1
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Brusa I, Sondo E, Pesce E, Tomati V, Gioia D, Falchi F, Balboni B, Ortega Martínez JA, Veronesi M, Romeo E, Margaroli N, Recanatini M, Girotto S, Pedemonte N, Roberti M, Cavalli A. Innovative Strategy toward Mutant CFTR Rescue in Cystic Fibrosis: Design and Synthesis of Thiadiazole Inhibitors of the E3 Ligase RNF5. J Med Chem 2023. [PMID: 37440686 PMCID: PMC10388311 DOI: 10.1021/acs.jmedchem.3c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) is associated to misfolding and defective gating of the mutant channel. One of the most promising CF drug targets is the ubiquitin ligase RNF5, which promotes F508del-CFTR degradation. Recently, the first ever reported inhibitor of RNF5 was discovered, i.e., the 1,2,4-thiadiazol-5-ylidene inh-2. Here, we designed and synthesized a series of new analogues to explore the structure-activity relationships (SAR) of this class of compounds. SAR efforts ultimately led to compound 16, which showed a greater F508del-CFTR corrector activity than inh-2, good tolerability, and no toxic side effects. Analogue 16 increased the basal level of autophagy similar to what has been described with RNF5 silencing. Furthermore, co-treatment with 16 significantly improved the F508del-CFTR rescue induced by the triple combination elexacaftor/tezacaftor/ivacaftor in CFBE41o- cells. These findings validate the 1,2,4-thiadiazolylidene scaffold for the discovery of novel RNF5 inhibitors and provide evidence to pursue this unprecedented strategy for the treatment of CF.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Dario Gioia
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Falchi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Beatrice Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Marina Veronesi
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elisa Romeo
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Natasha Margaroli
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Centre Européen de Calcul Atomique et Moléculaire, EPFL CECAM, 1015 Lousanne, Switzerland
| |
Collapse
|
3
|
Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Carinci M, Palumbo L, Pellielo G, Agyapong ED, Morciano G, Patergnani S, Giorgi C, Pinton P, Rimessi A. The Multifaceted Roles of Autophagy in Infectious, Obstructive, and Malignant Airway Diseases. Biomedicines 2022; 10:biomedicines10081944. [PMID: 36009490 PMCID: PMC9405571 DOI: 10.3390/biomedicines10081944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved dynamic process by which cells deliver their contents to lysosomes for degradation, thus ensuring cell homeostasis. In response to environmental stress, the induction of autophagy is crucial for cell survival. The dysregulation of this degradative process has been implicated in a wide range of pathologies, including lung diseases, representing a relevant potential target with significant clinical outcomes. During lung disease progression and infections, autophagy may exert both protective and harmful effects on cells. In this review, we will explore the implications of autophagy and its selective forms in several lung infections, such as SARS-CoV-2, Respiratory Syncytial Virus (RSV) and Mycobacterium tuberculosis (Mtb) infections, and different lung diseases such as Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD), and Malignant Mesothelioma (MM).
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giulia Pellielo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Esther Densu Agyapong
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
5
|
Scanio MJC, Searle XB, Liu B, Koenig JR, Altenbach RJ, Gfesser GA, Bogdan A, Greszler S, Zhao G, Singh A, Fan Y, Swensen AM, Vortherms T, Manelli A, Balut C, Gao W, Yong H, Schrimpf M, Tse C, Kym P, Wang X. Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis. Bioorg Med Chem Lett 2022; 72:128843. [PMID: 35688367 DOI: 10.1016/j.bmcl.2022.128843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations on both copies of the CFTR gene. Phenylalanine deletion at position 508 of the CFTR protein (F508del-CFTR) is the most frequent mutation in CF patients. Currently, the most effective treatments of CF use a dual or triple combination of CFTR correctors and potentiators. In triple therapy, two correctors (C1 and C2) and a potentiator are employed. Herein, we describe the identification and exploration of the SAR of a series of 4-aminopyrrolidine-2-carboxylic acid C2 correctors of CFTR to be used in conjunction with our existing C1 corrector series for the treatment of CF.
Collapse
Affiliation(s)
- Marc J C Scanio
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States.
| | - Xenia B Searle
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Bo Liu
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - John R Koenig
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Robert J Altenbach
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Gregory A Gfesser
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Andrew Bogdan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Stephen Greszler
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Gang Zhao
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Ashvani Singh
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Yihong Fan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Andrew M Swensen
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Timothy Vortherms
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Arlene Manelli
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Corina Balut
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Wenqing Gao
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Hong Yong
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Michael Schrimpf
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Chris Tse
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Philip Kym
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Xueqing Wang
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| |
Collapse
|
6
|
Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022; 65:5212-5243. [PMID: 35377645 PMCID: PMC9014417 DOI: 10.1021/acs.jmedchem.1c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
7
|
Michaels WE, Pena-Rasgado C, Kotaria R, Bridges RJ, Hastings ML. Open reading frame correction using splice-switching antisense oligonucleotides for the treatment of cystic fibrosis. Proc Natl Acad Sci U S A 2022; 119:e2114886119. [PMID: 35017302 PMCID: PMC8784102 DOI: 10.1073/pnas.2114886119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
CFTR gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low CFTR messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels. Splice-switching antisense oligonucleotides (ASOs), designed to induce skipping of exons in order to restore the mRNA open reading frame, have shown therapeutic promise preclinically and clinically for a number of diseases. We hypothesized that ASO-mediated skipping of CFTR exon 23 would recover CFTR activity associated with terminating mutations in the exon, including CFTR p.W1282X, the fifth most common mutation in CF. Here, we show that CFTR lacking the amino acids encoding exon 23 is partially functional and responsive to corrector and modulator drugs currently in clinical use. ASO-induced exon 23 skipping rescued CFTR expression and chloride current in primary human bronchial epithelial cells isolated from a homozygote CFTR-W1282X patient. These results support the use of ASOs in treating CF patients with CFTR class I mutations in exon 23 that result in unstable CFTR mRNA and truncations of the CFTR protein.
Collapse
Affiliation(s)
- Wren E Michaels
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Cecilia Pena-Rasgado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Rusudan Kotaria
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Robert J Bridges
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064;
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064;
| |
Collapse
|
8
|
Rossi M, Petralla S, Protti M, Baiula M, Kobrlova T, Soukup O, Spampinato SM, Mercolini L, Monti B, Bolognesi ML. α-Linolenic Acid-Valproic Acid Conjugates: Toward Single-Molecule Polypharmacology for Multiple Sclerosis. ACS Med Chem Lett 2020; 11:2406-2413. [PMID: 33329762 PMCID: PMC7734798 DOI: 10.1021/acsmedchemlett.0c00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
![]()
Multiple
sclerosis (MS) is a complex inflammatory, degenerative,
and demyelinating disease of the central nervous system. Although
treatments exist, MS cannot be cured by available drugs, which primarily
target neuroinflammation. Thus, it is feasible that a well concerted
polypharmacological approach able to act at multiple points within
the intricate network of inflammation, neurodegeneration, and demyelination/remyelination
pathways would succeed where other drugs have failed. Starting from
reported beneficial effects of α-linolenic acid (ALA) and valproic
acid (VPA) in MS, and by applying a rational strategy, we developed
a small set of codrugs obtained by conjugating VPA and ALA through
proper linkers. A cellular profiling identified 1 as
a polypharmacological tool able not only to modulate microglia polarization,
but also to counteract neurodegeneration and demyelination and induce
oligodendrocyte precursor cell differentiation, by acting on multiple
biochemical and epigenetic pathways.
Collapse
Affiliation(s)
- Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Tereza Kobrlova
- Biomedical Research Center, University Hospital, CZ-500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital, CZ-500 05 Hradec Kralove, Czech Republic
| | - Santi Mario Spampinato
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
9
|
Michaels WE, Bridges RJ, Hastings ML. Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res 2020; 48:7454-7467. [PMID: 32520327 PMCID: PMC7367209 DOI: 10.1093/nar/gkaa490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, encoding an anion channel that conducts chloride and bicarbonate across epithelial membranes. Mutations that disrupt pre-mRNA splicing occur in >15% of CF cases. One common CFTR splicing mutation is CFTR c.3718-2477C>T (3849+10 kb C>T), which creates a new 5′ splice site, resulting in splicing to a cryptic exon with a premature termination codon. Splice-switching antisense oligonucleotides (ASOs) have emerged as an effective therapeutic strategy to block aberrant splicing. We test an ASO targeting the CFTR c.3718-2477C>T mutation and show that it effectively blocks aberrant splicing in primary bronchial epithelial (hBE) cells from CF patients with the mutation. ASO treatment results in long-term improvement in CFTR activity in hBE cells, as demonstrated by a recovery of chloride secretion and apical membrane conductance. We also show that the ASO is more effective at recovering chloride secretion in our assay than ivacaftor, the potentiator treatment currently available to these patients. Our findings demonstrate the utility of ASOs in correcting CFTR expression and channel activity in a manner expected to be therapeutic in patients.
Collapse
Affiliation(s)
- Wren E Michaels
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Robert J Bridges
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
10
|
Drug efficacy and toxicity prediction: an innovative application of transcriptomic data. Cell Biol Toxicol 2020; 36:591-602. [PMID: 32780246 PMCID: PMC7661398 DOI: 10.1007/s10565-020-09552-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Drug toxicity and efficacy are difficult to predict partly because they are both poorly defined, which I aim to remedy here from a transcriptomic perspective. There are two major categories of drugs: (1) restorative drugs aiming to restore an abnormal cell, tissue, or organ to normal function (e.g., restoring normal membrane function of epithelial cells in cystic fibrosis), and (2) disruptive drugs aiming to kill pathogens or malignant cells. These two types of drugs require different definition of efficacy and toxicity. I outlined rationales for defining transcriptomic efficacy and toxicity and illustrated numerically their application with two sets of transcriptomic data, one for restorative drugs (treating cystic fibrosis with lumacaftor/ivacaftor aiming to restore the cellular function of epithelial cells) and the other for disruptive drugs (treating acute myeloid leukemia with prexasertib). The conceptual framework presented will help and sensitize researchers to collect data required for determining drug toxicity.
Collapse
|
11
|
Ferrara SJ, Scanlan TS. A CNS-Targeting Prodrug Strategy for Nuclear Receptor Modulators. J Med Chem 2020; 63:9742-9751. [DOI: 10.1021/acs.jmedchem.0c00868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Skylar J. Ferrara
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Thomas S. Scanlan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
12
|
Shan C, Hui W, Li H, Wang Z, Guo C, Peng R, Gu J, Chen Y, Ouyang Q. Discovery of Novel Autophagy Inhibitors and Their Sensitization Abilities for Vincristine-Resistant Esophageal Cancer Cell Line Eca109/VCR. ChemMedChem 2020; 15:970-981. [PMID: 32207878 DOI: 10.1002/cmdc.202000004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/22/2020] [Indexed: 12/13/2022]
Abstract
Resistance phenomena, especially acquired drug resistance, have been severely hampering the application of chemotherapeutics during cancer chemotherapy. Autophagy plays a role in maintaining the survival of cancer cells and might mediate resistance to chemotherapy drugs. Herein, a new series of 5-amino-2-ether-benzamide derivatives were synthesized and evaluated as autophagy inhibitors. Selected from 14 synthesized compounds as lead autophagy inhibitor, N-(cyclohexylmethyl)-5-(((cyclohexylmethyl)amino)methyl)-2-((4-(trifluoromethyl)benzyl)oxy)benzamide (4 d) showed the most obvious effect of LC3B protein conversion. Further, its autophagy inhibition, evaluated by using transmission electron microscopy and confocal microscopy, showed that the fusion of autophagosomes and lysosomes in the final stage of autophagic flux was suppressed. We also found that 4 d could enhance the chemosensitivity of vincristine in vincristine-resistant esophageal cancer cell line Eca109/VCR in a synergistic, associative manner. Moreover, a computational study showed that 4 d might bind with p62-zz to inhibit autophagy. We also found 4 d to be relatively less cytotoxic to normal cells versus cancer cells than the reported p62-zz inhibitor.
Collapse
Affiliation(s)
- Changyu Shan
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Wenqi Hui
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China.,Pharmacy Department, Xi' an Fifth Hospital, Xi' an, Shanxi Province, 710082, China
| | - Hongwei Li
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Zheng Wang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, China
| | - Chunling Guo
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Ruikun Peng
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Jing Gu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Yingchun Chen
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Qin Ouyang
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
13
|
Scoffone VC, Barbieri G, Buroni S, Scarselli M, Pizza M, Rappuoli R, Riccardi G. Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends Microbiol 2020; 28:315-326. [DOI: 10.1016/j.tim.2019.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
|
14
|
Liu H, Bolleddula J, Nichols A, Tang L, Zhao Z, Prakash C. Metabolism of bioconjugate therapeutics: why, when, and how? Drug Metab Rev 2020; 52:66-124. [PMID: 32045530 DOI: 10.1080/03602532.2020.1716784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation of therapeutic agents has been used as a selective drug delivery platform for many therapeutic areas. Bioconjugates are prepared by the covalent linkage of active compounds (small or large molecule) to a carrier molecule (lipids, proteins, peptides, carbohydrates, and polymers) through a chemical linker. The linkage of the active component to a carrier molecule enhances the therapeutic window through a targeted delivery and by reducing toxicity. Bioconjugates also possess improved pharmacokinetic properties such as a long half-life, increased stability, and cleavage by intracellular enzymes/environment. However, premature cleavage of the bioconjugates and the resulting metabolites/catabolites may produce undesirable toxic effects and, hence, it is critical to understand cleavage mechanisms, metabolism of bioconjugates, and translatability to human in the discovery stages. This article provides a comprehensive overview of linker cleavage pathways and catabolism/metabolism of antibody-drug conjugates, glycoconjugates, polymer-drug conjugates, lipid-drug conjugates, folate-targeted small molecule-drug conjugates, and drug-drug conjugates.
Collapse
Affiliation(s)
- Hanlan Liu
- KSQ Therapeutics Inc., Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Singh AK, Fan Y, Balut C, Alani S, Manelli AM, Swensen AM, Jia Y, Neelands TR, Vortherms TA, Liu B, Searle XB, Wang X, Gao W, Hwang TC, Ren HY, Cyr D, Kym PR, Conrath K, Tse C. Biological Characterization of F508delCFTR Protein Processing by the CFTR Corrector ABBV-2222/GLPG2222. J Pharmacol Exp Ther 2020; 372:107-118. [PMID: 31732698 PMCID: PMC11047061 DOI: 10.1124/jpet.119.261800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.
Collapse
Affiliation(s)
- Ashvani K Singh
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Yihong Fan
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Corina Balut
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Sara Alani
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Arlene M Manelli
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Andrew M Swensen
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Ying Jia
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Torben R Neelands
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Timothy A Vortherms
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Bo Liu
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xenia B Searle
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xueqing Wang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Wenqing Gao
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Tzyh-Chang Hwang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Hong Y Ren
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Douglas Cyr
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Philip R Kym
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Katja Conrath
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Chris Tse
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| |
Collapse
|
16
|
Scanio MJC, Searle XB, Liu B, Koenig JR, Altenbach R, Gfesser GA, Bogdan A, Greszler S, Zhao G, Singh A, Fan Y, Swensen AM, Vortherms T, Manelli A, Balut C, Jia Y, Gao W, Yong H, Schrimpf M, Tse C, Kym P, Wang X. Discovery of ABBV/GLPG-3221, a Potent Corrector of CFTR for the Treatment of Cystic Fibrosis. ACS Med Chem Lett 2019; 10:1543-1548. [PMID: 31749908 DOI: 10.1021/acsmedchemlett.9b00377] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder that affects multiple tissues and organs. CF is caused by mutations in the CFTR gene, resulting in insufficient or impaired cystic fibrosis transmembrane conductance regulator (CFTR) protein. The deletion of phenylalanine at position 508 of the protein (F508del-CFTR) is the most common mutation observed in CF patients. The most effective treatments of these patients employ two CFTR modulator classes, correctors and potentiators. CFTR correctors increase protein levels at the cell surface; CFTR potentiators enable the functional opening of CFTR channels at the cell surface. Triple-combination therapies utilize two distinct corrector molecules (C1 and C2) to further improve the overall efficacy. We identified the need to develop a C2 corrector series that had the potential to be used in conjunction with our existing C1 corrector series and provide robust clinical efficacy for CF patients. The identification of a pyrrolidine series of CFTR C2 correctors and the structure-activity relationship of this series is described. This work resulted in the discovery and selection of (2S,3R,4S,5S)-3-(tert-butyl)-4-((2-methoxy-5-(trifluoromethyl)pyridin-3-yl)methoxy)-1-((S)-tetrahydro-2H-pyran-2-carbonyl)-5-(o-tolyl)pyrrolidine-2-carboxylic acid (ABBV/GLPG-3221), which was advanced to clinical trials.
Collapse
Affiliation(s)
- Marc J. C. Scanio
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xenia B. Searle
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Bo Liu
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - John R. Koenig
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Robert Altenbach
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gregory A. Gfesser
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew Bogdan
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stephen Greszler
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gang Zhao
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yihong Fan
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew M. Swensen
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Timothy Vortherms
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Arlene Manelli
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Corina Balut
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ying Jia
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wenqing Gao
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hong Yong
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael Schrimpf
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Chris Tse
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip Kym
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xueqing Wang
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
17
|
Hanrahan JW, Sato Y, Carlile GW, Jansen G, Young JC, Thomas DY. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets. Expert Opin Ther Targets 2019; 23:711-724. [PMID: 31169041 DOI: 10.1080/14728222.2019.1628948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cystic fibrosis (CF) is the most frequent lethal orphan disease and is caused by mutations in the CFTR gene. The most frequent mutation F508del-CFTR affects multiple organs; infections and subsequent infections and complications in the lung lead to death. Areas covered: This review focuses on new targets and mechanisms that are attracting interest for the development of CF therapies. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) but has some function if it can traffic to the plasma membrane. Cell-based assays have been used to screen chemical libraries for small molecule correctors that restore its trafficking. Pharmacological chaperones are correctors that bind directly to the F508del-CFTR mutant and promote its folding and trafficking. Other correctors fall into a heterogeneous class of proteostasis modulators that act indirectly by altering cellular homeostasis. Expert opinion: Pharmacological chaperones have so far been the most successful correctors of F508del-CFTR trafficking, but their level of correction means that more than one corrector is required. Proteostasis modulators have low levels of correction but hold promise because some can correct several different CFTR mutations. Identification of their cellular targets and the potential for development may lead to new therapies for CF.
Collapse
Affiliation(s)
- John W Hanrahan
- a Department of Physiology , McGill University , Montréal , QC , Canada.,c Research Institute of the McGill University Health Centre , McGill University , Montréal , QC , Canada
| | - Yukiko Sato
- a Department of Physiology , McGill University , Montréal , QC , Canada.,b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada
| | - Graeme W Carlile
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Gregor Jansen
- d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Jason C Young
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - David Y Thomas
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada.,e Department of Human Genetics , McGill University , Montréal , QC , Canada
| |
Collapse
|
18
|
Schwalbe T, Huebner H, Gmeiner P. Development of covalent antagonists for β1- and β2-adrenergic receptors. Bioorg Med Chem 2019; 27:2959-2971. [PMID: 31151791 DOI: 10.1016/j.bmc.2019.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
The selective covalent tethering of ligands to a specific GPCR binding site has attracted considerable interest in structural biology, molecular pharmacology and drug design. We recently reported on a covalently binding noradrenaline analog (FAUC37) facilitating crystallization of the β2-adrenergic receptor (β2ARH2.64C) in an active state. We herein present the stereospecific synthesis of covalently binding disulfide ligands based on the pharmacophores of adrenergic β1- and β2 receptor antagonists. Radioligand depletion experiments revealed that the disulfide-functionalized ligands were able to rapidly form a covalent bond with a specific cysteine residue of the receptor mutants β1ARI2.64C and β2ARH2.64C. The propranolol derivative (S)-1a induced nearly complete irreversible blockage of the β2ARH2.64C within 30 min incubation. The CGP20712A-based ligand (S)-4 showed efficient covalent blocking of the β2ARH2.64C at very low concentrations. The analog (S)-5a revealed extraordinary covalent cross-linking at the β1ARI2.64C and β2ARH2.64C mutant while retaining a 41-fold selectivity for the β1AR wild type over β2AR. These compounds may serve as valuable molecular tools for studying β1/β2 subtype selectivity or investigations on GPCR trafficking and dimerization.
Collapse
Affiliation(s)
- Tobias Schwalbe
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Harald Huebner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.
| |
Collapse
|
19
|
de Wilde G, Gees M, Musch S, Verdonck K, Jans M, Wesse AS, Singh AK, Hwang TC, Christophe T, Pizzonero M, Van der Plas S, Desroy N, Cowart M, Stouten P, Nelles L, Conrath K. Identification of GLPG/ABBV-2737, a Novel Class of Corrector, Which Exerts Functional Synergy With Other CFTR Modulators. Front Pharmacol 2019; 10:514. [PMID: 31143125 PMCID: PMC6521598 DOI: 10.3389/fphar.2019.00514] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 01/28/2023] Open
Abstract
The deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) causes a severe defect in folding and trafficking of the chloride channel resulting in its absence at the plasma membrane of epithelial cells leading to cystic fibrosis. Progress in the understanding of the disease increased over the past decades and led to the awareness that combinations of mechanistically different CFTR modulators are required to obtain meaningful clinical benefit. Today, there remains an unmet need for identification and development of more effective CFTR modulator combinations to improve existing therapies for patients carrying the F508del mutation. Here, we describe the identification of a novel F508del corrector using functional assays. We provide experimental evidence that the clinical candidate GLPG/ABBV-2737 represents a novel class of corrector exerting activity both on its own and in combination with VX809 or GLPG/ABBV-2222.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
21
|
Faraj J, Bodas M, Pehote G, Swanson D, Sharma A, Vij N. Novel cystamine-core dendrimer-formulation rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection by augmenting autophagy. Expert Opin Drug Deliv 2019; 16:177-186. [PMID: 30732491 DOI: 10.1080/17425247.2019.1575807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is challenged with pathophysiological barriers for effective airway drug-delivery. Hence, we standardized the therapeutic efficacy of the novel dendrimer-based autophagy-inducing anti-oxidant drug, cysteamine. RESEARCH DESIGN AND METHODS Human primary-CF epithelial-cells, CFBE41o-cells were used to standardize the efficacy of the dendrimer-cystamine in correcting impaired-autophagy, rescuing ΔF508-CFTR and Pseudomonas-aeruginosa (Pa) infection. RESULTS We first designed a novel cystamine-core dendrimer formulation (G4-CYS) that significantly increases membrane-ΔF508CFTR expression in CFBE41o-cells (p < 0.05) by forming its reduced-form cysteamine, in vivo. Additionally, G4-CYS treatment corrects ΔF508-CFTR-mediated impaired-autophagy as observed by a significant decrease (p < 0.05) in Ub-LC3-positive aggresome-bodies. Next, we verified that in non-permeabilized CFBE41o-cells, G4-CYS significantly (p < 0.05) induces ΔF508-CFTR's forward-trafficking to the plasma membrane. Furthermore, cysteamine's known antibacterial and anti-biofilm properties against Pa were enhanced as our findings demonstrate that both G4-CYS and its control DAB-core dendrimer, G4-DAB, exhibited significant (p < 0.05) bactericidal-activity against Pa. We also found that both G4-CYS and G4-DAB exhibit marked mucolytic-activity against porcine-mucus (p < 0.05). Finally, we demonstrate that G4-CYS not only corrects the autophagy-impairment by rescuing ΔF508-CFTR in CFBE41o-cells but also corrects the intrinsic phagocytosis defect (p < 0.05). CONCLUSIONS Overall, our data demonstrates the efficacy of novel cystamine-dendrimer formulation in rescuing ΔF508-CFTR to the plasma membrane and inhibiting Pa bacterial-infection by augmenting autophagy.
Collapse
Affiliation(s)
- Janine Faraj
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA
| | - Manish Bodas
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA.,b Department of Pediatrics and Pulmonary Medicine , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,c Department of Medicine , University of Oklahoma , Oklahoma City , OK , USA
| | - Garrett Pehote
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA
| | - Doug Swanson
- d Department of Chemistry and Biochemistry , Central Michigan University , Mount Pleasant , MI , USA
| | - Ajit Sharma
- d Department of Chemistry and Biochemistry , Central Michigan University , Mount Pleasant , MI , USA
| | - Neeraj Vij
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA.,b Department of Pediatrics and Pulmonary Medicine , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,e 4Dx Limited , Los Angeles , CA , USA.,f VIJ Biotech LLC , Baltimore , MD , USA
| |
Collapse
|
22
|
Bodas M, Vij N. Adapting Proteostasis and Autophagy for Controlling the Pathogenesis of Cystic Fibrosis Lung Disease. Front Pharmacol 2019; 10:20. [PMID: 30774592 PMCID: PMC6367269 DOI: 10.3389/fphar.2019.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF), a fatal genetic disorder predominant in the Caucasian population, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (Cftr) gene. The most common mutation is the deletion of phenylalanine from the position-508 (F508del-CFTR), resulting in a misfolded-CFTR protein, which is unable to fold, traffic and retain its plasma membrane (PM) localization. The resulting CFTR dysfunction, dysregulates variety of key cellular mechanisms such as chloride ion transport, airway surface liquid (ASL) homeostasis, mucociliary-clearance, inflammatory-oxidative signaling, and proteostasis that includes ubiquitin-proteasome system (UPS) and autophagy. A collective dysregulation of these key homoeostatic mechanisms contributes to the development of chronic obstructive cystic fibrosis lung disease, instead of the classical belief focused exclusively on ion-transport defect. Hence, therapeutic intervention(s) aimed at rescuing chronic CF lung disease needs to correct underlying defect that mediates homeostatic dysfunctions and not just chloride ion transport. Since targeting all the myriad defects individually could be quite challenging, it will be prudent to identify a process which controls almost all disease-promoting processes in the CF airways including underlying CFTR dysfunction. There is emerging experimental and clinical evidence that supports the notion that impaired cellular proteostasis and autophagy plays a central role in regulating pathogenesis of chronic CF lung disease. Thus, correcting the underlying proteostasis and autophagy defect in controlling CF pulmonary disease, primarily via correcting the protein processing defect of F508del-CFTR protein has emerged as a novel intervention strategy. Hence, we discuss here both the rationale and significant therapeutic utility of emerging proteostasis and autophagy modulating drugs/compounds in controlling chronic CF lung disease, where targeted delivery is a critical factor-influencing efficacy.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - Neeraj Vij
- Department of Pediatric Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- 4Dx Limited, Los Angeles, CA, United States
- VIJ Biotech LLC, Baltimore, MD, United States
| |
Collapse
|
23
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
24
|
Peters-Hall JR, Coquelin ML, Torres MJ, LaRanger R, Alabi BR, Sho S, Calva-Moreno JF, Thomas PJ, Shay JW. Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function. Am J Physiol Lung Cell Mol Physiol 2018; 315:L313-L327. [PMID: 29722564 PMCID: PMC6139663 DOI: 10.1152/ajplung.00355.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/27/2022] Open
Abstract
While primary cystic fibrosis (CF) and non-CF human bronchial epithelial basal cells (HBECs) accurately represent in vivo phenotypes, one barrier to their wider use has been a limited ability to clone and expand cells in sufficient numbers to produce rare genotypes using genome-editing tools. Recently, conditional reprogramming of cells (CRC) with a Rho-associated protein kinase (ROCK) inhibitor and culture on an irradiated fibroblast feeder layer resulted in extension of the life span of HBECs, but differentiation capacity and CF transmembrane conductance regulator (CFTR) function decreased as a function of passage. This report details modifications to the standard HBEC CRC protocol (Mod CRC), including the use of bronchial epithelial cell growth medium, instead of F medium, and 2% O2, instead of 21% O2, that extend HBEC life span while preserving multipotent differentiation capacity and CFTR function. Critically, Mod CRC conditions support clonal growth of primary HBECs from a single cell, and the resulting clonal HBEC population maintains multipotent differentiation capacity, including CFTR function, permitting gene editing of these cells. As a proof-of-concept, CRISPR/Cas9 genome editing and cloning were used to introduce insertions/deletions in CFTR exon 11. Mod CRC conditions overcome many barriers to the expanded use of HBECs for basic research and drug screens. Importantly, Mod CRC conditions support the creation of isogenic cell lines in which CFTR is mutant or wild-type in the same genetic background with no history of CF to enable determination of the primary defects of mutant CFTR.
Collapse
Affiliation(s)
- Jennifer R Peters-Hall
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Melissa L Coquelin
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Michael J Torres
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ryan LaRanger
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Busola R Alabi
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Sei Sho
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jose F Calva-Moreno
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Philip J Thomas
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
25
|
Zomer-van Ommen DD, de Poel E, Kruisselbrink E, Oppelaar H, Vonk AM, Janssens HM, van der Ent CK, Hagemeijer MC, Beekman JM. Comparison of ex vivo and in vitro intestinal cystic fibrosis models to measure CFTR-dependent ion channel activity. J Cyst Fibros 2018; 17:316-324. [PMID: 29544685 DOI: 10.1016/j.jcf.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND New functional assays using primary human intestinal adult stem cell cultures can be valuable tools to study epithelial defects in human diseases such as cystic fibrosis. METHODS CFTR-mediated ion transport was measured in rectal organoid-derived monolayers grown from subjects with various CFTR mutations and compared to donor-matched intestinal current measurements (ICM) in rectal biopsies and forskolin-induced swelling of rectal organoids. RESULTS Rectal organoid-derived monolayers were generated within four days. Ion transport measurements of CFTR function using these monolayers correlated with ICM and organoid swelling (r = 0.73 and 0.79 respectively). Culturing the monolayers under differentiation conditions enhanced the detection of mucus-secreting cells and was accompanied by reduced CFTR function. CONCLUSIONS CFTR-dependent intestinal epithelial ion transport properties can be measured in rectal organoid-derived monolayers of subjects and correlate with donor-matched ICM and rectal organoid swelling.
Collapse
Affiliation(s)
- Domenique D Zomer-van Ommen
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hugo Oppelaar
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marne C Hagemeijer
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Kym PR, Wang X, Pizzonero M, Van der Plas SE. Recent Progress in the Discovery and Development of Small-Molecule Modulators of CFTR. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:235-276. [PMID: 29680149 DOI: 10.1016/bs.pmch.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder driven by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While different mutations lead to varying levels of disease severity, the most common CFTR F508del mutation leads to defects in protein stability, trafficking to the cell membrane and gating of chloride ions. Recently, advances in medicinal chemistry have led to the identification small-molecule drugs that result in significant clinical efficacy in improving lung function in CF patients. Multiple CFTR modulators are required to fix the various defects in the CFTR protein. Small-molecule potentiators increase the open-channel probability and improve the gating of ions through CFTR. Small-molecule correctors stabilize the protein fold of the mutant channel, facilitating protein maturation and translocation to the cellular membrane. Recent data suggest that triple-combination therapy consisting of a potentiator and two correctors that operate through distinct mechanisms will be required to deliver highly significant clinical efficacy for most CF patients. The progress in medicinal chemistry that has led to the identification of novel CFTR potentiators and correctors is presented in this chapter.
Collapse
Affiliation(s)
- Phil R Kym
- AbbVie Discovery Chemistry and Technology, North Chicago, IL, United States
| | - Xueqing Wang
- AbbVie Discovery Chemistry and Technology, North Chicago, IL, United States
| | | | | |
Collapse
|
27
|
Wang X, Liu B, Searle X, Yeung C, Bogdan A, Greszler S, Singh A, Fan Y, Swensen AM, Vortherms T, Balut C, Jia Y, Desino K, Gao W, Yong H, Tse C, Kym P. Discovery of 4-[(2R,4R)-4-({[1-(2,2-Difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic Acid (ABBV/GLPG-2222), a Potent Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Corrector for the Treatment of Cystic Fibrosis. J Med Chem 2018; 61:1436-1449. [PMID: 29251932 DOI: 10.1021/acs.jmedchem.7b01339] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease of the lungs, sinuses, pancreas, and gastrointestinal tract that is caused by a dysfunction or deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an epithelial anion channel that regulates salt and water balance in the tissues in which it is expressed. To effectively treat the most prevalent patient population (F508del mutation), two biomolecular modulators are required: correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. Despite approved potentiator and potentiator/corrector combination therapies, there remains a high need to develop more potent and efficacious correctors. Herein, we disclose the discovery of a highly potent series of CFTR correctors and the structure-activity relationship (SAR) studies that guided the discovery of ABBV/GLPG-2222 (22), which is currently in clinical trials in patients harboring the F508del CFTR mutation on at least one allele.
Collapse
Affiliation(s)
- Xueqing Wang
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Bo Liu
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xenia Searle
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Clinton Yeung
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew Bogdan
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stephen Greszler
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yihong Fan
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew M Swensen
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Timothy Vortherms
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Corina Balut
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ying Jia
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kelly Desino
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wenqing Gao
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hong Yong
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Chris Tse
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip Kym
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
28
|
Guimbellot J, Sharma J, Rowe SM. Toward inclusive therapy with CFTR modulators: Progress and challenges. Pediatr Pulmonol 2017; 52:S4-S14. [PMID: 28881097 PMCID: PMC6208153 DOI: 10.1002/ppul.23773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis is caused by gene mutations that result in an abnormal Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein on the surface of cells. CFTR modulators are a novel class of drugs that directly target the molecular defect. CFTR modulators include potentiators that result in improved activity of the channel; correctors that help the protein traffic to the cell surface properly; and readthrough agents that restore full-length CFTR by suppression of premature termination codons, among other novel classes more recently established. While some of these drugs, CFTR potentiators in particular, have provided remarkable improvements for CF patients, others have yet to achieve profoundly improved outcomes, and many CF patients are not yet impacted by CFTR modulators due to lack of knowledge regarding susceptibility of their mutations to treatment. One limitation to expanding these types of therapies to the maximum number of patients with CF is the lack of rigorously validated clinical biomarkers that can determine efficacy on an individual basis, as well as few pre-clinical tools that can predict whether an individual with a rare combination of mutant alleles will respond to a particular CFTR modulator regimen. In this review, we discuss the various groups of CFTR modulators and their status in clinical development, as well as address the current literature on biomarkers, pre-clinical cell-based tools, and the role of pharmacometrics in creating therapeutic strategies to improve the lives of all patients with cystic fibrosis, regardless of their specific mutation.
Collapse
Affiliation(s)
- Jennifer Guimbellot
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Brockman SM, Bodas M, Silverberg D, Sharma A, Vij N. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One 2017; 12:e0184793. [PMID: 28902888 PMCID: PMC5597233 DOI: 10.1371/journal.pone.0184793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cystic Fibrosis (CF) is a genetic disorder caused by mutation(s) in the CF-transmembrane conductance regulator (Cftr) gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa), a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN)-based cysteamine analogue. Results We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS) on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies) by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN) control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS) rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS) decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties. Conclusions We demonstrate here the efficacy of dendrimer-based autophagy-induction in preventing sequestration of ΔF508-CFTR to aggresome-bodies while promoting its trafficking to the plasma membrane. Moreover, PAMAM-DENCYS decreases Pa infection and growth, while showing mucolytic properties, suggesting its potential in rescuing Pa-induced ΔF508-CF lung disease that warrants further investigation in CF murine model.
Collapse
Affiliation(s)
- Scott Mackenzie Brockman
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - David Silverberg
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Department of Pediatric Respiratory Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yuan J, Han R, Esther A, Wu Q, Yang J, Yan W, Ji X, Liu Y, Li Y, Yao W, Ni C. Polymorphisms in autophagy related genes and the coal workers' pneumoconiosis in a Chinese population. Gene 2017; 632:36-42. [PMID: 28844669 DOI: 10.1016/j.gene.2017.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 01/09/2023]
Abstract
Autophagy is an evolutionary conserved intracellular degradation/recycling system that is essential for cellular homeostasis. Dysregulation of this process leads to a number of disorders, including pulmonary fibrosis. However, the genetic association between singe nucleotide polymorphisms of autophagy related genes (ATGs) and the risk of coal workers' pneumoconiosis has not been reported yet. Total of 7 SNPs in ATGs (ATG16, ATG12, ATG5, ATG10) were investigated for their roles in CWP by a case-control study which including 705 CWP patients and 703 control subjects. Genotyping were performed by the Sequenom Mass ARRAY system. Luciferase assays were taken to test the effects of rs26538 C>T on the activity of ATG12 in the promoter. Our data showed that ATG10 rs1864182 GT genotype was associated with a decreased risk of CWP compared with TT genotype (OR=0.42, 95% CI=0.33-0.54, P=0.001). Another 2 SNPs (rs26538, rs510432) were also with the marked decreases in the risk of CWP under recessive models (OR=0.58, 95% CI=0.40-0.83, P=0.002 for rs26538; OR=0.74, 95% CI=0.57-0.97, P=0.040 for rs510432). Luciferase assays in two different cell lines revealed that the rs26538 C>T substitution could reduce the expression of ATG12. Taken together, we identified three SNPs in ATGs, which implicated the development of CWP. Further studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ayaaba Esther
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qiuyun Wu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Weiwen Yan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yi Liu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Wenxi Yao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
31
|
Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front Microbiol 2017; 8:1592. [PMID: 28878751 PMCID: PMC5572248 DOI: 10.3389/fmicb.2017.01592] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen particularly dangerous for cystic fibrosis (CF) patients. It can cause a severe decline in CF lung function possibly developing into a life-threatening systemic infection known as cepacia syndrome. Antibiotic resistance and presence of numerous virulence determinants in the genome make B. cenocepacia extremely difficult to treat. Better understanding of its resistance profiles and mechanisms is crucial to improve management of these infections. Here, we present the clinical distribution of B. cenocepacia described in the last 6 years and methods for identification and classification of epidemic strains. We also detail new antibiotics, clinical trials, and alternative approaches reported in the literature in the last 5 years to tackle B. cenocepacia resistance issue. All together these findings point out the urgent need of new and alternative therapies to improve CF patients’ life expectancy.
Collapse
Affiliation(s)
- Viola C Scoffone
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Massimo Mentasti
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health EnglandLondon, United Kingdom.,Department of Microbiology, Royal Cornwall HospitalTruro, United Kingdom
| | - Giovanna Riccardi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| |
Collapse
|
32
|
Bodas M, Vij N. Augmenting autophagy for prognosis based intervention of COPD-pathophysiology. Respir Res 2017; 18:83. [PMID: 28472967 PMCID: PMC5418861 DOI: 10.1186/s12931-017-0560-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is foremost among the non-reversible fatal ailments where exposure to tobacco/biomass-smoke and aging are the major risk factors for the initiation and progression of the obstructive lung disease. The role of smoke-induced inflammatory-oxidative stress, apoptosis and cellular senescence in driving the alveolar damage that mediates the emphysema progression and severe lung function decline is apparent, although the central mechanism that regulates these processes was unknown. To fill in this gap in knowledge, the central role of proteostasis and autophagy in regulating chronic lung disease causing mechanisms has been recently described. Recent studies demonstrate that cigarette/nicotine exposure induces proteostasis/autophagy-impairment that leads to perinuclear accumulation of polyubiquitinated proteins as aggresome-bodies, indicative of emphysema severity. In support of this concept, autophagy inducing FDA-approved anti-oxidant drugs control tobacco-smoke induced inflammatory-oxidative stress, apoptosis, cellular senescence and COPD-emphysema progression in variety of preclinical models. Hence, we propose that precise and early detection of aggresome-pathology can allow the timely assessment of disease severity in COPD-emphysema subjects for prognosis-based intervention. While intervention with autophagy-inducing drugs is anticipated to reduce alveolar damage and lung function decline, resulting in a decrease in the current mortality rates in COPD-emphysema subjects.
Collapse
Affiliation(s)
- Manish Bodas
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
| | - Neeraj Vij
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
33
|
Abstract
Pulmonary disease is the major cause of morbidity and mortality in patients with cystic fibrosis, a disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Heterogeneity in CFTR genotype–phenotype relationships in affected individuals plus the escalation of drug discovery targeting specific mutations highlights the need to develop robust in vitro platforms with which to stratify therapeutic options using relevant tissue. Toward this goal, we adapted a fluorescence plate reader assay of apical CFTR-mediated chloride conductance to enable profiling of a panel of modulators on primary nasal epithelial cultures derived from patients bearing different CFTR mutations. This platform faithfully recapitulated patient-specific responses previously observed in the “gold-standard” but relatively low-throughput Ussing chamber. Moreover, using this approach, we identified a novel strategy with which to augment the response to an approved drug in specific patients. In proof of concept studies, we also validated the use of this platform in measuring drug responses in lung cultures differentiated from cystic fibrosis iPS cells. Taken together, we show that this medium throughput assay of CFTR activity has the potential to stratify cystic fibrosis patient-specific responses to approved drugs and investigational compounds in vitro in primary and iPS cell-derived airway cultures. A new method for evaluating drug responses in patient-derived respiratory tissue promises to help determine the best treatment for each patient with cystic fibrosis (CF). CF patients are highly susceptible to lung infections due to the build-up of thick mucus in the airways. Over 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified in patients with CF, which partly explains their varied response to treatment. Saumel Ahmadi, Christine E. Bear, and colleagues at the Hospital for Sick Children in Toronto developed a fluorescence-based method for measuring improvements in mutant CFTR function in patient-derived nasal and induced pluripotent stem cell-derived lung tissue. This method enables comparison of approved and investigational drugs on airway cells from each individual patient and in the longer term will accelerate the development of personalized therapeutic strategies.
Collapse
|