1
|
Sun Z, Zang Q, Xu C, Zhang X, Kang Z, Yang Y, Li L, Chen J. Discovery of novel Bis-amide analogue ST12 for the treatment of inflammatory bowel diseases (IBD) by inhibiting NLRP3 inflammasome activation. Bioorg Chem 2025; 159:108402. [PMID: 40154236 DOI: 10.1016/j.bioorg.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Herein, we designed and synthesized a series of novel bis-amide small molecule anti-inflammatory agents, among them, compound ST12 showed most potent anti-inflammatory activity. ST12 effectively inhibited the production of nitric oxide (NO) (inhibition rate of 52.67 ± 0.03 % at 10 μM) and downregulated the mRNA levels of proinflammatory cytokines iNOS, IL-6, IL-1β and TNF-α in lipopolysaccharide (LPS) induced RAW264.7 cells. Furthermore, mechanism studies suggest that compound ST12 exerted anti-inflammatory effects by inhibiting the activation of the NLRP3 inflammasome. Importantly, ST12 effectively ameliorated DSS-induced colitis in vivo. Taken together, ST12 is worthy of further investigation as a small molecule anti-inflammatory agent for treatment of inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinru Zang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenghui Kang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Ma Z, McAninch S, Liu Z, Zhang C, Chen H, He J, Yang W, Panganiban RP, Cong Y, Yochum G, Brasier AR, Pinchuk IV, Tian B, Zhou J. Orally Bioavailable BRD4 BD1 Inhibitor ZL0516 Effectively Suppresses Colonic Inflammation in Animal Models of Inflammatory Bowel Disease. ACS Pharmacol Transl Sci 2025; 8:1152-1167. [PMID: 40242579 PMCID: PMC11997885 DOI: 10.1021/acsptsci.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Inflammatory bowel disease (IBD), a chronic, progressive, and recurrent gastrointestinal inflammatory disorder, poses a significant threat to global health and exerts an adverse effect on the quality of life. Currently, there is a lack of effective therapies for IBD. Developing novel targeted therapies for IBD, particularly orally effective therapeutics, is a vital need for IBD patients. Herein, we first demonstrate that BRD4/NF-κB signaling is aberrantly activated in the colons of human IBD biopsy samples compared to that of normal healthy controls. ZL0516, a potent, selective, and orally bioavailable BRD4 BD1 inhibitor, significantly inhibits the TNFα- and LPS-induced expression of inflammatory cytokines in human colonic epithelial cells (HCECs) and peripheral blood mononuclear cells (PBMCs) with low cytotoxicity. Intriguingly, when administered in a preventive mode, ZL0516 significantly blocks dextran sulfate sodium (DSS)-induced murine colitis. When used in a therapeutic mode, ZL0516 effectively suppresses colonic inflammation in several IBD-relevant animal models: DSS-, oxazolone (OXA)-, and flagellin (Cbir1) T cell-induced chronic murine colitis models of IBD. ZL0516 suppresses IBD inflammatory responses in vitro and in vivo by blocking the activation of the BRD4/NF-κB signaling pathway. Also, we found that RVX208, a selective BRD4 BD2 inhibitor in Phase III clinical development, only displayed marginal effects in these IBD animal models. Collectively, our results demonstrate that specific BRD4 BD1 inhibition is a novel therapeutic strategy for IBD-associated colonic inflammation, and orally effective inhibitor ZL0516 is a promising candidate for the development of a novel therapeutic regimen against IBD.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Steven McAninch
- Department
of Medicine, Penn State Health Milton S.
Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Zhiqing Liu
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Cun Zhang
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jing He
- Department
of Pathology, University of Texas Medical
Branch (UTMB), Galveston, Texas 77555, United States
| | - Wenjing Yang
- Division
of Gastroenterology and Hepatology, Department of Medicine, Feinberg
School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Ronaldo P. Panganiban
- Department
of Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Yingzi Cong
- Division
of Gastroenterology and Hepatology, Department of Medicine, Feinberg
School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Gregory Yochum
- Division
of Colon and Rectal Surgery, Department of Surgery, and Department
of Biochemistry and Molecular Biology, Penn
State Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Allan R. Brasier
- Institute
for Clinical and Translational Research (ICTR) School of Medicine
and Public Health, 4248 Health Sciences Learning Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Irina V. Pinchuk
- Department
of Medicine, Penn State Health Milton S.
Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Bing Tian
- Department
of Internal Medicine, University of Texas
Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Zhao HF, Liu YS, Wang J, Wu CP, Zhou XM, Cai LR, Liu J, Liu XJ, Xu YW, Li WP, Huang GD. Nuclear transport of phosphorylated LanCL2 promotes invadopodia formation and tumor progression of glioblastoma by activating STAT3/Cortactin signaling. J Adv Res 2025; 69:139-155. [PMID: 38492734 PMCID: PMC11954814 DOI: 10.1016/j.jare.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
INTRODUCTION Our previous study showed that the abscisic acid receptor lanthionine synthetase C-like 2 (LanCL2) is a significant prognostic factor for overall survival in young glioblastoma patients. However, the role of LanCL2 in glioblastoma remains unclear yet. OBJECTIVES This study aims to investigate the role of LanCL2 in regulating in-vitro cell invasion and in-vivo tumor progression of glioblastoma and its underlying mechanism. METHODS Tyrosine 198 or 295 residue of LanCL2 was mutated using site-directed mutagenesis to block its phosphorylation. The role of LanCL2 in glioblastoma was investigated using transwell or 3D invasion assay, matrix degradation assay and intracranial xenograft model. RESULTS This study showed that nuclear transport of LanCL2 was enhanced by overexpression of LanCL2 or its ligand abscisic acid in glioblastoma cells. Knockdown of LanCL2 suppressed migration, invasion and invadopodia formation of glioblastoma cells, whereas overexpression of wild-type LanCL2 enhanced them. Blocking of Tyr295 residue phosphorylation of LanCL2 impeded its nuclear transport, retarded glioblastoma cell motility and invadopodia formation, and deceased the phosphorylation of Cortactin and STAT3. c-Met was identified as the upstream tyrosine kinase of Tyr295 residue of LanCL2, and inhibition of c-Met markedly suppressed the nuclear transport of LanCL2. Moreover, overexpression of wild-type LanCL2 significantly promoted orthotopic tumor growth of glioblastoma in vivo and led to poor survival of mice with median survival time of 33.5 days, whereas Tyr295 mutation rescued it with median survival time of 49 days. CONCLUSION Our findings suggested that Tyr295 phosphorylation is crucial to the activation and nuclear transport of LanCL2, as well as invadopodia formation and tumor progression of glioblastoma, providing the evidence of a novel signaling axis c-Met/LanCL2/STAT3/Cortactin and the first observation of the importance of Tyr295 phosphorylation to LanCL2.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Yun-Sheng Liu
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chang-Peng Wu
- Department of Neurosurgery, Shenzhen Longhua New District People's Hospital, Shenzhen 518109, China
| | - Xiu-Ming Zhou
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou 510510, China
| | - Lin-Rong Cai
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Jing Liu
- Department of Pathology, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Xiao-Jia Liu
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yan-Wen Xu
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Wei-Ping Li
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
4
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh A, Farjadfar A. Novel targets for mucosal healing in inflammatory bowel disease therapy. Int Immunopharmacol 2025; 144:113544. [PMID: 39571265 DOI: 10.1016/j.intimp.2024.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition affecting the gastrointestinal tract, primarily manifesting as ulcerative colitis (UC) or Crohn's disease (CD). Both inflammation and disruption of the intestinal epithelial barrier are key factors in IBD pathogenesis. Substantial evidence has revealed a significant association between aberrant immune responses and impairment of the intestinal epithelial barrier in IBD pathogenesis. The components of the intestinal epithelium, particularly goblet cells and Paneth cells, are crucial to gut homeostasis, as they secrete mucin, antimicrobial peptides (AMPs), and cytokines. Furthermore, impairment of epithelial integrity, which is regulated by tight junctions, is a hallmark of IBD pathology. While common treatments for IBD, such as anti-inflammatory drugs, target various signaling pathways with varying efficacies, therapeutic approaches focused on mucosal and epithelial barrier healing have been largely neglected. Moreover, high costs, side effects, and insufficient or inconsistent therapeutic outcomes remain major drawbacks of conventional anti-IBD drugs. Recent studies on epithelial barrier regeneration and permeability reduction have introduced promising therapeutic targets, including farnesoid X receptor (FXR), urokinase-type plasminogen activator (uPA)-urokinase-type plasminogen activator receptor (uPAR) interaction, fecal microbiota transplantation (FMT), and insulin receptor (INSR). Notably, the simultaneous targeting of intestinal inflammation and promotion of epithelial barrier healing shows promise for efficient IBD treatment. Future research should explore targeted therapies and combination treatments, including natural remedies, microbiota colonization, stem cell approaches, and computer-aided drug design. It is also crucial to focus on accurate prognosis and developing a thorough understanding of IBD development mechanisms.
Collapse
Affiliation(s)
- Pardis Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pegah Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| |
Collapse
|
5
|
Birnbaum EM, Xie L, Serrano P, Rockwell P, Figueiredo-Pereira ME. BT-11 repurposing potential for Alzheimer's disease and insights into its mode of actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620882. [PMID: 39553925 PMCID: PMC11565763 DOI: 10.1101/2024.10.29.620882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neuroinflammation is a key pathological hallmark of Alzheimer's disease (AD). Investigational and FDA approved drugs targeting inflammation already exist, thus drug repurposing for AD is a suitable approach. BT-11 is an investigational drug that reduces inflammation in the gut and improves cognitive function. BT-11 is orally active and binds to lanthionine synthetase C-like 2 (LANCL2), a glutathione-s-transferase, thus potentially reducing oxidative stress. We investigated the effects of BT-11 long-term treatment on the TgF344-AD rat model. BT-11 reduced hippocampal-dependent spatial memory deficits, Aβ plaque load and neuronal loss in males, and mitigated microglia numbers in females. BT-11 treatment led to hippocampal transcriptomic changes in signaling receptor, including G-protein coupled receptor pathways. We detected LANCL2 in hippocampal nuclear and cytoplasmic fractions with potential different post-translational modifications, suggesting distinct functions based on its subcellular localization. LANCL2 was present in oligodendrocytes, showing a role in oligodendrocyte function. To our knowledge, these last two findings have not been reported. Overall, our data suggest that targeting LANCL2 with BT-11 improves cognition and reduces AD-like pathology by potentially modulating G-protein signaling and oligodendrocyte function. Our studies contribute to the field of novel immunomodulatory AD therapeutics, and merit further research on the role of LANCL2 in this disease.
Collapse
|
6
|
Li Y, Xu T, Zhao Y, Zhang H, Liu Z, Wang H, Huang C, Shu Z, Gao L, Xie R, Jiao T, Zhang D, Zhang D, Liang X, Zang Y, Sun Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Novel Nonbile Acid FXR Agonists as Preclinical Candidates for the Treatment of Inflammatory Bowel Disease. J Med Chem 2024; 67:5642-5661. [PMID: 38547240 DOI: 10.1021/acs.jmedchem.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingting Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zesheng Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chaoying Huang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhihao Shu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixin Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongrong Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingying Jiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuewu Liang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zang
- Lingang laboratory, Shanghai, 201203, China
| | - Yili Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
7
|
Tubau-Juni N, Hontecillas R, Leber AJ, Alva SS, Bassaganya-Riera J. Treating Autoimmune Diseases With LANCL2 Therapeutics: A Novel Immunoregulatory Mechanism for Patients With Ulcerative Colitis and Crohn's Disease. Inflamm Bowel Dis 2024; 30:671-680. [PMID: 37934790 DOI: 10.1093/ibd/izad258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 11/09/2023]
Abstract
Lanthionine synthetase C-like 2 (LANCL2) therapeutics have gained increasing recognition as a novel treatment modality for a wide range of autoimmune diseases. Genetic ablation of LANCL2 in mice results in severe inflammatory phenotypes in inflammatory bowel disease (IBD) and lupus. Pharmacological activation of LANCL2 provides therapeutic efficacy in mouse models of intestinal inflammation, systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. Mechanistically, LANCL2 activation enhances regulatory CD4 + T cell (Treg) responses and downregulates effector responses in the gut. The stability and suppressive capacities of Treg cells are enhanced by LANCL2 activation through engagement of immunoregulatory mechanisms that favor mitochondrial metabolism and amplify IL-2/CD25 signaling. Omilancor, the most advanced LANCL2 immunoregulatory therapeutic in late-stage clinical development, is a phase 3 ready, first-in-class, gut-restricted, oral, once-daily, small-molecule therapeutic in clinical development for the treatment of UC and CD. In this review, we discuss this novel mechanism of mucosal immunoregulation and how LANCL2-targeting therapeutics could help address the unmet clinical needs of patients with autoimmune diseases, starting with IBD.
Collapse
|
8
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Hontecillas R. Oral Omilancor Treatment Ameliorates Clostridioides difficile Infection During IBD Through Novel Immunoregulatory Mechanisms Mediated by LANCL2 Activation. Inflamm Bowel Dis 2024; 30:103-113. [PMID: 37436905 DOI: 10.1093/ibd/izad124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is an opportunistic infection of the gastrointestinal tract, commonly associated with antibiotic administration, that afflicts almost 500 000 people yearly only in the United States. CDI incidence and recurrence is increased in inflammatory bowel disease (IBD) patients. Omilancor is an oral, once daily, first-in-class, gut-restricted, immunoregulatory therapeutic in clinical development for the treatment of IBD. METHODS Acute and recurrent murine models of CDI and the dextran sulfate sodium-induced concomitant model of IBD and CDI were utilized to determine the therapeutic efficacy of oral omilancor. To evaluate the protective effects against C. difficile toxins, in vitro studies with T84 cells were also conducted. 16S sequencing was employed to characterize microbiome composition. RESULTS Activation of the LANCL2 pathway by oral omilancor and its downstream host immunoregulatory changes decreased disease severity and inflammation in the acute and recurrence models of CDI and the concomitant model of IBD/CDI. Immunologically, omilancor treatment increased mucosal regulatory T cell and decreased pathogenic T helper 17 cell responses. These immunological changes resulted in increased abundance and diversity of tolerogenic gut commensal bacterial strains in omilancor-treated mice. Oral omilancor also resulted in accelerated C. difficile clearance in an antimicrobial-free manner. Furthermore, omilancor provided protection from toxin damage, while preventing the metabolic burst observed in intoxicated epithelial cells. CONCLUSIONS These data support the development of omilancor as a novel host-targeted, antimicrobial-free immunoregulatory therapeutic for the treatment of IBD patients with C. difficile-associated disease and pathology with the potential to address the unmet clinical needs of ulcerative colitis and Crohn's disease patients with concomitant CDI.
Collapse
|
9
|
Scarano N, Di Palma F, Origlia N, Musumeci F, Schenone S, Spinelli S, Passalacqua M, Zocchi E, Sturla L, Cichero E, Cavalli A. New Insights into the LANCL2- ABA Binding Mode towards the Evaluation of New LANCL Agonists. Pharmaceutics 2023; 15:2754. [PMID: 38140095 PMCID: PMC10747503 DOI: 10.3390/pharmaceutics15122754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The lanthionine synthetase C-like (LANCL) proteins include LANCL2, which is expressed in the central nervous system (CNS) and in peripheral tissues. LANCL2 exhibits glutathionylation activity and is involved in the neutralization of reactive electrophiles. Several studies explored LANCL2 activation as a validated pharmacological target for diabetes and inflammatory bowel disease. In this context, LANCL2 was found to bind the natural product abscisic acid (ABA), whose pre-clinical effectiveness in different inflammatory diseases was reported in the literature. More recently, LANCL2 attracted more attention as a valuable resource in the field of neurodegenerative disorders. ABA was found to regulate neuro-inflammation and synaptic plasticity to enhance learning and memory, exhibiting promising neuroprotective effects. Up until now, a limited number of LANCL2 ligands are known; among them, BT-11 is the only compound patented and investigated for its anti-inflammatory properties. To guide the design of novel putative LANCL2 agonists, a computational study including molecular docking and long molecular dynamic (MD) simulations of both ABA and BT-11 was carried out. The results pointed out the main LANCL2 ligand chemical features towards the following virtual screening of a novel putative LANCL2 agonist (AR-42). Biochemical assays on rat H9c2 cardiomyocytes showed a similar, LANCL2-mediated stimulation by BT-11 and by AR-42 of the mitochondrial proton gradient and of the transcriptional activation of the AMPK/PGC-1α/Sirt1 axis, the master regulator of mitochondrial function, effects that are previously observed with ABA. These results may allow the development of LANCL2 agonists for the treatment of mitochondrial dysfunction, a common feature of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesco Di Palma
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
| | - Nicola Origlia
- National Research Council (CNR), Institute of Neuroscience, 56124 Pisa, Italy;
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Sonia Spinelli
- Laboratorio di Nefrologia Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Andrea Cavalli
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
10
|
Oppong D, Schiff W, Shivamadhu MC, Ahn YH. Chemistry and biology of enzymes in protein glutathionylation. Curr Opin Chem Biol 2023; 75:102326. [PMID: 37245422 PMCID: PMC10524987 DOI: 10.1016/j.cbpa.2023.102326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
Protein S-glutathionylation is emerging as a central oxidation that regulates redox signaling and biological processes linked to diseases. In recent years, the field of protein S-glutathionylation has expanded by developing biochemical tools for the identification and functional analyses of S-glutathionylation, investigating knockout mouse models, and developing and evaluating chemical inhibitors for enzymes involved in glutathionylation. This review will highlight recent studies of two enzymes, glutathione transferase omega 1 (GSTO1) and glutaredoxin 1 (Grx1), especially introducing their glutathionylation substrates associated with inflammation, cancer, and neurodegeneration and showcasing the advancement of their chemical inhibitors. Lastly, we will feature protein substrates and chemical inducers of LanC-like protein (LanCL), the first enzyme in protein C-glutathionylation.
Collapse
Affiliation(s)
- Daniel Oppong
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | - William Schiff
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | | | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Dorel R, Wong AR, Crawford JJ. Trust Your Gut: Strategies and Tactics for Intestinally Restricted Drugs. ACS Med Chem Lett 2023; 14:233-243. [PMID: 36923921 PMCID: PMC10009798 DOI: 10.1021/acsmedchemlett.3c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Non-absorbable small-molecule drugs targeted to the gut represent an alternative approach to safe, non-systemic therapeutics. Such drugs remain confined to the gastrointestinal tract upon oral dosing by virtue of their limited passive permeability, increasing the local concentration at the site of action while minimizing exposure elsewhere in the body. Herein we review the latest advances in the field of gut-restricted therapeutics, highlighting the different strategies and tactics that medicinal chemists have employed in pursuit of drugs with minimal intestinal absorption.
Collapse
Affiliation(s)
- Ruth Dorel
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Alice R. Wong
- Genentech, Inc., South San Francisco, California 94080, United States
| | - James J. Crawford
- Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Discovery of 4-((E)-3,5-dimethoxy-2-((E)-2-nitrovinyl)styryl)aniline derivatives as potent and orally active NLRP3 inflammasome inhibitors for colitis. Eur J Med Chem 2022; 236:114357. [DOI: 10.1016/j.ejmech.2022.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
|
13
|
Yan Y, Xing C, Xiao Y, Shen X, Zhang Z, He C, Shi JB, Liu M, Liu X. Discovery and Anti-Inflammatory Activity Evaluation of a Novel CDK8 Inhibitor through Upregulation of IL-10 for the Treatment of Inflammatory Bowel Disease In Vivo. J Med Chem 2022; 65:7334-7362. [PMID: 35536548 DOI: 10.1021/acs.jmedchem.2c00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increasing the anti-inflammatory cytokine interleukin-10 (IL-10) level is a promising strategy to suppress the progression of pathogenic inflammation including inflammatory bowel disease (IBD). Since cyclin-dependent kinase 8 (CDK8) inhibition can upregulate IL-10 abundance in activated myeloid-derived dendritic cells, it is considered to be an effective target for IBD treatment. Here, the complete discovery process of a novel CDK8 inhibitor as an anti-inflammatory agent was described. Starting with wogonin, structure-based optimization and structure-activity relationship (SAR) study were comprehensively carried out, and then lead compound 85 (N-(2-ethylphenyl)-5-(4-(piperazine-1-carbonyl)phenyl)nicotinamide) was developed as a potent druglike CDK8 inhibitor upregulating IL-10 both in vivo and in vitro. Also, compound 85 (with CDK8 IC50 = 56 nM, IL-10 enhancement rate 88%) exhibited effective anti-inflammatory activity in an animal model of IBD. These results confirmed that certain CDK8 inhibitor could be used as an effective anti-IBD drug.
Collapse
Affiliation(s)
- Yaoyao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Chen Xing
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yun Xiao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xiaobao Shen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zhaoyan Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Chuanbiao He
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Jing-Bo Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Mingming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
14
|
Li Y, Chen J, Bolinger AA, Chen H, Liu Z, Cong Y, Brasier AR, Pinchuk IV, Tian B, Zhou J. Target-Based Small Molecule Drug Discovery Towards Novel Therapeutics for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S38-S62. [PMID: 34791293 DOI: 10.1093/ibd/izab190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a class of severe and chronic diseases of the gastrointestinal (GI) tract with recurrent symptoms and significant morbidity. Long-term persistence of chronic inflammation in IBD is a major contributing factor to neoplastic transformation and the development of colitis-associated colorectal cancer. Conversely, persistence of transmural inflammation in CD is associated with formation of fibrosing strictures, resulting in substantial morbidity. The recent introduction of biological response modifiers as IBD therapies, such as antibodies neutralizing tumor necrosis factor (TNF)-α, have replaced nonselective anti-inflammatory corticosteroids in disease management. However, a large proportion (~40%) of patients with the treatment of anti-TNF-α antibodies are discontinued or withdrawn from therapy because of (1) primary nonresponse, (2) secondary loss of response, (3) opportunistic infection, or (4) onset of cancer. Therefore, the development of novel and effective therapeutics targeting specific signaling pathways in the pathogenesis of IBD is urgently needed. In this comprehensive review, we summarize the recent advances in drug discovery of new small molecules in preclinical or clinical development for treating IBD that target biologically relevant pathways in mucosal inflammation. These include intracellular enzymes (Janus kinases, receptor interacting protein, phosphodiesterase 4, IκB kinase), integrins, G protein-coupled receptors (S1P, CCR9, CXCR4, CB2) and inflammasome mediators (NLRP3), etc. We will also discuss emerging evidence of a distinct mechanism of action, bromodomain-containing protein 4, an epigenetic regulator of pathways involved in the activation, communication, and trafficking of immune cells. We highlight their chemotypes, mode of actions, structure-activity relationships, characterizations, and their in vitro/in vivo activities and therapeutic potential. The perspectives on the relevant challenges, new opportunities, and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew A Bolinger
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin, Madison, WI, USA
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, PA, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
15
|
Chen J, Li L, Liu J, Yuan S, Liao W, Slominski AT, Li W, Żmijewski MA, Chen J. Discovery of novel 3-hydroxyandrosta-5,7-Diene-17-Carboxylic acid derivatives as anti-inflammatory bowel diseases (IBD) agents. Eur J Med Chem 2021; 220:113468. [PMID: 33933753 DOI: 10.1016/j.ejmech.2021.113468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
A series of steroidal compounds based on 3-hydroxyandrosta-5,7-diene-17-carboxylic acid core structure were designed, synthesized and bio-evaluated for their anti-inflammatory potency. Among them, compound 5c, 6f, and 6q effectively inhibited the production of nitric oxide (NO) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. They inhibited the expression of inducible NO synthase (iNOS) and prostaglandin synthase-2 (COX-2) at mRNA level. Compound 6q displayed inhibitory effects on both iNOS and COX-2 expression in a concentration-dependent manner. Furthermore, 6q was found to effectively decrease the mRNA and protein levels of interleukin 6 (IL-6). Mechanically, 6q could potently downregulate NF-κB signaling via suppression of the Akt/PI3K pathway. Moreover, 6q demonstrated high in vivo anti-inflammatory activities in a mouse colitis model induced by dextran sulfate sodium (DSS). Taken together, these data indicate that 6q represents a novel and promising anti-inflammatory bowel diseases (IBD) agent worthy of further investigation.
Collapse
Affiliation(s)
- Jingxuan Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Sijie Yuan
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Bassaganya-Riera J, Berry EM, Blaak EE, Burlingame B, le Coutre J, van Eden W, El-Sohemy A, German JB, Knorr D, Lacroix C, Muscaritoli M, Nieman DC, Rychlik M, Scholey A, Serafini M. Goals in Nutrition Science 2020-2025. Front Nutr 2021; 7:606378. [PMID: 33665201 PMCID: PMC7923694 DOI: 10.3389/fnut.2020.606378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Five years ago, with the editorial board of Frontiers in Nutrition, we took a leap of faith to outline the Goals for Nutrition Science - the way we see it (1). Now, in 2020, we can put ourselves to the test and take a look back. Without a doubt we got it right with several of the key directions. To name a few, Sustainable Development Goals (SDGs) for Food and Nutrition are part of the global public agenda, and the SDGs contribute to the structuring of international science and research. Nutritional Science has become a critical element in strengthening work on the SDGs, and the development of appropriate methodologies is built on the groundwork of acquiring and analyzing big datasets. Investigation of the Human Microbiome is providing novel insight on the interrelationship between nutrition, the immune system and disease. Finally, with an advanced definition of the gut-brain-axis we are getting a glimpse into the potential for Nutrition and Brain Health. Various milestones have been achieved, and any look into the future will have to consider the lessons learned from Covid-19 and the sobering awareness about the frailty of our food systems in ensuring global food security. With a view into the coming 5 years from 2020 to 2025, the editorial board has taken a slightly different approach as compared to the previous Goals article. A mind map has been created to outline the key topics in nutrition science. Not surprisingly, when looking ahead, the majority of scientific investigation required will be in the areas of health and sustainability. Johannes le Coutre, Field Chief Editor, Frontiers in Nutrition.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory (NIMML) Institute, Blacksburg, VA, United States
| | - Elliot M Berry
- Braun School of Public Health, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Ellen E Blaak
- Department of Human Biology, Maastricht University, Maastricht, Netherlands
| | | | - Johannes le Coutre
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Dietrich Knorr
- Institute of Food Technology and Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Christophe Lacroix
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - David C Nieman
- Human Performance Laboratory, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Michael Rychlik
- Technical University of Munich, Analytical Food Chemistry, Freising, Germany
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Mauro Serafini
- Functional Food and Metabolic Stress Prevention Laboratory, Faculty of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
17
|
Verma S, Ravichandiran V, Ranjan N, Flora SJS. Recent Advances in Therapeutic Applications of Bisbenzimidazoles. Med Chem 2021; 16:454-486. [PMID: 31038072 DOI: 10.2174/1573406415666190416120801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.
Collapse
Affiliation(s)
- Smita Verma
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Vishnuvardh Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| | - Swaran J S Flora
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| |
Collapse
|
18
|
Sharma A, Wakode S, Fayaz F, Khasimbi S, Pottoo FH, Kaur A. An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets. Curr Pharm Des 2020; 26:4373-4385. [DOI: 10.2174/1381612826666200417154810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Piperazine scaffolds are a group of heterocyclic atoms having pharmacological values and showing
significant results in pharmaceutical chemistry. Piperazine has a flexible core structure for the design and synthesis
of new bioactive compounds. These flexible heterogenous compounds exhibit various biological roles, primarily
anticancer, antioxidant, cognition enhancers, antimicrobial, antibacterial, antiviral, antifungal, antiinflammatory,
anti-HIV-1 inhibitors, antidiabetic, antimalarial, antidepressant, antianxiety and anticonvulsant
activities, etc. In the past few years, researchers focused on the therapeutic profile of piperazine synthons for
different biological targets. The present review highlights the development in designing pharmacological activities
of nitrogen-containing piperazine moiety as a therapeutic agent. The extensive popularity of piperazine as a
drug of abuse and their vast heterogeneity research efforts over the last years motivated the new investigators to
further explore this area.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faheem H. Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Avneet Kaur
- SGT college of Pharmacy, SGT University, Gurugram, Haryana- 122001, India
| |
Collapse
|
19
|
|
20
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Colombel JF, Chauhan J, Ehrich M, Farinola N, Bassaganya-Riera J. The Safety, Tolerability, and Pharmacokinetics Profile of BT-11, an Oral, Gut-Restricted Lanthionine Synthetase C-Like 2 Agonist Investigational New Drug for Inflammatory Bowel Disease: A Randomized, Double-Blind, Placebo-Controlled Phase I Clinical Trial. Inflamm Bowel Dis 2020; 26:643-652. [PMID: 31077582 DOI: 10.1093/ibd/izz094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 12/25/2022]
Abstract
BT-11 is a new oral, gut-restricted, first-in-class investigational drug for Crohn disease (CD) and ulcerative colitis (UC) that targets the lanthionine synthetase C-like 2 (LANCL2) pathway and immunometabolic mechanisms. Oral BT-11 was assessed for safety, tolerability, and pharmacokinetics (PK) in normal healthy volunteers (n = 70) in a randomized, double-blind, placebo-controlled trial. Subjects (n = 70) were randomly assigned to one of five single ascending dose cohorts (up to 100 mg/kg, p.o.) and three multiple ascending dose cohorts [up to 100 mg/kg daily (QD) for seven days, orally]. Safety and tolerability were assessed by adverse event (AE) reporting, vital signs, electrocardiogram, hematology, and clinical chemistry. BT-11 did not increase total or gastrointestinal AE rates, as compared with placebo, and no serious adverse events were observed. Oral BT-11 dosing does not result in any clinically significant findings by biochemistry, coagulation, electrocardiogram, hematology, or urinalysis as compared with placebo. Mean fecal concentrations of BT-11 increased linearly with increasing oral doses, with 2.39 mg/g at 7.7 mg/kg on day 7 of the multiple ascending dose (MAD). Analysis of plasma pharmacokinetics indicates that maximum systemic concentrations are approximately 1/6000th of observed concentrations in feces and the distal gastrointestinal tract. Fecal calprotectin levels were lower in BT-11 treated groups as compared to placebo. BT-11 significantly decreases interferon gamma positive (IFNγ+) and tumor necrosis factor alpha positive (TNFα+) cluster of differentiation 4 positive (CD4+) T cells and increases forkhead box P3 positive (FOXP3+) CD4+ T cells in colonic lamina propria mononuclear cells from patients with CD and patients with UC at concentrations of 0.01 µM when treated ex vivo. BT-11 treatment is well-tolerated with no dose-limiting toxicities up to daily oral doses of 100 mg/kg (16 tablets); whereas the efficacious dose is a single tablet (8 mg/kg). Phase II studies in CD and UC patients are ongoing.
Collapse
Affiliation(s)
- Andrew Leber
- Landos Biopharma Inc., Blacksburg, Virginia, USA
| | | | | | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Marion Ehrich
- Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Nicholas Farinola
- Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, Australia
| | | |
Collapse
|
21
|
Discovery of small-molecule candidates against inflammatory bowel disease. Eur J Med Chem 2020; 185:111805. [DOI: 10.1016/j.ejmech.2019.111805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
|
22
|
Small-molecule agents for the treatment of inflammatory bowel disease. Bioorg Med Chem Lett 2019; 29:2034-2041. [DOI: 10.1016/j.bmcl.2019.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
|
23
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Ehrich M, Davis J, Chauhan J, Bassaganya-Riera J. Nonclinical Toxicology and Toxicokinetic Profile of an Oral Lanthionine Synthetase C-Like 2 (LANCL2) Agonist, BT-11. Int J Toxicol 2019; 38:96-109. [PMID: 30791754 DOI: 10.1177/1091581819827509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BT-11 is an orally active, gut-restricted investigational therapeutic targeting the lanthionine synthetase C-like 2 pathway with lead indications in ulcerative colitis (UC) and Crohn disease (CD), 2 manifestations of inflammatory bowel disease (IBD). In 5 mouse models of IBD, BT-11 is effective at oral doses of 8 mg/kg. BT-11 was also efficacious at nanomolar concentrations in primary human samples from patients with UC and CD. BT-11 was tested under Good Laboratory Practice conditions in 90-day repeat-dose general toxicity studies in rats and dogs, toxicokinetics, respiratory, cardiovascular and central nervous system safety pharmacology, and genotoxicity studies. Oral BT-11 did not cause any clinical signs of toxicity, biochemical or hematological changes, or macroscopic or microscopic changes to organs in 90-day repeat-dose toxicity studies in rats and dogs at doses up to 1,000 mg/kg/d. Oral BT-11 resulted in low systemic exposure in both rats (area under the curve exposure from t = 0 to t = 8 hours [AUC0-8] of 216 h × ng/mL) and dogs (650 h × ng/mL) and rapid clearance with an average half-life of 3 hours. BT-11 did not induce changes in respiratory function, electrocardiogram parameters, or behavior with single oral doses of 1,000 mg/kg/d. There was no evidence of mutagenic or genotoxic potential for BT-11 up to tested limit doses using an Ames test, chromosomal aberration assay in human peripheral blood lymphocytes, or micronucleus assay in rats. Therefore, nonclinical studies show BT-11 to be a safe and well-tolerated oral therapeutic with potential as a potent immunometabolic therapy for UC and CD with no-observed adverse effect level >1,000 mg/kg in in vivo studies.
Collapse
Affiliation(s)
| | | | | | - Marion Ehrich
- 2 Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Jennifer Davis
- 2 Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | | | | |
Collapse
|
24
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Chauhan J, Bassaganya-Riera J. Oral Treatment with BT-11 Ameliorates Inflammatory Bowel Disease by Enhancing Regulatory T Cell Responses in the Gut. THE JOURNAL OF IMMUNOLOGY 2019; 202:2095-2104. [PMID: 30760618 DOI: 10.4049/jimmunol.1801446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is an expanding autoimmune disease afflicting millions that remains difficult to treat due to the accumulation of multiple immunological changes. BT-11 is an investigational new drug for IBD that is orally active, gut restricted, and targets the lanthionine synthetase C-like 2 immunometabolic pathway. CD25+ FOXP3+ CD4+ T cells are increased locally within the colon of BT-11-treated mice in Citrobacter rodentium and IL-10-/- mouse models of colitis. The maintained efficacy of BT-11 in the absence of IL-10 combined with the loss of efficacy when direct cell-cell interactions are prevented suggest that the regulatory T cell (Treg)-related elements of suppression are cell contact-mediated. When PD-1 is inhibited, both in vitro and in vivo, the efficacy of BT-11 is reduced, validating this assertion. The depletion of CD25+ cells in vivo abrogated the retention of therapeutic efficacy postdiscontinuation of treatment, indicating that Tregs are implicated in the maintenance of tolerance mediated by BT-11. Furthermore, the involvement of CD25 suggested a role of BT-11 in IL-2 signaling. Cotreatment with BT-11 and IL-2 greatly enhances the differentiation of CD25+ FOXP3+ cells from naive CD4+ T cells relative to either alone. BT-11 enhances phosphorylation of STAT5, providing a direct linkage to the regulation of FOXP3 transcription. Notably, when STAT5 is inhibited, the effects of BT-11 on the differentiation of Tregs are blocked. BT-11 effectively enhances the IL-2/STAT5 signaling axis to induce the differentiation and stability of CD25+ FOXP3+ cells in the gastrointestinal mucosa to support immunoregulation and immunological tolerance in IBD.
Collapse
|
25
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Bassaganya-Riera J. Activation of LANCL2 by BT-11 Ameliorates IBD by Supporting Regulatory T Cell Stability Through Immunometabolic Mechanisms. Inflamm Bowel Dis 2018; 24:1978-1991. [PMID: 29718324 PMCID: PMC6241665 DOI: 10.1093/ibd/izy167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) afflicts 5 million people and is increasing in prevalence. There is an unmet clinical need for safer and effective treatments for IBD. The BT-11 is a small molecule oral therapeutic that ameliorates IBD by targeting lanthionine synthetase C-like 2 (LANCL2) and has a benign safety profile in rats. METHODS Mdr1a-/-, dextran sodium sulphate , and adoptive transfer mouse models of colitis were employed to validate therapeutic efficacy and characterize the mechanisms of therapeutic efficacy of BT-11. In vitro cultures of CD4+ T cell differentiation and human peripheral blood mononuclear cells from Crohn's disease patients were used to determine its potential for human translation. RESULTS BT-11 reduces inflammation in multiple mouse models of IBD. Oral treatment with BT-11 increases the numbers of lamina propria regulatory T cells (Tregs) in a LANCL2-dependent manner. In vitro, BT-11 increases the differentiation in Treg phenotypes, the upregulation of genes implicated in Treg cell stability, and conditions Treg cells to elicit greater suppressive actions. These immunoregulatory effects are intertwined with the ability of BT-11 to regulate late stage glycolysis and tricarboxylic acid cycle. Immunometabolic mechanistic findings translate into human peripheral blood mononuclear cells from healthy individuals and Crohn's disease patients. CONCLUSIONS BT-11 is a safe, efficacious oral therapeutic for IBD with a human translatable mechanism of action that involves activation of LANCL2, immunometabolic modulation of CD4+ T cell subsets leading to stable regulatory phenotypes in the colonic LP.
Collapse
Affiliation(s)
| | | | | | - Josep Bassaganya-Riera
- Landos Biopharma Inc, Blacksburg, VA,Correspondence address: Dr Josep Bassaganya-Riera Landos Biopharma Inc, 1800 Kraft Drive, Suite 216 Blacksburg VA 24060. E-mail:
| |
Collapse
|
26
|
Discovery and structure-activity relationship studies of 2-benzylidene-2,3-dihydro-1 H -inden-1-one and benzofuran-3(2 H )-one derivatives as a novel class of potential therapeutics for inflammatory bowel disease. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Zocchi E, Hontecillas R, Leber A, Einerhand A, Carbo A, Bruzzone S, Tubau-Juni N, Philipson N, Zoccoli-Rodriguez V, Sturla L, Bassaganya-Riera J. Abscisic Acid: A Novel Nutraceutical for Glycemic Control. Front Nutr 2017; 4:24. [PMID: 28660193 PMCID: PMC5468461 DOI: 10.3389/fnut.2017.00024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 01/03/2023] Open
Abstract
Abscisic acid is naturally present in fruits and vegetables, and it plays an important role in managing glucose homeostasis in humans. According to the latest U.S. dietary survey, about 92% of the population might have a deficient intake of ABA due to their deficient intake of fruits and vegetables. This review summarizes the in vitro, preclinical, mechanistic, and human translational findings obtained over the past 15 years in the study of the role of ABA in glycemic control. In 2007, dietary ABA was first reported to ameliorate glucose tolerance and obesity-related inflammation in mice. The most recent findings regarding the topic of ABA and its proposed receptor lanthionine synthetase C-like 2 in glycemic control and their interplay with insulin and glucagon-like peptide-1 suggest a major role for ABA in the physiological response to a glucose load in humans. Moreover, emerging evidence suggests that the ABA response might be dysfunctional in diabetic subjects. Follow on intervention studies in healthy individuals show that low-dose dietary ABA administration exerts a beneficial effect on the glycemia and insulinemia profiles after oral glucose load. These recent findings showing benefits in humans, together with extensive efficacy data in mouse models of diabetes and inflammatory disease, suggest the need for reference ABA values and its possible exploitation of the glycemia-lowering effects of ABA for preventative purposes. Larger clinical studies on healthy, prediabetic, and diabetic subjects are needed to determine whether addressing the widespread dietary ABA deficiency improves glucose control in humans.
Collapse
Affiliation(s)
- Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Raquel Hontecillas
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Andrew Leber
- BioTherapeutics Inc., Blacksburg, VA, United States
| | | | - Adria Carbo
- BioTherapeutics Inc., Blacksburg, VA, United States
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | | | | | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Josep Bassaganya-Riera
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
28
|
Modeling new immunoregulatory therapeutics as antimicrobial alternatives for treating Clostridium difficile infection. Artif Intell Med 2017; 78:1-13. [DOI: 10.1016/j.artmed.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/06/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022]
|
29
|
Leber A, Bassaganya-Riera J, Tubau-Juni N, Zoccoli-Rodriguez V, Lu P, Godfrey V, Kale S, Hontecillas R. Lanthionine Synthetase C-Like 2 Modulates Immune Responses to Influenza Virus Infection. Front Immunol 2017; 8:178. [PMID: 28270815 PMCID: PMC5318425 DOI: 10.3389/fimmu.2017.00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
Broad-based, host-targeted therapeutics have the potential to ameliorate viral infections without inducing antiviral resistance. We identified lanthionine synthetase C-like 2 (LANCL2) as a new therapeutic target for immunoinflammatory diseases. To examine the therapeutic efficacy of oral NSC61610 administration on influenza, we infected C57BL/6 mice with influenza A H1N1pdm virus and evaluated influenza-related mortality, lung inflammatory profiles, and pulmonary histopathology. Oral treatment with NSC61610 ameliorates influenza virus infection by down-modulating pulmonary inflammation through the downregulation of TNF-α and MCP-1 and reduction in the infiltration of neutrophils. NSC61610 treatment increases IL10-producing CD8+ T cells and macrophages in the lungs during the resolution phase of disease. The loss of LANCL2 or neutralization of IL-10 in mice infected with influenza virus abrogates the ability of NSC61610 to accelerate recovery and induce IL-10-mediated regulatory responses. These studies validate that oral treatment with NSC61610 ameliorates morbidity and mortality and accelerates recovery during influenza virus infection through a mechanism mediated by activation of LANCL2 and subsequent induction of IL-10 responses by CD8+ T cells and macrophages in the lungs.
Collapse
Affiliation(s)
- Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Zoccoli-Rodriguez
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Pinyi Lu
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Godfrey
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Shiv Kale
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|