1
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
2
|
Sgroi S, Romeo E, Albanesi E, Piccardi F, Catalano F, Debellis D, Bertozzi F, Reggiani A. Combined in vivo effect of N-acylethanolamine-hydrolyzing acid amidase and glycogen synthase kinase-3β inhibition to treat multiple sclerosis. Biomed Pharmacother 2024; 175:116677. [PMID: 38701570 DOI: 10.1016/j.biopha.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3β (GSK-3β). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The combined inhibition of NAAA and GSK-3β by two selected small-molecule compounds, ARN16186 (an NAAA inhibitor) and AF3581 (a GSK-3β inhibitor), effectively mitigated disease progression, rescuing the animals from paralysis and preventing a worsening of the pathology. The complementary activity of the two inhibitors reduced the infiltration of immune cells into the spinal cord and led to the formation of thin myelin sheaths around the axons post-demyelination. Specifically, the inhibition of NAAA and GSK-3β modulated the over-activation of NF-kB and STAT3 transcription factors in the EAE-affected mice and induced the nuclear translocation of β-catenin, reducing the inflammatory insult and promoting the remyelination process. Overall, this work demonstrates that the dual-targeting of key aspects responsible for MS progression could be an innovative pharmacological approach to tackle the pathology.
Collapse
Affiliation(s)
- Stefania Sgroi
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Elisa Romeo
- Structural Biophysics Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Federica Piccardi
- Animal Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Angelo Reggiani
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
3
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Schneider NO, Gilreath K, Burkett DJ, St. Maurice M, Donaldson WA. Synthesis and Evaluation of 5-(Heteroarylmethylene)hydantoins as Glycogen Synthase Kinase-3β Inhibitors. Pharmaceuticals (Basel) 2024; 17:570. [PMID: 38794140 PMCID: PMC11123921 DOI: 10.3390/ph17050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule inhibitors of GSK-3 have been reported. Phenylmethylene hydantoins are known to exhibit a wide range of inhibitory activities including for GSK-3β. A family of fourteen 2-heterocycle substituted methylene hydantoins (14, 17-29) were prepared and evaluated for the inhibition of GSK-3β at 25 μM. The IC50 values of five of these compounds was determined; the two best inhibitors are 5-[(4'-chloro-2-pyridinyl)methylene]hydantoin (IC50 = 2.14 ± 0.18 μM) and 5-[(6'-bromo-2-pyridinyl)methylene]hydantoin (IC50 = 3.39 ± 0.16 μM). The computational docking of the compounds with GSK-3β (pdb 1q41) revealed poses with hydrogen bonding to the backbone at Val135. The 5-[(heteroaryl)methylene]hydantoins did not strongly inhibit other metalloenzymes, demonstrating poor inhibitory activity against matrix metalloproteinase-12 at 25 μM and against human carbonic anhydrase at 200 μM, and were not inhibitors for Staphylococcus aureus pyruvate carboxylase at concentrations >1000 μM.
Collapse
Affiliation(s)
- Nicholas O. Schneider
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Kendra Gilreath
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Daniel J. Burkett
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Martin St. Maurice
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - William A. Donaldson
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
5
|
Hartz RA, Ahuja VT, Luo G, Chen L, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Xu S, Tokarski JS, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Discovery of 2-(Anilino)pyrimidine-4-carboxamides as Highly Potent, Selective, and Orally Active Glycogen Synthase Kinase-3 (GSK-3) Inhibitors. J Med Chem 2023. [PMID: 37235865 DOI: 10.1021/acs.jmedchem.3c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3β in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease. A series of analogues containing a pyrimidine-based hinge-binding heterocycle was synthesized and evaluated, leading to the identification of highly potent GSK-3 inhibitors with excellent kinase selectivity. Further evaluation of 34 and 40 in vivo demonstrated that these compounds are orally bioavailable, brain-penetrant GSK-3 inhibitors that lowered levels of phosphorylated tau in a triple-transgenic mouse Alzheimer's disease model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
6
|
Sani G, Kotzalidis GD, Fiaschè F, Manfredi G, Ghaemi SN. Second messengers and their importance for novel drug treatments of patients with bipolar disorder. Int Rev Psychiatry 2022; 34:736-752. [PMID: 36786113 DOI: 10.1080/09540261.2022.2119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Second messenger systems, like the cyclic nucleotide, glycogen synthase kinase-3β, phosphoinositide, and arachidonic acid cascades, are involved in bipolar disorder (BD). We investigated their role on the development of novel therapeutic drugs using second messenger mechanisms. PubMed search and narrative review. We used all relevant keywords for each second messenger cascade combining it with BD and related terms and combined all with novel/innovative treatments/drugs. Our search produced 31 papers most were reviews, and focussed on the PI3K/AKT-GSK-3β/Nrf2-NF-ĸB pathways. Only two human randomized clinical trials were identified, of ebselen, an antioxidant, and celecoxib, a cyclooxygenase-2 inhibitor, both with poor unsatisfactory results. Despite the fact that all second messenger systems are involved in the pathophysiology of BD, there are few experiments with novel drugs using these mechanisms. These mechanisms are a neglected and potentially major opportunity to transform the treatment of bipolar illness.
Collapse
Affiliation(s)
- Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Georgios D Kotzalidis
- Centro Lucio Bini, Rome, Italy.,NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea University Hospital, Rome, Italy
| | - Federica Fiaschè
- NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea University Hospital, Rome, Italy.,ASL Rieti, Servizio Psichiatrico Diagnosi e Cura, Ospedale San Camillo de Lellis, Rieti, Italy
| | - Giovanni Manfredi
- Centro Lucio Bini, Rome, Italy.,NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea University Hospital, Rome, Italy
| | - S Nassir Ghaemi
- School of Medicine, Tufts University, Boston, MA, USA.,Lecturer on Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
9
|
Westmark PR, Garrone B, Ombrato R, Milanese C, Di Giorgio FP, Westmark CJ. Testing Fmr1 KO Phenotypes in Response to GSK3 Inhibitors: SB216763 versus AFC03127. Front Mol Neurosci 2021; 14:751307. [PMID: 34690696 PMCID: PMC8529056 DOI: 10.3389/fnmol.2021.751307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a proline-directed serine-threonine kinase that is associated with several neurological disorders, including Alzheimer’s disease and fragile X syndrome (FXS). We tested the efficacy of a novel GSK3 inhibitor AFC03127, which was developed by Angelini Pharma, in comparison to the metabotropic glutamate receptor 5 inhibitor 2-Methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the GSK3 inhibitor SB216763 in in vivo and in vitro assays in Fmr1KO mice, a mouse model useful for the study of FXS. The in vivo assay tested susceptibility to audiogenic-induced seizures (AGS) whereas the in vitro assays assessed biomarker expression and dendritic spine length and density in cultured primary neurons as a function of drug dose. MPEP and SB216763 attenuated AGS in Fmr1KO mice, whereas AFC03127 did not. MPEP and AFC03127 significantly reduced dendritic expression of amyloid-beta protein precursor (APP). All drugs rescued spine length and the ratio of mature dendritic spines. Spine density was not statistically different between vehicle and GSK3 inhibitor-treated cells. The drugs were tested over a wide concentration range in the in vitro assays to determine dose responses. A bell-shaped dose response decrease in APP expression was observed in response to AFC03127, which was more effective than SB216763. These findings confirm previous studies demonstrating differential effects of various GSK3 inhibitors on AGS propensity in Fmr1KO mice and confirm APP as a downstream biomarker that is responsive to GSK3 activity.
Collapse
Affiliation(s)
- Pamela R Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | | | | | | | | | - Cara J Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States.,Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
10
|
Porceddu PF, Ciampoli M, Romeo E, Garrone B, Durando L, Milanese C, Di Giorgio FP, Reggiani A. The novel potent GSK3 inhibitor AF3581 reverts fragile X syndrome phenotype. Hum Mol Genet 2021; 31:839-849. [PMID: 34596681 DOI: 10.1093/hmg/ddab251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK3 has been linked to several disease conditions such as Fragile X Syndrome (FXS). Recent evidences demonstrating an increased activity of GSK3 in murine models of FXS, suggest that dysregulation/hyperactivation of the GSK3 path should contribute to FXS development. A likely possibility could be that in FXS there is a functional impairment of the upstream inhibitory input over GSK3 thus making overactive the kinase. Since GSK3 signaling is a central regulatory node for critical neurodevelopmental pathways, understanding the contribution of GSK3 dysregulation to FXS, may provide novel targets for therapeutic interventions for this disease. In this study we used AF3581, a potent GSK3 inhibitor that we recently discovered, in an in vivo FXS mouse model to elucidate the crucial role of GSK3 in specific behavioral patterns (locomotor activity, sensorimotor gating and social behavior) associated with this disease. All the behavioral alterations manifested by Fmr1 knockout mice were reverted after a chronic treatment with our GSK3 inhibitor, confirming the importance of this pathway as a therapeutic target.
Collapse
Affiliation(s)
- Pier Francesca Porceddu
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mariasole Ciampoli
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Elisa Romeo
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Lucia Durando
- Angelini Pharma S.p.A., Viale Amelia 70, 00181 Rome, Italy
| | | | | | - Angelo Reggiani
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
11
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
12
|
Jiang X, Liu C, Zou M, Xie H, Lin T, Lyu W, Xu J, Li Y, Feng F, Sun H, Liu W. Discovery of 2-(cyclopropanecarboxamido)-N-(5-((1-(4-fluorobenzyl)piperidin-4-yl)methoxy)pyridin-3-yl)isonicotinamide as a potent dual AChE/GSK3β inhibitor for the treatment of Alzheimer's disease: Significantly increasing the level of acetylcholine in the brain without affecting that in intestine. Eur J Med Chem 2021; 223:113663. [PMID: 34198150 DOI: 10.1016/j.ejmech.2021.113663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors are currently the first-line drugs approved by the FDA for the treatment of Alzheimer's disease (AD). However, a short effective-window limits their therapeutic benefits. Clinical studies have confirmed that the combination of AChE inhibitors and neuroprotective agents exhibits better anti-AD effects. We have previously reported that the dual AChE/GSK3β (Glycogen synthase kinase 3β) modulators have both neuroprotective effects and cognitive impairment-improvement effects. In this study, we characterized a new backbone of the AChE/GSK3β inhibitor 11c. It was identified as a highly potent AChE inhibitor and was found superior to donepezil, the first-line drug for the treatment of AD. In vivo studies confirmed that 11c significantly inhibited the activity of AChE in the brain but had little effect on the activity of AChE in the intestine. This advantage of 11c was expected to reduce the peripheral side effects caused by donepezil. Furthermore, biomarker studies have shown that 11c also improved the levels of acetylcholine and synaptophysin in the brain and exhibited neuroprotective effects. Preliminary in vivo and in vitro research results underline the exciting potential of compound 11c in the treatment of AD.
Collapse
Affiliation(s)
- Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 211198, China
| | - Manxing Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanfang Xie
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Tailiang Lin
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Weiping Lyu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan Li
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
13
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
14
|
An updated research of glycogen synthase kinase-3β inhibitors: a review. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02718-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Ghosh S, Mondal S, Hajra A. Direct Catalytic Functionalization of Indazole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000423] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Susmita Mondal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
16
|
Raut S, Tidke A, Dhotre B, Arif PM. Different Strategies to the Synthesis of Indazole and its Derivatives: A Review. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190430160324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this review, works of various researchers working on the synthesis of indazole and their related compound are cited. The review comprises of methodologies for the synthesis of 1H and 2H indazole derivatives, along with some pharmacological activities. In this review, research papers published in various peer-reviewed journals between the year 2000 and year 2017 are enlisted in alphabetical order.
Collapse
Affiliation(s)
- Santosh Raut
- Maulana Azad College and Research Center, Rouza Bagh, Aurangabad (M.S.), India
| | - Atul Tidke
- Maulana Azad College and Research Center, Rouza Bagh, Aurangabad (M.S.), India
| | | | - Pathan Mohd Arif
- Maulana Azad College and Research Center, Rouza Bagh, Aurangabad (M.S.), India
| |
Collapse
|
17
|
Capurro V, Lanfranco M, Summa M, Porceddu PF, Ciampoli M, Margaroli N, Durando L, Garrone B, Ombrato R, Tongiani S, Reggiani A. The mood stabilizing properties of AF3581, a novel potent GSK-3β inhibitor. Biomed Pharmacother 2020; 128:110249. [PMID: 32470749 DOI: 10.1016/j.biopha.2020.110249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzymeand highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients.
Collapse
Affiliation(s)
- Valeria Capurro
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Massimiliano Lanfranco
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Maria Summa
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Pier Francesca Porceddu
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Mariasole Ciampoli
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Natasha Margaroli
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Lucia Durando
- Angelini Pharma S.p.A., Viale Amelia, 70-00181, Rome, Italy
| | | | | | | | - Angelo Reggiani
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
18
|
Prati F, Buonfiglio R, Furlotti G, Cavarischia C, Mangano G, Picollo R, Oggianu L, di Matteo A, Olivieri S, Bovi G, Porceddu PF, Reggiani A, Garrone B, Di Giorgio FP, Ombrato R. Optimization of Indazole-Based GSK-3 Inhibitors with Mitigated hERG Issue and In Vivo Activity in a Mood Disorder Model. ACS Med Chem Lett 2020; 11:825-831. [PMID: 32435391 DOI: 10.1021/acsmedchemlett.9b00633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorders still represent a global unmet medical need and pose a requirement for novel effective treatments. In this respect, glycogen synthase kinase 3β (GSK-3β) aberrant activity has been linked to the pathophysiology of several disease conditions, including mood disorders. Therefore, the development of GSK-3β inhibitors with good in vivo efficacy and safety profile associated with high brain exposure is required. Accordingly, we have previously reported the selective indazole-based GSK-3 inhibitor 1, which showed excellent efficacy in a mouse model of mania. Despite the favorable preclinical profile, analog 1 suffered from activity at the hERG ion channel, which prevented its further progression. Herein, we describe our strategy to improve this off-target liability through modulation of physicochemical properties, such as lipophilicity and basicity. These efforts led to the potent inhibitor 14, which possessed reduced hERG affinity, promising in vitro ADME properties, and was very effective in a mood stabilizer in vivo model.
Collapse
Affiliation(s)
- Federica Prati
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Guido Furlotti
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | | | | | - Laura Oggianu
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Anna di Matteo
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Graziella Bovi
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Pier Francesca Porceddu
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Angelo Reggiani
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | | | | |
Collapse
|
19
|
Discovery of Novel Imidazopyridine GSK-3β Inhibitors Supported by Computational Approaches. Molecules 2020; 25:molecules25092163. [PMID: 32380735 PMCID: PMC7248956 DOI: 10.3390/molecules25092163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
The interest of research groups and pharmaceutical companies to discover novel GSK-3β inhibitors has increased over the years considering the involvement of this enzyme in many pathophysiological processes and diseases. Along this line, we recently reported on 1H-indazole-3-carboxamide (INDZ) derivatives 1-6, showing good GSK-3β inhibition activity. However, they suffered from generally poor central nervous system (CNS) permeability. Here, we describe the design, synthesis, and in vitro characterization of novel imidazo[1,5-a]pyridine-1-carboxamide (IMID 1) and imidazo[1,5-a]pyridine-3-carboxamide (IMID 2) compounds (7-18) to overcome such liability. In detail, structure-based approaches and fine-tuning of physicochemical properties guided the design of derivatives 7-18 resulting in ameliorated absorption, distribution, metabolism, and excretion (ADME) properties. A crystal structure of 16 in complex with GSK-3β enzyme (PDB entry 6Y9S) confirmed the in silico models. Despite the nanomolar inhibition activity, the new core compounds showed a reduction in potency with respect to INDZ derivatives 1-6. In this context, Molecular Dynamics (MD) and Quantum Mechanics (QM) based approaches along with NMR investigation helped to rationalize the observed structure activity relationship (SAR). With these findings, the key role of the acidic hydrogen of the central core for a tight interaction within the ATP pocket of the enzyme reflecting in good GSK-3β affinity was demonstrated.
Collapse
|
20
|
Motevalli S, Nguyen MT, Tan J, Fuller AA. Diverse N-Substituted Azole-Containing Amino Acids as Building Blocks for Cyclopeptides. ACS OMEGA 2020; 5:1214-1220. [PMID: 31984279 PMCID: PMC6977196 DOI: 10.1021/acsomega.9b03682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The preparation of 16 oxazole- or thiazole-containing amino esters bearing a wide array of N-substitution is reported. These were accessed in 40-92% yield via an AgClO4-promoted substitution reaction between a primary amine and a chloromethyl-functionalized thiazole or oxazole. These new synthetic building blocks will be useful for the preparation of new cyclopeptide analogues bearing heterocyclic backbone modifications. Four macrocyclic N-substituted oligoamides that include thiazole or oxazole heterocycles were obtained, following cyclooligomerization reactions of azole-modified N-substituted amino acids.
Collapse
Affiliation(s)
- Somayeh Motevalli
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Michelle T. Nguyen
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Jiacheng Tan
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Amelia A. Fuller
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| |
Collapse
|
21
|
Eddahmi M, Moura NMM, Bouissane L, Faustino MAF, Cavaleiro JAS, Paz FAA, Mendes RF, Figueiredo J, Carvalho J, Cruz C, Neves MGPMS, Rakib EM. Synthesis and Biological Evaluation of New Functionalized Nitroindazolylacetonitrile Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201904344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammed Eddahmi
- Laboratory of Organic and Analytic Chemistry, Faculty of Sciences and TechnicsSultan Moulay Slimane University BP 523 2300 Beni-Mellal Morocco
- QOPNA & LAQV-REQUIMTE, Department of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Nuno M. M. Moura
- QOPNA & LAQV-REQUIMTE, Department of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Latifa Bouissane
- Laboratory of Organic and Analytic Chemistry, Faculty of Sciences and TechnicsSultan Moulay Slimane University BP 523 2300 Beni-Mellal Morocco
| | - Maria A. F. Faustino
- QOPNA & LAQV-REQUIMTE, Department of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - José A. S. Cavaleiro
- QOPNA & LAQV-REQUIMTE, Department of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Filipe A. A. Paz
- CICECO - Aveiro Institute of Materials, Chemistry DepartmentUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Ricardo F. Mendes
- CICECO - Aveiro Institute of Materials, Chemistry DepartmentUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Joana Figueiredo
- CICS-UBI - Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior Av. Infante D. Henrique 6200-506 Covilhã Portugal
| | - Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior Av. Infante D. Henrique 6200-506 Covilhã Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior Av. Infante D. Henrique 6200-506 Covilhã Portugal
| | | | - El Mostapha Rakib
- Laboratory of Organic and Analytic Chemistry, Faculty of Sciences and TechnicsSultan Moulay Slimane University BP 523 2300 Beni-Mellal Morocco
| |
Collapse
|
22
|
Wang Y, Dou X, Jiang L, Jin H, Zhang L, Zhang L, Liu Z. Discovery of novel glycogen synthase kinase-3α inhibitors: Structure-based virtual screening, preliminary SAR and biological evaluation for treatment of acute myeloid leukemia. Eur J Med Chem 2019; 171:221-234. [PMID: 30925338 DOI: 10.1016/j.ejmech.2019.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Glycogen synthase kinase 3α (GSK-3α) plays a constitutive role in various physiological processes and has been proved to be a therapeutic target for acute myeloid leukemia (AML). In this paper, by means of computer-aided drug design, we discovered a novel chemical series of GSK-3α inhibitors with an IC50 value of 0.033-2.804 μM. The preliminary structure-activity relationship was concluded and, notably, the most potent and isoform-selective compound G28_14 was identified with IC50 values of 33 nM and 218 nM against GSK-3α and -3β, respectively, exhibiting a nearly ten-fold isoform-selectivity. Further cell viability assays and colony formation assays revealed that G28_14 suppressed cell survival by impairing cell proliferation by up to 90% in two AML cell lines. Moreover, surface marker expression analysis demonstrated that G28_14 induced terminal differentiation with a high level of CD11b, CD11c, and CD14. Western immunoblotting showed that G28_14 isoform-selectively inhibited the phosphorylation of GSK-3α in-cell without activating Wnt/β-catenin signaling. In addition, to elucidate its structure-activity relationship, the binding mode of this chemical series was proposed using molecular docking and molecular dynamics simulations. Taken together, this chemical series is worth developing as differentiation therapies for the treatment of AML.
Collapse
Affiliation(s)
- Yanxing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Lan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
23
|
Xu M, Wang SL, Zhu L, Wu PY, Dai WB, Rakesh KP. Structure-activity relationship (SAR) studies of synthetic glycogen synthase kinase-3β inhibitors: A critical review. Eur J Med Chem 2018; 164:448-470. [PMID: 30616053 DOI: 10.1016/j.ejmech.2018.12.073] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/28/2022]
Abstract
Glycogen Synthase Kinase-3 (GSK-3) is a constitutively dynamic, omnipresent serine/threonine protein kinase regularly called as a "multitasking kinase" due to its pliable function in diverse signaling pathways. It exists in two isoforms i.e., GSK-3α and GSK-3β. Inhibition of GSK-3 may be useful in curing various diseases such as Alzheimer's disease, type II diabetes, mood disorders, cancers, chronic inflammatory agents, stroke, bipolar disorders and so on, but the approach poses significant challenges. Lithium was the first GSK-3β inhibitor to be used for therapeutic outcome and has been effectively used for many years. In recent years, a large number of structurally diverse potent GSK-3β inhibitors are reported. The present review focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent GSK-3β inhibitors and also describes its structure-activity relationships (SAR) and molecular binding interactions of favorable applicability in various diseases.
Collapse
Affiliation(s)
- M Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - S L Wang
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - L Zhu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - P Y Wu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - W B Dai
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - K P Rakesh
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
24
|
Zhang C, Chang S, Dong S, Qiu L, Xu X. Acid-Promoted Bicyclization of Diaryl Alkynes: Synthesis of 2H-Indazoles with in Situ Generated Diazonium Salt as Nitrogen Source. J Org Chem 2018; 83:9125-9136. [DOI: 10.1021/acs.joc.8b01199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sailan Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shanliang Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lihua Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Ambure P, Bhat J, Puzyn T, Roy K. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach. J Biomol Struct Dyn 2018; 37:1282-1306. [PMID: 29578387 DOI: 10.1080/07391102.2018.1456975] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is a multi-factorial disease, which can be simply outlined as an irreversible and progressive neurodegenerative disorder with an unclear root cause. It is a major cause of dementia in old aged people. In the present study, utilizing the structural and biological activity information of ligands for five important and mostly studied vital targets (i.e. cyclin-dependant kinase 5, β-secretase, monoamine oxidase B, glycogen synthase kinase 3β, acetylcholinesterase) that are believed to be effective against AD, we have developed five classification models using linear discriminant analysis (LDA) technique. Considering the importance of data curation, we have given more attention towards the chemical and biological data curation, which is a difficult task especially in case of big data-sets. Thus, to ease the curation process we have designed Konstanz Information Miner (KNIME) workflows, which are made available at http://teqip.jdvu.ac.in/QSAR_Tools/ . The developed models were appropriately validated based on the predictions for experiment derived data from test sets, as well as true external set compounds including known multi-target compounds. The domain of applicability for each classification model was checked based on a confidence estimation approach. Further, these validated models were employed for screening of natural compounds collected from the InterBioScreen natural database ( https://www.ibscreen.com/natural-compounds ). Further, the natural compounds that were categorized as 'actives' in at least two classification models out of five developed models were considered as multi-target leads, and these compounds were further screened using the drug-like filter, molecular docking technique and then thoroughly analyzed using molecular dynamics studies. Finally, the most potential multi-target natural compounds against AD are suggested.
Collapse
Key Words
- 3D, three-dimensional
- ACh, acetylcholine
- AChE, acetylcholinesterase
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism, and elimination
- APP, amyloid precursor protein
- AUROC, area under the ROC curve
- Alzheimer’s disease
- Aβ, amyloid beta
- BACE1, beta-APP-cleaving enzyme 1
- CDK5, cyclin-dependant kinase 5
- FDA, food and drug administration
- FN, false negative
- FP, false positive
- GSK-3β, glycogen synthase kinase 3β
- HTVS, high-throughput virtual screening
- InChI, International Chemical Identifier
- KNIME, Konstanz Information Miner
- LBDD, ligand-based drug design
- LDA, linear discriminant analysis
- MAO-B, monoamine oxidase B
- MMGBSA, molecular mechanics/generalized born surface area
- MMPBSA, molecular mechanics/Poisson–Boltzmann surface area
- MMPs, matched molecular pairs
- MSA, molecular spectrum analysis
- MTDLs, multi-target-directed ligands
- NMDA, N-methyl-D-aspartate
- PDB, protein data bank
- PP, posterior probability
- QSAR, quantitative structure–activity relationship
- RMSD, root-mean-square deviation
- ROC, receiver operating curve
- ROS, reactive oxygen species
- SBDD, structure-based drug design
- SDF, structure data format
- SMILES, simplified molecular-input line-entry system
- TN, true negative
- TP, true positive
- big data
- data curation
- linear discriminant analysis
- molecular docking
- molecular dynamics
- multi-target drug design
- natural compounds
Collapse
Affiliation(s)
- Pravin Ambure
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700 032 , India
| | - Jyotsna Bhat
- b Laboratory of Environmental Chemometrics, Faculty of Chemistry , University of Gdańsk , ul. Wita Stwosza 63, Gdańsk 80-308 , Poland
| | - Tomasz Puzyn
- b Laboratory of Environmental Chemometrics, Faculty of Chemistry , University of Gdańsk , ul. Wita Stwosza 63, Gdańsk 80-308 , Poland
| | - Kunal Roy
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700 032 , India
| |
Collapse
|
26
|
Dou X, Jiang L, Wang Y, Jin H, Liu Z, Zhang L. Discovery of new GSK-3β inhibitors through structure-based virtual screening. Bioorg Med Chem Lett 2018; 28:160-166. [DOI: 10.1016/j.bmcl.2017.11.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/18/2017] [Accepted: 11/23/2017] [Indexed: 01/22/2023]
|
27
|
Muneer A. Wnt and GSK3 Signaling Pathways in Bipolar Disorder: Clinical and Therapeutic Implications. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:100-114. [PMID: 28449557 PMCID: PMC5426498 DOI: 10.9758/cpn.2017.15.2.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/20/2016] [Indexed: 01/19/2023]
Abstract
The neurobiology of bipolar disorder, a chronic and systemic ailment is not completely understood. The bipolar phenotype manifests in myriad ways, and psychopharmacological agents like lithium have long term beneficial effects. The enzyme glycogen synthase kinase 3 (GSK3) has come into focus, as lithium and several other mood stabilizing medications inhibit its activity. This kinase and its key upstream modulator, Wnt are dysregulated in mood disorders and there is a growing impetus to delineate the chief substrates involved in the development of these illnesses. In May 2016, a comprehensive literature search was undertaken which revealed that there is over activity of GSK3 in bipolar disorder with deleterious downstream effects like proinflammatory status, increased oxidative stress, and circadian dysregulation leading to declining neurotrophic support and enhanced apoptosis of neural elements. By developing specific GSK3 inhibitors the progressive worsening in bipolar disorder can be forestalled with improved prospects for the sufferers.
Collapse
Affiliation(s)
- Ather Muneer
- Department of Psychiatry, Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|
28
|
Palomo V, Martinez A. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015). Expert Opin Ther Pat 2016; 27:657-666. [PMID: 27828716 DOI: 10.1080/13543776.2017.1259412] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glycogen synthase kinase (GSK-3) is a serine/threonine kinase that phosphorylates more than one hundred different sequences within proteins in a variety of different pathways. It is a key component of a remarkably large number of cellular processes and diseases. Imbalance of GSK-3 activity is involved in various prevalent pathological diseases, such as diabetes, neurodegenerative diseases and cancer. Understanding its role in different disorders has been central in the last several decades and there has been a significantly large development of GSK-3 inhibitors, some of which, show promising results for the treatment of these devastating diseases. Areas covered: This review covers patent literature on GSK-3 inhibitors and their applications published and/or granted between 2014 and 2015. Expert opinion: GSK-3 inhibitors have gained a prominent role in regenerative medicine based in their ability to modulate stem cells. Moreover, some allosteric modulators of GSK-3 emerge as safe compounds for chronic treatments.
Collapse
Affiliation(s)
- Valle Palomo
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| | - Ana Martinez
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| |
Collapse
|
29
|
Kim J, Moon Y, Hong S. Identification of lead small molecule inhibitors of glycogen synthase kinase-3 beta using a fragment-linking strategy. Bioorg Med Chem Lett 2016; 26:5669-5673. [PMID: 27815120 DOI: 10.1016/j.bmcl.2016.10.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/28/2022]
Abstract
Glycogen synthase kinase-3 beta (GSK3β) kinase serves as a promising therapeutic target for the treatment of various human diseases, such as diabetes, obesity, and Alzheimer's disease. In this study, we report lead GSK3β inhibitors identified using a fragment-linking strategy. Through the systematic exploration, a six-atom chain unit bearing the rigid double bond was found to be a suitable linker connecting two fragments, which enables favorable contacts with backbone groups of residues in the pockets. As a consequence, potent GSK3β inhibitor 9i was found with IC50 values of 19nM. The binding mode analysis indicates that the activities of the inhibitors appear to be achieved by the establishment of multiple hydrogen bonds and hydrophobic interactions in the ATP-binding site of GSK3β. The good biochemical potencies and structural uniqueness of the inhibitors support consideration in the further study to optimize the biological activity.
Collapse
Affiliation(s)
- Jinhee Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea; Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea; Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
30
|
Functionalization of indazoles by means of transition metal-catalyzed cross-coupling reactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Park H, Shin Y, Kim J, Hong S. Application of Fragment-Based de Novo Design to the Discovery of Selective Picomolar Inhibitors of Glycogen Synthase Kinase-3 Beta. J Med Chem 2016; 59:9018-9034. [PMID: 27676184 DOI: 10.1021/acs.jmedchem.6b00944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A systematic fragment-based de novo design procedure was developed and applied to discover new potent and selective inhibitors of glycogen synthase kinase-3 beta (GSK3β). Candidate inhibitors were generated to simultaneously maximize the biochemical potency and the specificity for GSK3β through three design steps: identification of the optimal molecular fragments for the three sub-binding regions, design of proper linking moieties to connect the fragmental building blocks, and final scoring of the generated molecules. By virtue of modifying the ligand hydration free energy term in the scoring function using hybrid scaled particle theory and the extended solvent-contact model, we identified several GSK3β inhibitors with biochemical potencies ranging from low nanomolar to picomolar levels. Among them, the two most potent inhibitors (12 and 27) are anticipated to serve as promising starting points of drug discovery for various diseases caused by GSK3β because of the high specificity for the inhibition of GSK3β.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University , Seoul 143-747, Korea
| | - Yongje Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, E6-4, Daejeon 305-701, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS) , Daejeon 305-701, Korea
| | - Jinhee Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, E6-4, Daejeon 305-701, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS) , Daejeon 305-701, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, E6-4, Daejeon 305-701, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS) , Daejeon 305-701, Korea
| |
Collapse
|