered compound 5e demonstrated higher in vivo antitumor efficacy than SAHA in the MGC-803 (TGI = 71.5%) and HCT-116 (TGI = 57.6%) xenograft tumor models accompanied by good tolerability. This study provides a novel lead compound with dual inhibitory activity against HDACs and LSD1 to further develop epigenetic drugs for solid tumor therapy. Further optimization is needed to improve the LSD1 activity to achieve dual inhibitors with balanced potency on LSD1 and HDACs.
Collapse
Affiliation(s)
- Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Linfeng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Shaojie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiaojing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Yizhe Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Nanqian Zhou
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Yongtao Xu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Wenfeng Lu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Huimin Zhou
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Huijuan Zhu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Kua Hu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Yuanyuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
47
|
Yan J, Yue K, Fan X, Xu X, Wang J, Qin M, Zhang Q, Hou X, Li X, Wang Y. Synthesis and bioactivity evaluation of ferrocene-based hydroxamic acids as selective histone deacetylase 6 inhibitors. Eur J Med Chem 2023; 246:115004. [PMID: 36516583 DOI: 10.1016/j.ejmech.2022.115004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes and emerges as a promising target for treating cancer and neurodegenerative diseases. Benefited from the unique sandwich conformation of ferrocene, a series of ferrocene-based hydroxamic acids have been developed as novel HDAC6 inhibitors in this paper, especially the two ansa-ferrocenyl complexes with IC50s at the nanomolar level. [3]-Ferrocenophane hydroxamic acid analog II-5 displays the most potent inhibitory activity on HDAC6 and establishes remarkable selectivity towards other HDAC isoforms. Compound II-5 dose-dependently induces accumulation of acetylated α-tubulin while having a negligible effect on the level of acetylated Histone H3, confirming its isoform selectivity. Further biological evaluation of II-5 on cancer cells corroborates its antiproliferative effect, which mainly contributed to the induction of cellular apoptosis. It is worth noting that compound II-5 demonstrates an optimal profile on human plasma stability. These results strengthen ferrocene's unique role in developing selective protein inhibitors and indicate that compound II-5 may be a suitable lead for further evaluation and development for treating HDAC6-associated disorders and diseases.
Collapse
Affiliation(s)
- Jiangkun Yan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Mengting Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| |
Collapse
|
48
|
Cellupica E, Caprini G, Cordella P, Cukier C, Fossati G, Marchini M, Rocchio I, Sandrone G, Vanoni MA, Vergani B, Źrubek K, Stevenazzi A, Steinkühler C. Difluoromethyl-1,3,4-oxadiazoles are slow-binding substrate analog inhibitors of histone deacetylase 6 with unprecedented isotype selectivity. J Biol Chem 2023; 299:102800. [PMID: 36528061 PMCID: PMC9860109 DOI: 10.1016/j.jbc.2022.102800] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is an attractive drug development target because of its role in the immune response, neuropathy, and cancer. Knockout mice develop normally and have no apparent phenotype, suggesting that selective inhibitors should have an excellent therapeutic window. Unfortunately, current HDAC6 inhibitors have only moderate selectivity and may inhibit other HDAC subtypes at high concentrations, potentially leading to side effects. Recently, substituted oxadiazoles have attracted attention as a promising novel HDAC inhibitor chemotype, but their mechanism of action is unknown. Here, we show that compounds containing a difluoromethyl-1,3,4-oxadiazole (DFMO) moiety are potent and single-digit nanomolar inhibitors with an unprecedented greater than 104-fold selectivity for HDAC6 over all other HDAC subtypes. By combining kinetics, X-ray crystallography, and mass spectrometry, we found that DFMO derivatives are slow-binding substrate analogs of HDAC6 that undergo an enzyme-catalyzed ring opening reaction, forming a tight and long-lived enzyme-inhibitor complex. The elucidation of the mechanism of action of DFMO derivatives paves the way for the rational design of highly selective inhibitors of HDAC6 and possibly of other HDAC subtypes as well with potentially important therapeutic implications.
Collapse
Affiliation(s)
- Edoardo Cellupica
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Gianluca Caprini
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Paola Cordella
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Cyprian Cukier
- Department of Biochemistry, Selvita S.A., Kraków, Poland
| | - Gianluca Fossati
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Mattia Marchini
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Ilaria Rocchio
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Giovanni Sandrone
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | | | - Barbara Vergani
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Karol Źrubek
- Department of Biochemistry, Selvita S.A., Kraków, Poland
| | - Andrea Stevenazzi
- Research and Development, Italfarmaco Group, Cinisello Balsamo, Italy
| | | |
Collapse
|
49
|
Medicinal chemistry insights into non-hydroxamate HDAC6 selective inhibitors. Med Chem Res 2023. [DOI: 10.1007/s00044-022-02987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Khetmalis YM, Shree B, Kumar BVS, Schweipert M, Debarnot C, Ashna F, Sankaranarayanan M, Trinath J, Sharma V, Meyer-Almes FJ, Sekhar KVGC. Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinoline Based Hydroxamate Derivatives as HDAC 6 Inhibitors For Cancer Therapy. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|