1
|
Rahman MA, Jalouli M, Bhajan SK, Al-Zharani M, Harrath AH. The Role of Hypoxia-Inducible Factor-1α (HIF-1α) in the Progression of Ovarian Cancer: Perspectives on Female Infertility. Cells 2025; 14:437. [PMID: 40136686 PMCID: PMC11941611 DOI: 10.3390/cells14060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypoxia-Inducible Factor-1α (HIF-1α) is crucial in the progression of ovarian cancer, especially in influencing its tumor microenvironment and promoting pathogenic pathways that worsen female infertility. In hypoxic settings, HIF-1α is stabilized and activates the transcription of genes associated with angiogenesis, metabolic reprogramming, epithelial-to-mesenchymal transition, and therapeutic resistance. Angiogenesis and glycolytic reprogramming mediated by HIF-1 tumor proliferation, survival, and metastasis. Its dysfunction concurrently impairs ovarian homeostasis, undermining follicular growth, hormone synthesis, and the ovarian vascular network, consequently contributing to infertility. Moreover, HIF-1α induces persistent inflammation and oxidative stress, promoting an environment damaging to reproductive health. Due to its dual function in ovarian cancer growth and infertility, HIF-1α is a potential therapeutic target. Strategies including small molecule inhibitors and nanoparticle-mediated delivery of drugs possess the potential to reduce HIF-1α activity, hence reducing cancer progression while protecting fertility. This review seeks to clarify the molecular basis of HIF-1α in ovarian cancer and its effects on female infertility, providing insights into novel treatment approaches that target both controlling the disease and preserving fertility.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Collins GB, de Souza Carvalho J, Jayasinghe SC, Gumuliauskaite U, Lowe DM, Thomas DC, Årstad E, De Maeyer RPH, Gilroy DW. A new model measuring bacterial phagocytosis and phagolysosomal oxidation in humans using the intradermal injection of methylene blue-labeled Escherichia coli. J Leukoc Biol 2025; 117:qiae217. [PMID: 39412158 PMCID: PMC11879004 DOI: 10.1093/jleuko/qiae217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Indexed: 03/06/2025] Open
Abstract
Phagocytosis is an important leukocyte function; however, using existing models it cannot be measured in human tissues in vivo. To address this, we characterized a new phagocytosis model using intradermal methylene blue-labeled Escherichia coli injection (MBEC). Methylene blue (MB) is a licensed human medicine and bacterial stain potentially useful for labeling E. coli that is safe for human injection. Ex vivo coculture of leukocytes with MBEC caused MB to transfer into neutrophils and macrophages by phagocytosis. During this, a "red shift" in MB fluorescence was shown to be caused by phagolysosomal oxidation. Hence, MBEC coculture could be used to measure phagocytosis and phagolysosomal oxidation in humans, ex vivo. In healthy volunteers, inflammatory exudate sampling using suction blisters 2 to 24 h after intradermal MBEC injection showed that tissue-acquired neutrophils and monocytes contained more MB than their circulating counterparts, whereas blood and inflamed tissue T, B, and natural killer cells were MBlo. This was validated with spectral flow cytometry by visualizing the MB emission spectrum in tissue-acquired neutrophils. Neutrophil MB emission spectra demonstrated more red shift at 24 h compared with earlier time points, in keeping with progressive phagolysosomal MB oxidation in neutrophils over time in vivo. This new MBEC model can therefore measure bacterial phagocytosis and phagolysosomal oxidation in human skin, in vivo. This has a number of important research applications, e.g. in studying human phagocyte biology, testing novel antimicrobials, and understanding why certain groups such as males, the elderly or those with diabetes, recent surgery, or malnutrition are at increased risk of bacterial infection.
Collapse
Affiliation(s)
- George B Collins
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, London EC1A 7BE, United Kingdom
| | - Jhonatan de Souza Carvalho
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University, São Paulo 14801-903, Brazil
| | - Sandali C Jayasinghe
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Urte Gumuliauskaite
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - David M Lowe
- Institute of Immunity and Transplantation, The Pears Building, University College London, London NW3 2PP, United Kingdom
| | - David C Thomas
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, London WC1E 6BS, United Kingdom
| | - Roel P H De Maeyer
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Derek W Gilroy
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
3
|
McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2025; 16:86-117. [PMID: 39470609 PMCID: PMC11970764 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Branco H, Xavier CPR, Riganti C, Vasconcelos MH. Hypoxia as a critical player in extracellular vesicles-mediated intercellular communication between tumor cells and their surrounding microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189244. [PMID: 39672279 DOI: 10.1016/j.bbcan.2024.189244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
In the past years, increasing attention has been paid to the role of extracellular vesicles (EVs) as mediators of intercellular communication in cancer. These small size particles mediate the intercellular transfer of important bioactive molecules involved in malignant initiation and progression. Hypoxia, or low partial pressure of oxygen, is recognized as a remarkable feature of solid tumors and has been demonstrated to exert a profound impact on tumor prognosis and therapeutic efficacy. Indeed, the high-pitched growth rate and chaotic neovascular architecture that embodies solid tumors results in a profound reduction in oxygen pressure within the tumor microenvironment (TME). In response to oxygen-deprived conditions, tumor cells and their surrounding milieu develop homeostatic adaptation mechanisms that contribute to the establishment of a pro-tumoral phenotype. Latest evidence suggests that the hypoxic microenvironment that surrounds the tumor bulk may be a clincher for the observed elevated levels of circulating EVs in cancer patients. Thus, it is proposed that EVs may play a role in mediating intercellular communication in response to hypoxic conditions. This review focuses on the EVs-mediated crosstalk that is established between tumor cells and their surrounding immune, endothelial, and stromal cell populations, within the hypoxic TME.
Collapse
Affiliation(s)
- Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal.
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Lee D, Tomita Y, Negishi K, Kurihara T. Retinal ischemic diseases and promising therapeutic molecular targets. Histol Histopathol 2025; 40:11-20. [PMID: 38738342 DOI: 10.14670/hh-18-756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Retinal ischemia is a fundamental pathologic condition associated with retinal vascular occlusion, glaucoma, diabetic retinopathy, age-related macular degeneration, and other eye diseases. Extensive inflammation, redox imbalance, apoptosis, and abnormal vascular formation in retinal ischemia could lead to visual impairments. Developing or finding effective treatments is urgently needed to protect the eye against retinal ischemia and related damage. To address the demand, we have searched for promising therapeutic molecular targets in the eye (e.g., hypoxia-inducible factor [HIF], peroxisome proliferator-activated receptor-alpha [PPARα], and nicotinamide adenine dinucleotide [NAD+]), and found that modulations of each molecular target might protect the eye against retinal ischemic damage in terms of complex pathologic mechanisms. In the current article, we review and update the therapeutic evidence of modulation of HIF, PPARα, or NAD+ and discuss future directions for developing promising drugs based on these molecular targets. This summary urges research to obtain more solid evidence of each molecular target in retinal ischemic diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Chorioretinal Biology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Chorioretinal Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
de Sousa VM, Duarte SS, Ferreira RC, de Sousa NF, Scotti MT, Scotti L, da Silva MS, Tavares JF, de Moura RO, Gonçalves JCR, Sobral MV. AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway. Molecules 2024; 29:5344. [PMID: 39598733 PMCID: PMC11596224 DOI: 10.3390/molecules29225344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Colorectal cancer remains a significant cause of mortality worldwide. A spiro-acridine derivative, (E)-1'-((4-bromobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-19), showed significant cytotoxicity in HCT-116 colorectal carcinoma cells (half maximal inhibitory concentration, IC50 = 10.35 ± 1.66 µM) and antioxidant effects after 48 h of treatment. In this study, Molegro Virtual Docker v.6.0.1 software was used to investigate the interactions between AMTAC-19 and the Extracellular Signal-Regulated Kinase 1 (ERK1), c-Jun N-terminal Kinase 1 (JNK1), and p38 Mitogen-Activated Protein Kinase α (p38α MAPK). In vitro assays were conducted in HCT-116 cells to evaluate the effect of AMTAC-19 on the modulation of these proteins' activities using flow cytometry. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence or absence of ERK1/2, JNK, and p38 MAPK inhibitors was used to evaluate the involvement of these enzymes in AMTAC-19 cytotoxicity. ROS production was assessed using the 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) assay at various incubation times (30 min, 1 h, 6 h, 12 h, and 24 h), and the MTT assay using N-acetyl-L-cysteine (NAC) was performed. In silico results indicated that AMTAC-19 interacts with ERK1, JNK1, and p38α MAPK. Additionally, AMTAC-19 activated ERK1/2 and JNK1 in HCT-116 cells, and its cytotoxicity was significantly reduced in the presence of ERK1/2 and JNK inhibitors. AMTAC-19 also induced a significant increase in ROS production (30 min and 1 h), while NAC pretreatment reduced its cytotoxicity. These findings support AMTAC-19's in vitro antitumor effect through ROS-dependent activation of ERK and JNK pathways.
Collapse
Affiliation(s)
- Valgrícia Matias de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Sâmia Sousa Duarte
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Natália Ferreira de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Ricardo Olímpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa 58070-450, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
7
|
Svajda L, Ranđelović I, Surguta SE, Baranyi M, Cserepes M, Tóvári J. Targeting hypoxia in combination with paclitaxel to enhance therapeutic efficacy in breast and ovarian cancer. Biomed Pharmacother 2024; 180:117601. [PMID: 39476764 DOI: 10.1016/j.biopha.2024.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
The poor vascularization of solid tumors results in oxygen-deprived areas within the tumor mass. This phenomenon is defined as tumor hypoxia and is considered to be a major contributor to tumor progression in breast and ovarian cancers due to hypoxia-cascade-promoted increased metastasizing capacity. Hence, targeting hypoxia is a strategic cancer treatment approach, however, the hypoxia-modulating drugs face several limitations in monotherapies. Here, we investigated the impact of the potent hypoxia-inducible factor inhibitory compound acriflavine on tumor cell proliferation, migration, and metabolism under hypoxic conditions. We identified that acriflavine inhibited the proliferation of breast and ovarian tumor cells. To model the potential benefits of additional hypoxia response inhibition next to standard chemotherapy, we combined acriflavine with a frequently used chemotherapeutic agent, paclitaxel. In most breast and ovarian cancer cell lines used, we identified additive effects between the two drugs. The most significant findings were detected in triple-negative breast cancer cell lines, where we observed synergism. The drug combination effectively impeded tumor growth and metastasis formation in an in vivo orthotopic triple-negative breast cancer model as well. Additionally, we demonstrated that an epithelial-mesenchymal transition inhibitory drug, rolipram, combined with acriflavine and paclitaxel, notably reduced the motility of hypoxic triple-negative breast cancer cells. In conclusion, we identified novel drug combinations that can potentially combat triple-negative breast cancer by inhibiting hypoxia signaling and hindering cell migration and metastasis formation.
Collapse
Affiliation(s)
- Laura Svajda
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary.
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Sára Eszter Surguta
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Mihály Cserepes
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Basheeruddin M, Qausain S. Hypoxia-Inducible Factor 1-Alpha (HIF-1α) and Cancer: Mechanisms of Tumor Hypoxia and Therapeutic Targeting. Cureus 2024; 16:e70700. [PMID: 39493156 PMCID: PMC11529905 DOI: 10.7759/cureus.70700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Hypoxia-inducible factor 1-alpha (HIF-1α) is necessary for cells to adapt to low oxygen levels often present in the tumor microenvironment. HIF-1α triggers a transcriptional program that promotes invasion, angiogenesis, metabolic reprogramming, and cell survival when it is active in hypoxic environments. These processes together lead to the growth and spread of tumors. This review article examines the molecular mechanisms by which HIF-1α contributes to tumor progression, including its regulation by oxygen-dependent and independent pathways, interactions with oncogenic signaling networks, and impact on the tumor microenvironment. Additionally, we explore current therapeutic strategies targeting HIF-1α, such as small molecule inhibitors, RNA interference, and immunotherapy approaches. Understanding the multifaceted roles of HIF-1α in cancer biology not only elucidates the complexities of tumor hypoxia but also opens avenues for developing novel and more effective cancer therapies.
Collapse
Affiliation(s)
- Mohd Basheeruddin
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sana Qausain
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Roys H, Arykbayeva A, Friedman SK, Gifford G, Palmer ER, Rogers A, Tran ENH, Fry L, Weaver A, Bowlin A, Jones MD, Eledge MR, Boehme KW, Naumiec GR, Weinkopff T. Synthesis and in vitro evaluation shows disquaramide compounds are a promising class of anti-leishmanial drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.605637. [PMID: 39229173 PMCID: PMC11370558 DOI: 10.1101/2024.08.23.605637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
An increasing number of treatment failures with current pharmaceutics, as well as a lack of a vaccine, demonstrates the need to develop new treatment options for leishmaniasis. Herein, we describe the synthesis and in vitro analysis of 24 disquaramide compounds targeting the Leishmania major parasite. Of the compounds that were evaluated, six of them ( 13 , 19 , 20 , 22 , 24 , and 26 ) were capable of significantly decreasing the number of parasites by up to 42% compared to the control by day four. This demonstrates that disquaramides either impair parasite replication or have leishmancidal effects. Additionally, none of the disquaramide compounds tested displayed host cell cytotoxicity. These experiments provide evidence that disquaramides have the potential to be effective anti-leishmanial therapeutics.
Collapse
|
10
|
Xie H, Xiao X, Yi X, Huang K, Wang L. Cell-Membrane-Coated Metal-Organic Framework Nanocarrier Combining Chemodynamic Therapy for the Inhibition of Hepatocellular Carcinoma Proliferation. Pharmaceutics 2024; 16:619. [PMID: 38794281 PMCID: PMC11124917 DOI: 10.3390/pharmaceutics16050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chemodynamic therapy (CDT) employs hydrogen peroxide (H2O2) within the tumor microenvironment (TME) to initiate the Fenton reaction and catalyze the generation of hydroxyl radicals (·OH) for targeted therapy. Metal ion-based nanomaterials have garnered significant attention as catalysts due to their potent anti-tumor effects. Hypoxia in the TME is often associated with cancer cell development and metastasis, with HIF-1α being a pivotal factor in hypoxia adaptation. In this study, an organic framework called MIL-101 (Fe) was designed and synthesized to facilitate H2O2-induced ·OH production while also serving as a carrier for the HIF-1α inhibitor Acriflavine (ACF). A biomimetic nanomedical drug delivery system named MIL-101/ACF@CCM was constructed by encapsulating liver cancer cell membranes onto the framework. This delivery system utilized the homologous targeting of tumor cell membranes to transport ACF, inhibiting HIF-1α expression, alleviating tumor hypoxia, and catalyzing ·OH production for effective tumor eradication. Both in vivo and in vitro experiments confirmed that combining ACF with chemotherapy achieved remarkable tumor inhibition by enhancing ROS production and suppressing HIF-1α expression.
Collapse
Affiliation(s)
- Huaying Xie
- The First School of Clinical Medicine, Guilin Medical University, Guilin 541006, China; (H.X.); (X.Y.); (K.H.)
| | - Xuhua Xiao
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China;
| | - Xiaoyuan Yi
- The First School of Clinical Medicine, Guilin Medical University, Guilin 541006, China; (H.X.); (X.Y.); (K.H.)
| | - Kunzhao Huang
- The First School of Clinical Medicine, Guilin Medical University, Guilin 541006, China; (H.X.); (X.Y.); (K.H.)
| | - Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China;
| |
Collapse
|
11
|
Moinuddin A, Poznanski SM, Portillo AL, Monteiro JK, Ashkar AA. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment. Immunol Rev 2024; 323:19-39. [PMID: 38459782 DOI: 10.1111/imr.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Natural Killer (NK) cells are a top contender in the development of adoptive cell therapies for cancer due to their diverse antitumor functions and ability to restrict their activation against nonmalignant cells. Despite their success in hematologic malignancies, NK cell-based therapies have been limited in the context of solid tumors. Tumor cells undergo various metabolic adaptations to sustain the immense energy demands that are needed to support their rapid and uncontrolled proliferation. As a result, the tumor microenvironment (TME) is depleted of nutrients needed to fuel immune cell activity and contains several immunosuppressive metabolites that hinder NK cell antitumor functions. Further, we now know that NK cell metabolic status is a main determining factor of their effector functions. Hence, the ability of NK cells to withstand and adapt to these metabolically hostile conditions is imperative for effective and sustained antitumor activity in the TME. With this in mind, we review the consequences of metabolic hostility in the TME on NK cell metabolism and function. We also discuss tumor-like metabolic programs in NK cell induced by STAT3-mediated expansion that adapt NK cells to thrive in the TME. Finally, we examine how other approaches can be applied to enhance NK cell metabolism in tumors.
Collapse
Affiliation(s)
- Adnan Moinuddin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Sophie M Poznanski
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ana L Portillo
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Zheng EJ, Valeri JA, Andrews IW, Krishnan A, Bandyopadhyay P, Anahtar MN, Herneisen A, Schulte F, Linnehan B, Wong F, Stokes JM, Renner LD, Lourido S, Collins JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol 2024; 31:712-728.e9. [PMID: 38029756 PMCID: PMC11031330 DOI: 10.1016/j.chembiol.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jacqueline A Valeri
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parijat Bandyopadhyay
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melis N Anahtar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brooke Linnehan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01062 Dresden, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Galenko EE, Novikov MS, Bunev AS, Khlebnikov AF. Acridine-Isoxazole and Acridine-Azirine Hybrids: Synthesis, Photochemical Transformations in the UV/Visible Radiation Boundary Region, and Anticancer Activity. Molecules 2024; 29:1538. [PMID: 38611817 PMCID: PMC11013717 DOI: 10.3390/molecules29071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Easy-to-handle N-hydroxyacridinecarbimidoyl chloride hydrochlorides were synthesized as convenient nitrile oxide precursors in the preparation of 3-(acridin-9/2-yl)isoxazole derivatives via 1,3-dipolar cycloaddition with terminal alkynes, 1,1-dichloroethene, and acrylonitrile. Azirines with an acridin-9/2-yl substituent attached directly or via the 1,2,3-triazole linker to the azirine C2 were also synthesized. The three-membered rings of the acridine-azirine hybrids were found to be resistant to irradiation in the UV/visible boundary region, despite their long-wave absorption at 320-420 nm, indicating that the acridine moiety cannot be used as an antenna to transfer light energy to generate nitrile ylides from azirines for photoclick cycloaddition. The acridine-isoxazole hybrids linked at the C9-C3 or C2-C3 atoms under blue light irradiation underwent the addition of such hydrogen donor solvents, such as, toluene, o-xylene, mesitylene, 4-chlorotoluene, THF, 1,4-dioxane, or methyl tert-butyl ether (MTBE), to the acridine system to give the corresponding 9-substituted acridanes in good yields. The synthesized acridine-azirine, acridine-isoxazole, and acridane-isoxazole hybrids exhibited cytotoxicity toward both all tested cancer cell lines (HCT 116, MCF7, and A704) and normal cells (WI-26 VA4).
Collapse
Affiliation(s)
- Ekaterina E. Galenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Mikhail S. Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Alexander S. Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti 445020, Russia;
| | - Alexander F. Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| |
Collapse
|
14
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
15
|
Musleh Ud Din S, Streit SG, Huynh BT, Hana C, Abraham AN, Hussein A. Therapeutic Targeting of Hypoxia-Inducible Factors in Cancer. Int J Mol Sci 2024; 25:2060. [PMID: 38396737 PMCID: PMC10888675 DOI: 10.3390/ijms25042060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In the realm of cancer therapeutics, targeting the hypoxia-inducible factor (HIF) pathway has emerged as a promising strategy. This study delves into the intricate web of HIF-associated mechanisms, exploring avenues for future anticancer therapies. Framing the investigation within the broader context of cancer progression and hypoxia response, this article aims to decipher the pivotal role played by HIF in regulating genes influencing angiogenesis, cell proliferation, and glucose metabolism. Employing diverse approaches such as HIF inhibitors, anti-angiogenic therapies, and hypoxia-activated prodrugs, the research methodologically intervenes at different nodes of the HIF pathway. Findings showcase the efficacy of agents like EZN-2968, Minnelide, and Acriflavine in modulating HIF-1α protein synthesis and destabilizing HIF-1, providing preliminary proof of HIF-1α mRNA modulation and antitumor activity. However, challenges, including toxicity, necessitate continued exploration and development, as exemplified by ongoing clinical trials. This article concludes by emphasizing the potential of targeted HIF therapies in disrupting cancer-related signaling pathways.
Collapse
Affiliation(s)
- Saba Musleh Ud Din
- Department of Internal Medicine, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA
| | - Spencer G. Streit
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Bao Tran Huynh
- Department of Pharmacy, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA
| | - Caroline Hana
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Anna-Ninny Abraham
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Atif Hussein
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| |
Collapse
|
16
|
Anders JJ, Elwood BW, Kardon RH, Gramlich OW. Acriflavine, a HIF-1 inhibitor, preserves vision in an experimental autoimmune encephalomyelitis model of optic neuritis. Front Immunol 2023; 14:1271118. [PMID: 37942317 PMCID: PMC10628762 DOI: 10.3389/fimmu.2023.1271118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Optic neuritis (ON) is often an early sign of multiple sclerosis (MS), and recent studies show a link between HIF-1 pathway activation and inflammation. This study aimed to determine if inhibition of the HIF-1 pathway using the HIF-1a antagonist acriflavine (ACF) can reduce clinical progression and rescue the ocular phenotype in an experimental autoimmune encephalomyelitis (EAE) ON model. Methods EAE-related ON was induced in 60 female C57BL/6J mice by immunization with MOG33-55, and 20 EAE mice received daily systemic injections of ACF at 5 mg/kg. Changes in the visual function and structure of ACF-treated EAE mice were compared to those of placebo-injected EAE mice and naïve control mice. Results ACF treatment improved motor-sensory impairment along with preserving visual acuity and optic nerve function. Analysis of retinal ganglion cell complex alsoshowed preserved thickness correlating with increased survival of retinal ganglion cells and their axons. Optic nerve cell infiltration and magnitude of demyelination were decreased in ACF-treated EAE mice. Subsequent in vitro studies revealed improvements not only attributed to the inhibition of HIF-1 butalso to previously unappreciated interaction with the eIF2a/ATF4 axis in the unfolded protein response pathway. Discussion This study suggests that ACF treatment is effective in an animal model of MS via its pleiotropic effects on the inhibition of HIF-1 and UPR signaling, and it may be a viable approach to promote rehabilitation in MS.
Collapse
Affiliation(s)
- Jeffrey J. Anders
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
| | - Benjamin W. Elwood
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
| | - Randy H. Kardon
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
| | - Oliver W. Gramlich
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Roennfeldt AE, Allen TP, Trowbridge BN, Beard MR, Whitelaw ML, Russell DL, Bersten DC, Peet DJ. NanoFIRE: A NanoLuciferase and Fluorescent Integrated Reporter Element for Robust and Sensitive Investigation of HIF and Other Signalling Pathways. Biomolecules 2023; 13:1545. [PMID: 37892227 PMCID: PMC10605489 DOI: 10.3390/biom13101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The Hypoxia Inducible Factor (HIF) transcription factors are imperative for cell adaption to low oxygen conditions and development; however, they also contribute to ischaemic disease and cancer. To identify novel genetic regulators which target the HIF pathway or small molecules for therapeutic use, cell-based reporter systems are commonly used. Here, we present a new, highly sensitive and versatile reporter system, NanoFIRE: a NanoLuciferase and Fluorescent Integrated Reporter Element. Under the control of a Hypoxic Response Element (HRE-NanoFIRE), this system is a robust sensor of HIF activity within cells and potently responds to both hypoxia and chemical inducers of the HIF pathway in a highly reproducible and sensitive manner, consistently achieving 20 to 150-fold induction across different cell types and a Z' score > 0.5. We demonstrate that the NanoFIRE system is adaptable via substitution of the response element controlling NanoLuciferase and show that it can report on the activity of the transcriptional regulator Factor Inhibiting HIF, and an unrelated transcription factor, the Progesterone Receptor. Furthermore, the lentivirus-mediated stable integration of NanoFIRE highlights the versatility of this system across a wide range of cell types, including primary cells. Together, these findings demonstrate that NanoFIRE is a robust reporter system for the investigation of HIF and other transcription factor-mediated signalling pathways in cells, with applications in high throughput screening for the identification of novel small molecule and genetic regulators.
Collapse
Affiliation(s)
- Alison E. Roennfeldt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - Timothy P. Allen
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
| | - Brooke N. Trowbridge
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael R. Beard
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Murray L. Whitelaw
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 169857, Singapore
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - David C. Bersten
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - Daniel J. Peet
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
| |
Collapse
|
18
|
Davis DA, Shrestha P, Yarchoan R. Hypoxia and hypoxia-inducible factors in Kaposi sarcoma-associated herpesvirus infection and disease pathogenesis. J Med Virol 2023; 95:e29071. [PMID: 37665216 PMCID: PMC10502919 DOI: 10.1002/jmv.29071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi sarcoma and several other tumors and hyperproliferative diseases seen predominantly in human immunodeficiency virus-infected and other immunocompromised persons. There is an increasing body of evidence showing that hypoxia and hypoxia-inducible factors (HIFs) play important roles in the biology of KSHV and in the pathogenesis of KSHV-induced diseases. Hypoxia and HIFs can induce lytic activation of KSHV and KSHV can in turn lead to a hypoxic-like state in infected cells. In this review, we describe the complex interactions between KSHV biology, the cellular responses to hypoxia, and the pathogenesis of KSHV-induced diseases. We also describe how interference with HIFs can lead to decreased tumor growth and/or death of infected cells and KSHV-induced tumors. Finally, we show how these observations may lead to novel strategies for the treatment of KSHV-induced diseases.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Brian Chia CS, Pheng Lim S. A Patent Review on SARS Coronavirus Papain-Like Protease (PL pro ) Inhibitors. ChemMedChem 2023; 18:e202300216. [PMID: 37248169 DOI: 10.1002/cmdc.202300216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is an unprecedented global health emergency causing more than 6.6 million fatalities by 31 December 2022. So far, only three antiviral drugs have been granted emergency use authorisation or approved by the FDA. The SARS-CoV-2 papain-like protease (PLpro ) is deemed an attractive drug target as it plays an essential role in viral polyprotein processing and pathogenesis although no inhibitors have yet been approved. This patent review discusses coronavirus PLpro inhibitors reported in patents published between 1 January 2003 to 2 March 2023, giving an overview on the inhibitors that have generated commercial interest, especially amongst drug companies.
Collapse
Affiliation(s)
- C S Brian Chia
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos #08-01, Singapore, 138670, Singapore
| | - Siew Pheng Lim
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos #08-01, Singapore, 138670, Singapore
| |
Collapse
|
20
|
El-Masry AA, Zeid AM. Acriflavine: an efficient green fluorescent probe for sensitive analysis of aceclofenac in pharmaceutical formulations. BMC Chem 2023; 17:93. [PMID: 37533016 PMCID: PMC10394782 DOI: 10.1186/s13065-023-00979-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
Acriflavine is a multipurpose drug that shows antibacterial, antiviral, antimalarial, and antifungal activities. The remarkable native fluorescence of acriflavine is exploited in analytical chemistry field as an efficient probe for analysis of pharmaceutical and biological compounds. The fluorescent probe action of acriflavine is based on the remarkable fluorescence turning-off via formation of ion-pair complexes with acidic drugs at a specific pH. Herein, the acidic drug aceclofenac is analysed for the first time using acriflavine as a fluorescent probe. Aceclofenac can form an ion-pair complex with acriflavine at pH 8.5, and hence it partially turns off the fluorescence intensity of acriflavine over a concentration range of 1-20 µg/mL. The fluorescence quenching was monitored at 502 nm following an excitation at 265 or 451 nm. The reaction stoichiometry between acriflavine and aceclofenac was found to be 1:1 using limiting logarithmic method. The type of quenching was confirmed to be static using Stern-Volmer plot. The method showed low values of quantitation limit (0.89 µg/mL) and detection limit (0.29 µg/mL). Moreover, the method was linear (r = 0.9999), accurate, precise (RSD < 1.7%), robust, and specific. The proposed method was successfully employed to analyse aceclofenac in its dosage forms with high %recovery (98-101%). Additionally, GAPI and AGREE approaches were used to guarantee the suggested techniques' greenness, and the findings showed an excellent level of greenness.
Collapse
Affiliation(s)
- Amal A El-Masry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Abdallah M Zeid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
21
|
Piorecka K, Kurjata J, Gostynski B, Kazmierski S, Stanczyk WA, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Is acriflavine an efficient co-drug in chemotherapy? RSC Adv 2023; 13:21421-21431. [PMID: 37465576 PMCID: PMC10350790 DOI: 10.1039/d3ra02608f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is a global health problem being the second worldwide cause of deaths right after cardiovascular diseases. The main methods of cancer treatment involve surgery, radiation and chemotherapy with an emphasis on the latter. Thus development of nanochemistry and nanomedicine in a search for more effective and safer cancer treatment is an important area of current research. Below, we present interaction of doxorubicin and acriflavine and the cytotoxicity of these drug nano-complexes towards cervical cancer (HeLa) cells. Experimental results obtained from NMR measurements and fluorescence spectroscopy show that the drugs' interaction was due to van der Waals forces, formation of hydrogen bonds and π-π stacking. Quantum molecular simulations confirmed the experimental results with regard to existing π-π stacking. Additionally it was shown that, at the level of theory applied (DFT, triple zeta basis set), the stacking interactions comprise the most preferable interactions (the lowest ΔG ca. -12 kcal mol-1) both between the molecules forming the acriflavine system and between the other component - another drug (doxorubicin) dimer. Biological tests performed on HeLa cells showed high cytotoxicity of the complexes, comparable to free drugs (ACF and DOX), both after 24 and 48 hours of incubation. For non-cancerous cells, a statistically significant difference in the cytotoxicity of drugs and complexes was observed in the case of a short incubation period. The results of the uptake study showed significantly more efficient cellular uptake of acriflavine than doxorubicin, whether administered alone or in combination with an anthracycline. The mechanism determining the selective uptake of acriflavine and ACF : DOX complexes towards non-cancer and cancer cells should be better understood in the future, as it may be of key importance in the design of complexes with toxic anti-cancer drugs.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Bartłomiej Gostynski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Slawomir Kazmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| |
Collapse
|
22
|
Investigation of eco-friendly fluorescence quenching probes for assessment of acemetacin using silver nanoparticles and acriflavine reagent. Sci Rep 2023; 13:4237. [PMID: 36918612 PMCID: PMC10014932 DOI: 10.1038/s41598-023-31106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The non-steroidal anti-inflammatory medication acemetacin was assessed via two straightforward green spectrofluorimetric techniques. The quenching-dependent derivatizing spectrofluorimetric reactions are the master point of this study. Acriflavine-based method (Method I) depends on forming an ion association complex between acriflavine and the drug in a ratio of 1:1, decreasing the former's fluorescence intensity. Acriflavine or Ag NP's intensity-related quenching action goes linearly with the acemetacin concentration in the 2.0-20.0 µg/mL and 1.0-16.0 µg/mL ranges, respectively. The second quenching mechanism depends on using the silver nanoparticles (Ag NP's) as a fluorescence probe (Method II); Ag NP's were prepared from reducing silver nitrate using sodium borohydride. Both methods could be applied to determine pure and pharmaceutical dosage forms of acemetacin. The methods proved valid according to the international conference on harmonization (ICH) guidelines. In addition to this, this work has been estimated under green criteria assessment tools. There is no significant difference between the proposed and the comparison methods after the statistical interpretation.
Collapse
|