1
|
Ma HY, Wang J, Wang J, Guo Z, Qin XY, Lan R, Hu Y. Luteolin attenuates cadmium neurotoxicity by suppressing glial inflammation and supporting neuronal survival. Int Immunopharmacol 2025; 152:114406. [PMID: 40068520 DOI: 10.1016/j.intimp.2025.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025]
Abstract
Cadmium (Cd), a neurotoxic metal, is associated with the development of neurological disorders. This study investigated the neuroprotective effects of Luteolin against Cd-induced toxicity in cultured cells and mouse models. Our findings demonstrate that Luteolin protects hippocampal neurons from Cd toxicity and mitigates Cd-triggered inflammatory responses in microglial BV2 cells. In Cd-exposed mice, symptoms such as weight loss, motor retardation, multi-organ damage, and cognitive deficits were observed. Remarkably, Luteolin treatment reversed these effects, repaired organ damage, and restored learning and memory abilities. Mechanistically, Cd toxicity induced significant upregulation of pro-inflammatory factors and neuroinflammation in the hippocampus and prefrontal cortex, including elevated glial cell markers (IBA1, GFAP, and CD68) and reduced neuronal marker MAP2. Luteolin counteracted these adverse effects by inhibiting the Notch1/Hes1 inflammatory signaling axis and restoring the BDNF-TrkB/AKT1 signaling axis, thereby promoting neuronal survival. These results highlight the potential of Luteolin as a natural neuroprotective agent against Cd-induced neurotoxicity, offering a promising therapeutic strategy for mitigating Cd-related neurological damage.
Collapse
Affiliation(s)
- Hui-Yong Ma
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jun Wang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Zhe Guo
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Yang Hu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China..
| |
Collapse
|
2
|
Ichikawa K, Johnson HM, Curtis MA, Biswas N, Singh S, Khachatryan HN, Gater AE, Lin SX, Sperry J. Targeting glioma with heteroaromatic alkaloids: A review of potential therapeutics. Bioorg Med Chem 2025; 121:118051. [PMID: 39999647 DOI: 10.1016/j.bmc.2024.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
Glioblastoma multiforme (GBM), classified as a grade IV astrocytoma, is the most aggressive and deadly form of glioma, characterized by rapid progression, extensive genetic heterogeneity, and resistance to conventional therapies. Despite advancements in surgical techniques, radiation therapy, and the frontline chemotherapeutic agent temozolomide, the prognosis for GBM patients remains poor, with a median survival of 15 months and a 5-year survival rate of approximately 7 %. The absence of effective long-term treatments underscores the urgent, unmet clinical need for novel therapeutic strategies to improve patient outcomes. Natural products, particularly alkaloids, have garnered attention as a rich source of bioactive compounds with diverse pharmacological properties. Alkaloids, a structurally diverse group of natural products, are renowned for their chemotherapeutic properties and ability to cross the blood-brain barrier (BBB), making them promising candidates for glioma therapy. This review systematically examines all reported heteroaromatic alkaloids with documented anti-glioma activities, highlighting their mechanisms of action where available. By providing a comprehensive resource, it aims to facilitate the identification and optimisation of alkaloid-based compounds for glioma-targeted drug discovery. Additionally, this review emphasizes the importance of incorporating natural products into the drug development pipeline to address the pressing challenges associated with glioma, particularly GBM treatment.
Collapse
Affiliation(s)
- Karen Ichikawa
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Hannah M Johnson
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Nandita Biswas
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hasmik N Khachatryan
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry, National Academy of Science of Armenia, Yerevan 0014, Armenia
| | - Anastasia E Gater
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Simon X Lin
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
3
|
Utpal BK, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Madhuri YB, Gupta JK, Yaidikar L, Tummala T, Suseela R, Durairaj A, Reddy KTK, Al Fahaid AAF, Rab SO, Almahjari MS, Emran TB. Alkaloids as neuroprotectors: targeting signaling pathways in neurodegenerative diseases. Mol Cell Biochem 2025. [DOI: 10.1007/s11010-025-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/16/2025] [Indexed: 05/04/2025]
|
4
|
Kato R, Zhang L, Kinatukara N, Huang R, Asthana A, Weber C, Xia M, Xu X, Shah P. Investigating blood-brain barrier penetration and neurotoxicity of natural products for central nervous system drug development. Sci Rep 2025; 15:7431. [PMID: 40032960 PMCID: PMC11876671 DOI: 10.1038/s41598-025-90888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Natural Products (NPs) are increasingly utilized worldwide for their potential therapeutic benefits, including central nervous system (CNS) disorders. Studies have shown açai berries mitigating Parkinson's disease progression through dopaminergic neuroprotection via Nrf-2 HO-1 pathways. Ashwagandha, an evergreen shrub, has shown potential as a therapeutic for neurodegenerative disorders via axonal regeneration in Aβ25-35-treated cortical neurons in vitro. In most cases, promising NPs are tested using in vitro assays or simpler systems during the early stages of drug discovery. However, a critical challenge lies in the lack of data on blood-brain barrier (BBB) penetration, which is a significant determinant for the successful development of CNS drugs. Our first goal was to test our in-house NP constituent library via the Parallel Artificial Membrane Permeability Assay (PAMPA-BBB), with the aim of understanding their BBB-penetration potential. Of the constituents tested, 255 were found to have moderate to high BBB permeability. Our next goal was to understand if these compounds could exhibit CNS toxicity. Neuronal viability and neurite outgrowth assays were performed with this subset to identify compounds with neurotoxicity potential. Around 35% of compounds tested showed neurite outgrowth inhibition. The habitual and widespread consumption of NPs underscores the importance of subjecting this subset of compounds to additional testing and validation in vivo to ascertain their potential detrimental effects. Understanding BBB permeability and assessing neurotoxicity mechanisms of NPs will significantly benefit the CNS drug discovery community.
Collapse
Affiliation(s)
- Rintaro Kato
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Li Zhang
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Nivedita Kinatukara
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Abhinav Asthana
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
5
|
Egorova A, Zubkov E, Makarov V. Vindeburnol: A natural product-inspired chemical tool for central nervous system drug design. Eur J Med Chem 2024; 280:116966. [PMID: 39413442 DOI: 10.1016/j.ejmech.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Natural products (NPs) often act as sources of CNS-active agents and provide inspiration for the development of synthetic molecules that incorporate their best features. Vindeburnol (VIND; (±)-(3α,14β)-20,21-dinoreburnamenin-14-ol; developmental codes RU24722 or BC19), based on the core structure of eburnamine-vincamine alkaloids, has been extensively investigated for its biological activities. This molecule has demonstrated potential therapeutic properties in various in vivo models of CNS disorders such as multiple sclerosis, Alzheimer's disease, and depressive-like behavior. Although few clinical trials were conducted, further development of vindeburnol was abandoned. This review presents synthetic approaches to vindeburnol synthesis as well as the most complete discussion of its pharmacological effects. Studies involving vindeburnol in animal models of CNS disorders and a few human trials have been presented in separate sections. Special attention is placed on derivatives and analogs based on the vindeburnol scaffold. The interesting pharmacological profile of vindeburnol suggests that this NP-inspired compound may serve as a useful tool or structural basis for next-generation molecules in CNS drug design and discovery.
Collapse
Affiliation(s)
- Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia
| | - Eugene Zubkov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia; V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034, Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia.
| |
Collapse
|
6
|
Bharate SB, Lindsley CW. Natural Products Driven Medicinal Chemistry. J Med Chem 2024; 67:20723-20730. [PMID: 39629819 DOI: 10.1021/acs.jmedchem.4c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Affiliation(s)
- Sandip B Bharate
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| | - Craig W Lindsley
- Vanderbilt Institute of Chemical Biology Program in Drug Discovery, Department of Pharmacology, Vanderbilt Medical Center, Nashville, Tennessee 37240, United States
| |
Collapse
|
7
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
8
|
Puls K, Olivé-Marti AL, Hongnak S, Lamp D, Spetea M, Wolber G. Discovery of Novel, Selective, and Nonbasic Agonists for the Kappa-Opioid Receptor Determined by Salvinorin A-Based Virtual Screening. J Med Chem 2024; 67:13788-13801. [PMID: 39088801 PMCID: PMC11345774 DOI: 10.1021/acs.jmedchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
Modulating the kappa-opioid receptor (KOR) is a promising strategy for treating various human diseases. KOR agonists show potential for treating pain, pruritus, and epilepsy, while KOR antagonists show potential for treating depression, anxiety, and addiction. The diterpenoid Salvinorin A (SalA), a secondary metabolite of Salvia divinorum, is a potent and selective KOR agonist. Unlike typical opioids, SalA lacks a basic nitrogen, which encouraged us to search for nonbasic KOR ligands. Through structure-based virtual screening using 3D pharmacophore models based on the binding mode of SalA, we identified novel, nonbasic, potent, and selective KOR agonists. In vitro studies confirmed two virtual hits, SalA-VS-07 and SalA-VS-08, as highly selective for the KOR and showing G protein-biased KOR agonist activity. Both KOR ligands share a novel spiro-moiety and a nonbasic scaffold. Our findings provide novel starting points for developing therapeutics aimed at treating pain and other conditions in which KOR is a central player.
Collapse
Affiliation(s)
- Kristina Puls
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Aina-Leonor Olivé-Marti
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Siriwat Hongnak
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - David Lamp
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Gerhard Wolber
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| |
Collapse
|
9
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
10
|
Reddy CN, Nuthakki VK, Sharma A, Malik S, Tabassum M, Kumar R, Choudhary S, Iqbal F, Tufail Z, Mondhe DM, Kumar A, Bharate SB. Synthesis and Biological Evaluation of Colchicine─Aryl/Alkyl Amine Hybrids as Potential Noncytotoxic Cholinesterase Inhibitors: Identification of SBN-284 as a Dual Inhibitor of Cholinesterases and NLRP3 Inflammasome. ACS Chem Neurosci 2024; 15:2779-2794. [PMID: 39056181 DOI: 10.1021/acschemneuro.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Colchicine, one of the oldest anti-inflammatory natural products still used clinically, inhibits NF-κB signaling and NLRP3 inflammasome activation. Despite its cytotoxicity and narrow therapeutic range, colchicine continues to intrigue medicinal chemists exploring its anti-inflammatory potential. This study aimed to investigate the colchicine scaffold for its role in Alzheimer's disease by targeting neuroinflammation and cholinesterases. Molecular docking revealed that colchicine's hydrophobic trimethoxyphenyl framework can potentially bind to the peripheral anionic site of cholinesterases. Hybrid structures combining colchicine with aryl/alkyl amines were designed to bind both peripheral and catalytic sites of cholinesterases. We describe here the design, synthesis, and in vitro cytotoxicity evaluation of these colchicine-aryl/alkyl amine hybrids, along with their in silico interactions with the cholinesterase active site gorge. Nontoxic analogs demonstrating strong cholinesterase binding affinity were further evaluated for their anticholinesterase and antineuroinflammatory activities. The colchicine-donepezil hybrid, SBN-284 (3x), inhibited both acetylcholinesterase and butyrylcholinesterase as well as the NLRP3 inflammasome complex at low micromolar concentrations. It achieved this through noncompetitive inhibition, occupying the active site gorge and interacting with both peripheral and catalytic anionic sites of cholinesterases. Analog 3x was shown to cross the blood-brain barrier and exhibited no toxicity to neuronal cells, primary macrophages, or epithelial fR2 cells. These findings highlight the potential of this lead compound for further preclinical investigation as a promising anti-Alzheimer agent.
Collapse
Affiliation(s)
- Chilakala Nagarjuna Reddy
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumera Malik
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Misbah Tabassum
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rajesh Kumar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sushil Choudhary
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Fiza Iqbal
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ziya Tufail
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Dilip M Mondhe
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ajay Kumar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
11
|
Shim HS, Iaconelli J, Shang X, Li J, Lan ZD, Jiang S, Nutsch K, Beyer BA, Lairson LL, Boutin AT, Bollong MJ, Schultz PG, DePinho RA. TERT activation targets DNA methylation and multiple aging hallmarks. Cell 2024; 187:4030-4042.e13. [PMID: 38908367 PMCID: PMC11552617 DOI: 10.1016/j.cell.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/24/2024]
Abstract
Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.
Collapse
Affiliation(s)
- Hong Seok Shim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan Iaconelli
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng D Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brittney A Beyer
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam T Boutin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Eljounaidi K, Radzikowska BA, Whitehead CB, Taylor DJ, Conde S, Davis W, Dowle AA, Langer S, James S, Unsworth WP, Ezer D, Larson TR, Lichman BR. Variation of terpene alkaloids in Daphniphyllum macropodum across plants and tissues. THE NEW PHYTOLOGIST 2024; 243:299-313. [PMID: 38757546 DOI: 10.1111/nph.19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Daphniphyllum macropodum produces alkaloids that are structurally complex with polycyclic, stereochemically rich carbon skeletons. Understanding how these compounds are formed by the plant may enable exploration of their biological function and bioactivities. We employed multiple metabolomics techniques, including a workflow to annotate compounds in the absence of standards, to compare alkaloid content across plants and tissues. Different alkaloid structural types were found to have distinct distributions between genotypes, between tissues and within tissues. Alkaloid structural types also showed different isotope labelling enrichments that matched their biosynthetic relationships. The work suggests that mevalonate derived 30-carbon alkaloids are formed in the phloem region before their conversion to 22-carbon alkaloids which accumulate in the epidermis. This sets the stage for further investigation into the biosynthetic pathway.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Caragh B Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Danielle J Taylor
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Susana Conde
- Department of Biology, University of York, York, YO10 5DD, UK
| | - William Davis
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Adam A Dowle
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Swen Langer
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Daphne Ezer
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Tony R Larson
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
13
|
Kolić D, Šinko G. Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin. Int J Mol Sci 2024; 25:6310. [PMID: 38928014 PMCID: PMC11204243 DOI: 10.3390/ijms25126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Triazoles are compounds with various biological activities, including fungicidal action. They became popular through cholinesterase studies after the successful synthesis of the dual binding femtomolar triazole inhibitor of acetylcholinesterase (AChE, EC 3.1.1.7) by Sharpless et al. via in situ click chemistry. Here, we evaluate the anticholinesterase effect of the first isopropanol triazole fungicide mefentrifluconazole (Ravystar®), developed to overcome fungus resistance in plant disease management. Mefentrifluconazole is commercially available individually or in a binary fungicidal mixture, i.e., with pyraclostrobin (Ravycare®). Pyraclostrobin is a carbamate that contains a pyrazole ring. Carbamates are known inhibitors of cholinesterases and the carbamate rivastigmine is already in use for the treatment of Alzheimer's disease. We tested the type and potency of anticholinesterase activity of mefentrifluconazole and pyraclostrobin. Mefentrifluconazole reversibly inhibited human AChE and BChE with a seven-fold higher potency toward AChE (Ki = 101 ± 19 μM). Pyraclostrobin (50 μM) inhibited AChE and BChE progressively with rate constants of (t1/2 = 2.1 min; ki = 6.6 × 103 M-1 min-1) and (t1/2 = 1.5 min; ki = 9.2 × 103 M-1 min-1), respectively. A molecular docking study indicated key interactions between the tested fungicides and residues of the lipophilic active site of AChE and BChE. Additionally, the physicochemical properties of the tested fungicides were compared to values for CNS-active drugs to estimate the blood-brain barrier permeability. Our results can be applied in the design of new molecules with a lesser impact on humans and the environment.
Collapse
Affiliation(s)
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia;
| |
Collapse
|
14
|
Nyazema NZ, Chanyandura JT, Egan B. The use and potential abuse of psychoactive plants in southern Africa: an overview of evidence and future potential. Front Pharmacol 2024; 15:1269247. [PMID: 38855756 PMCID: PMC11162113 DOI: 10.3389/fphar.2024.1269247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Background Most Bantu ethnic groups in southern Africa utilize indigenous herbal medicines, some of which have psychoactive properties. Traditional medical practitioners (TMPs) commonly use them not only for divinatory purposes but to treat and manage mental and other illnesses. Unfortunately, the research on their results, risks, and benefits do not align. Little is known about their potential abuse among TMPs and community members in southern Africa. Herbal medicines are complex because whole plants are sometimes used, unlike in other treatments which use only one active ingredient. However, if the key mechanisms of action of these ethnomedicinal plants can be identified through socio-pharmacological research, useful botanical agents can be developed. A review of socio-pharmacological studies to evaluate the consequences of exposure to ethnomedicinal plants with psychoactive properties was conducted with the aim of identifying harm reduction strategies and investigating how the plants could be developed into useful botanicals. Method The search methods involved retrieval of records from PubMed/MEDLINE, Embase, Web of Science, Dissertations and Theses Global, and OpenGrey. The English language and human subjects were used as filters. In addition, some information was obtained from TMPs and community members. Results The following psychoactive plants were found to be commonly used or abused: Boophone disticha, Cannabis sativa, Datura stramonium, Leonotis leonurus, Psilocybe cubensis, and Sceletium tortuosum. The commercialization of Cannabis, L. leonurus, S. tortuosum, and Aspalathus is growing fast. The abuse liability of B. disticha, D. stramonium, and P. cubensis appears not to be appreciated. Five countries were found to have TMP policies and three with TMP Councils. Conclusion TMPs in the region are aware of the CNS effects of the identified psychoactive plants which can be explored further to develop therapeutic agents. There is a need to work closely with TMPs to reduce harm from the abuse of these plants.
Collapse
Affiliation(s)
| | | | - Bronwyn Egan
- Botany Department, University of Limpopo, Mankgweng, South Africa
| |
Collapse
|
15
|
Manhas D, Dhiman S, Kour H, Kour D, Sharma K, Wazir P, Vij B, Kumar A, Sawant SD, Ahmed Z, Nandi U. ADME/PK Insights of Crocetin: A Molecule Having an Unusual Chemical Structure with Druglike Features. ACS OMEGA 2024; 9:21494-21509. [PMID: 38764638 PMCID: PMC11097163 DOI: 10.1021/acsomega.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024]
Abstract
Crocetin is a promising phyto-based molecule to treat Alzheimer's disease (AD). The chemical structure of crocetin is incongruent with various standard structural features of CNS drugs. As poor pharmacokinetic behavior is the major hurdle for any candidate to become a drug, we elucidated its druggable characteristics by implementing in silico, in vitro, and in vivo approaches, as limited ADME/PK information is available. Results demonstrate several attributes of crocetin based on rules of drug-likeness, lipophilicity, pKa, P-gp inhibitory activity, plasma stability, RBC partitioning, metabolic stability, CYP inhibitory action, blood-brain barrier (BBB) permeability, oral bioavailability, and pharmacokinetic interaction with marketed anti-Alzheimer's drugs (memantine, donepezil, galantamine, and rivastigmine). However, aqueous solubility, chemical stability, plasma protein binding, and P-gp induction are some concerns associated with this molecule that should be taken into consideration during its further development. Overall results indicate favorable ADME/PK behavior and potential druggable candidature of crocetin.
Collapse
Affiliation(s)
- Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harpreet Kour
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Bhavna Vij
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanghapal D. Sawant
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Wen W, Hu J, Wang C, Yang R, Zhang Y, Huang B, Qiao T, Wang J, Chen X. Re-exploration of tetrahydro-β-carboline scaffold: Discovery of selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting and neuroprotective activities. Bioorg Med Chem Lett 2024; 102:129670. [PMID: 38387692 DOI: 10.1016/j.bmcl.2024.129670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-β-carboline (THβC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.
Collapse
Affiliation(s)
- Wen Wen
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China.
| | - Chenxi Wang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Rui Yang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Yabo Zhang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Baibei Huang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Tingting Qiao
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling 712100, PR China
| | - Jiayun Wang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
17
|
Zheng L, Zhang W, Olkkola KT, Dallmann A, Ni L, Zhao Y, Wang L, Zhang Q, Hu W. Physiologically based pharmacokinetic modeling of ritonavir-oxycodone drug interactions and its implication for dosing strategy. Eur J Pharm Sci 2024; 194:106697. [PMID: 38199444 DOI: 10.1016/j.ejps.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
The concomitant administration of ritonavir and oxycodone may significantly increase the plasma concentrations of oxycodone. This study was aimed to simulate DDI between ritonavir and oxycodone, a widely used opioid, and to formulate dosing protocols for oxycodone by using physiologically based pharmacokinetic (PBPK) modeling. We developed a ritonavir PBPK model incorporating induction and competitive and time-dependent inhibition of CYP3A4 and competitive inhibition of CYP2D6. The ritonavir model was evaluated with observed clinical pharmacokinetic data and validated for its CYP3A4 inhibition potency. We then used the model to simulate drug interactions between oxycodone and ritonavir under various dosing scenarios. The developed model captured the pharmacokinetic characteristics of ritonavir from clinical studies. The model also accurately predicts exposure changes of midazolam, triazolam, and oxycodone in the presence of ritonavir. According to model simulations, the steady-state maximum, minimum and average concentrations of oxycodone increased by up to 166% after co-administration with ritonavir, and the total exposure increased by approximately 120%. To achieve similar steady-state concentrations, halving the dose with an unchanged dosing interval or doubling the dosing interval with an unaltered single dose should be practical for oxycodone, whether formulated in uncoated or controlled-release tablets during long-term co-medication with ritonavir. The results revealed exposure-related risks of oxycodone-ritonavir interactions that have not been studied clinically and emphasized PBPK as a workable method to direct judicious dosage.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wei Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Klaus T Olkkola
- Department of Anaesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany.
| | - Liang Ni
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qian Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
18
|
Davis CC, Choisy P. Medicinal plants meet modern biodiversity science. Curr Biol 2024; 34:R158-R173. [PMID: 38412829 DOI: 10.1016/j.cub.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Plants have been an essential source of human medicine for millennia. In this review, we argue that a holistic, interdisciplinary approach to the study of medicinal plants that combines methods and insights from three key disciplines - evolutionary ecology, molecular biology/biochemistry, and ethnopharmacology - is poised to facilitate new breakthroughs in science, including pharmacological discoveries and rapid advancements in human health and well-being. Such interdisciplinary research leverages data and methods spanning space, time, and species associated with medicinal plant species evolution, ecology, genomics, and metabolomic trait diversity, all of which build heavily on traditional Indigenous knowledge. Such an interdisciplinary approach contrasts sharply with most well-funded and successful medicinal plant research during the last half-century, which, despite notable advancements, has greatly oversimplified the dynamic relationships between plants and humans, kept hidden the larger human narratives about these relationships, and overlooked potentially important research and discoveries into life-saving medicines. We suggest that medicinal plants and people should be viewed as partners whose relationship involves a complicated and poorly explored set of (socio-)ecological interactions including not only domestication but also commensalisms and mutualisms. In short, medicinal plant species are not just chemical factories for extraction and exploitation. Rather, they may be symbiotic partners that have shaped modern societies, improved human health, and extended human lifespans.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Patrick Choisy
- LVMH Research, 185 Avenue de Verdun, 45804 Saint Jean de Braye CEDEX, France
| |
Collapse
|
19
|
Betschart L, Altmann KH. Total Synthesis of Isoxeniolide A. Angew Chem Int Ed Engl 2024; 63:e202315423. [PMID: 38118052 DOI: 10.1002/anie.202315423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Isoxeniolide A is a highly strained xenicane diterpenoid of marine origin. This natural product is representative for a subfamily of xenicanes incorporating an allylic hydroxy group in the nine-membered ring; members of this xenicane subfamily so far have not been targeted by total synthesis. Herein, we describe the first asymmetric total synthesis of isoxeniolide A. Key to forming the challenging E-configured cyclononene ring was a diastereoselective intramolecular Nozaki-Hiyama-Kishi reaction. Other important transformations include an enzymatic desymmetrization for absolute stereocontrol, a diastereoselective cuprate addition and the use of a bifunctional vinyl silane building block. Our strategy also permits access to the enantiomer of the natural product and holds potential to access a multitude of xenicane natural products and analogs for structure-activity relationship studies.
Collapse
Affiliation(s)
- Leo Betschart
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, HCI H405, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Karl-Heinz Altmann
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, HCI H405, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| |
Collapse
|
20
|
Yang XY, Yang JM, Wu B. TMSOTf-Promoted Cyclization of Indole-2-methyl-α-aminoketones: Access to 4-Aryl-Substituted β-Carbolines. Org Lett 2024; 26:1105-1109. [PMID: 38289176 DOI: 10.1021/acs.orglett.3c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An efficient method to construct 4-aryl-substituted β-carbolines from indole-2-methyl-α-aminoketones via a TMSOTf-promoted annulation reaction was reported. High yield along with wide substrate scope and functional group tolerance make this reaction applicable to build various highly potential bioactive β-carboline derivatives.
Collapse
Affiliation(s)
- Xin-Yu Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
21
|
Tang M, Lu H, Zu L. Collective total synthesis of stereoisomeric yohimbine alkaloids. Nat Commun 2024; 15:941. [PMID: 38296955 PMCID: PMC10830567 DOI: 10.1038/s41467-024-45140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Stereoisomeric polycyclic natural products are important for drug discovery-based screening campaigns, due to the close correlation of stereochemistry with diversified bioactivities. Nature generates the stereoisomeric yohimbine alkaloids using bioavailable monoterpene secolaganin as the ten-carbon building block. In this work, we reset the stage by the development of a bioinspired coupling, in which the rapid construction of the entire pentacyclic skeleton and the complete control of all five stereogenic centers are achieved through enantioselective kinetic resolution of an achiral, easily accessible synthetic surrogate. The stereochemical diversification from a common intermediate allows for the divergent and collective synthesis of all four stereoisomeric subfamilies of yohimbine alkaloids through orchestrated tackling of thermodynamic and kinetic preference.
Collapse
Affiliation(s)
- Meiyi Tang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Haigen Lu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Cham PS, Deepika, Bhat R, Raina D, Manhas D, Kotwal P, Mindala DP, Pandey N, Ghosh A, Saran S, Nandi U, Khan IA, Singh PP. Exploring the Antibacterial Potential of Semisynthetic Phytocannabinoid: Tetrahydrocannabidiol (THCBD) as a Potential Antibacterial Agent against Sensitive and Resistant Strains of Staphylococcus aureus. ACS Infect Dis 2024; 10:64-78. [PMID: 38051636 DOI: 10.1021/acsinfecdis.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Antimicrobial resistance (AMR) is one of the most challenging problems and is responsible for millions of deaths every year. We therefore urgently require new chemical entities with novel mechanisms of action. Phytocannabinoids have been adequately reported for the antimicrobial effect but not seriously pursued because of either stringent regulatory issues or poor drug-like properties. In this regard, the current work demonstrated the antibacterial potential of tetrahydrocannabidiol (THCBD, 4), a semisynthetic phytocannabinoid, against Staphylococcus aureus, the second-most widespread bug recognized by the WHO. THCBD (4) was generated from cannabidiol and subjected to extensive antibacterial screening. In in vitro studies, THCBD (4) demonstrated a potent MIC of 0.25 μg/mL against Gram-positive bacteria, S. aureus ATCC-29213. It is interesting to note that THCBD (4) has demonstrated strong effectiveness against efflux pump-overexpressing (SA-1199B, SA-K2191, SA-K2192, and Mupr-1) and multidrug-resistant (MRSA-15187) S. aureus strains. THCBD (4) has also shown a good effect in kill kinetic assays against ATCC-29213 and MRSA-15187. In the checkerboard assay, THCBD (4) has shown additive/indifference effects with several well-known clinically used antibiotics, tetracycline, mupirocin, penicillin G, and ciprofloxacin. THCBD (4) also exhibited good permeability in the artificial skin model. Most importantly, THCBD (4) has significantly reduced CFU in mice's in vivo skin infection models and also demonstrated decent plasma exposure with 16-17% oral bioavailability. Acute dermal toxicity of THCBD (4) suggests no marked treatment-related impact on gross pathophysiology. This attractive in vitro and in vivo profile of plant-based compounds opens a new direction for new-generation antibiotics and warrants further detailed investigation.
Collapse
Affiliation(s)
- Pankaj Singh Cham
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepika
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Rahul Bhat
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Raina
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankul Kotwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Prasad Mindala
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Noopur Pandey
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra Ranchi, Jharkhand 835215, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra Ranchi, Jharkhand 835215, India
| | - Saurabh Saran
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Parvinder Pal Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Affiliation(s)
- Sandip B Bharate
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| | - Craig W Lindsley
- Vanderbilt Institute of Chemical Biology Program in Drug Discovery, Department of Pharmacology, Vanderbilt Medical Center, Nashville, Tennessee 37240, United States
| |
Collapse
|
24
|
Dragomanova S, Andonova V, Volcho K, Salakhutdinov N, Kalfin R, Tancheva L. Therapeutic Potential of Myrtenal and Its Derivatives-A Review. Life (Basel) 2023; 13:2086. [PMID: 37895468 PMCID: PMC10608190 DOI: 10.3390/life13102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
25
|
Sharma A, Bharate SB. Synthesis and Biological Evaluation of Coumarin Triazoles as Dual Inhibitors of Cholinesterases and β-Secretase. ACS OMEGA 2023; 8:11161-11176. [PMID: 37008108 PMCID: PMC10061512 DOI: 10.1021/acsomega.2c07993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Coumarin is a naturally occurring bioactive pharmacophore with wide occurrence among central nervous system (CNS)-active small molecules. 8-Acetylcoumarin, one of the natural coumarins, is a mild inhibitor of cholinesterases and β-secretase, which are vital targets of Alzheimer's disease. Herein, we synthesized a series of coumarin-triazole hybrids as potential multitargeted drug ligands (MTDLs) with better activity profiles. The coumarin-triazole hybrids occupy the cholinesterase active site gorge from the peripheral to the catalytic anionic site. The most active analogue, 10b, belonging to the 8-acetylcoumarin core, inhibits acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase-1 (BACE-1) with IC50 values of 2.57, 3.26, and 10.65 μM, respectively. The hybrid, 10b, crosses the blood-brain barrier via passive diffusion and inhibits the self-aggregation of amyloid-β monomers. The molecular dynamic simulation study reveals the strong interaction of 10b with three enzymes and forming stable complexes. Overall, the results warrant a detailed preclinical investigation of the coumarin-triazole hybrids.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Nuthakki VK, Choudhary S, Reddy CN, Bhatt S, Jamwal A, Jotshi A, Raghuvanshi R, Sharma A, Thakur S, Jadhav HR, Bharate SS, Nandi U, Kumar A, Bharate SB. Design, Synthesis, and Pharmacological Evaluation of Embelin-Aryl/alkyl Amine Hybrids as Orally Bioavailable Blood-Brain Barrier Permeable Multitargeted Agents with Therapeutic Potential in Alzheimer's Disease: Discovery of SB-1448. ACS Chem Neurosci 2023; 14:1193-1219. [PMID: 36812360 DOI: 10.1021/acschemneuro.3c00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Embelia ribes Burm f., one of the oldest herbs in Indian traditional medicine. It is a micromolar inhibitor of cholinesterases (ChEs) and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with poor absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we synthesize a series of embelin-aryl/alkyl amine hybrids to improve its physicochemical properties and therapeutic potency against targeted enzymes. The most active derivative, 9j (SB-1448), inhibits human acetylcholinesterase (hAChE), human butyrylcholinesterase (hBChE), and human BACE-1 (hBACE-1) with IC50 values of 0.15, 1.6, and 0.6 μM, respectively. It inhibits both ChEs noncompetitively with ki values of 0.21 and 1.3 μM, respectively. It is orally bioavailable, crosses blood-brain barrier (BBB), inhibits Aβ self-aggregation, possesses good ADME properties, and protects neuronal cells from scopolamine-induced cell death. The oral administration of 9j at 30 mg/kg attenuates the scopolamine-induced cognitive impairments in C57BL/6J mice.
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil Choudhary
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chilakala N Reddy
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashiya Jamwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshika Jotshi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
28
|
Sharma M, Sharma A, Nuthakki VK, Bhatt S, Nandi U, Bharate SB. Design, synthesis, and structure-activity relationship of caffeine-based triazoles as dual AChE and BACE-1 inhibitors. Drug Dev Res 2022; 83:1803-1821. [PMID: 36161804 DOI: 10.1002/ddr.21998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022]
Abstract
Natural products have significantly contributed to drug discovery for neurodegenerative diseases. Caffeine is one of the well-known central nervous system(CNS)-active natural products. Besides its CNS stimulant properties, it is a mild inhibitor of acetylcholinesterase (AChE) and possesses memory-enhancing properties. The present work aimed to improve the AChE inhibition activity of the caffeine. The rationally designed caffeine-based triazoles were synthesized and evaluated in vitro for cholinesterase and β-site amyloid precursor protein cleaving enzyme-1 (BACE-1) inhibitory activities. The attachment of triazole to the caffeine enhances its AChE inhibition activity from half-maximal inhibitory concentration (IC50 ) of 129 µM to 0.49 µM (derivative, 6l). The caffeine core interacts with the peripheral anionic site, whereas the benzyl triazole occupies the catalytic anionic site located at the bottom of the active site gorge. The structure-activity relationship revealed that the four-atom ester linker is superior to shorter linkers for connecting the caffeine core to the triazole. The 2,6-difluorobenzyl triazole-linked caffeine derivative, 6d, exhibits dual inhibition of AChE and BACE-1 with IC50 values of 1.43 and 10.9 µM, respectively. The derivative 6d inhibits AChE via a mixed-type mode with an inhibition rate constant (Ki ) value of 2.35 μM, which was corroborated by docking studies. The triazole 6d has an acceptable stability profile in human liver microsomes (t1/2 = 54 min) and was found to possess CNS permeability when evaluated using the parallel artificial membrane permeability blood-brain barrier assay. The results presented herein warrant investigating caffeine-based triazoles in preclinical models of Alzheimer's disease.
Collapse
Affiliation(s)
- Mohit Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Vijay K Nuthakki
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shipra Bhatt
- Academy of Scientific and Innovative Research, Ghaziabad, India.,PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Utpal Nandi
- Academy of Scientific and Innovative Research, Ghaziabad, India.,PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
29
|
Kempster P, Ma A. Parkinson’s disease, dopaminergic drugs and the plant world. Front Pharmacol 2022; 13:970714. [PMID: 36133818 PMCID: PMC9483127 DOI: 10.3389/fphar.2022.970714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of drugs used for the treatment of neurological disorders relate to naturally occurring compounds, many of which are plant alkaloids. This is particularly true of Parkinson’s disease (PD). The pharmacopoeia of PD has strong botanical origins, while major discoveries about the neurochemistry of the basal ganglia came from the study of phytochemicals. This article narrates the development of pharmacotherapy for PD in terms of historically important plant-derived substances—tropane and hamala alkaloids, reserpine, levodopa, apomorphine, and ergoline dopamine receptor agonists. Alkaloids are nitrogen-containing secondary metabolic products that tend to be biologically active. They appear to be involved in plants’ adaptation to herbivorous animals, though their exact purpose and the ways in which they work are uncertain. A sizable group of alkaloids influence animal dopaminergic systems, highlighting a key biological relationship. While animals must acquire the energy that plants harness, plants need to engage with the animal attribute that they lack—movement—in order to maximize their reproductive fitness. Neuroactive flowering plant compounds have been interacting with vertebrate and invertebrate motor systems for 100 million years. A deep evolutionary connection helps to explain why the pharmacological treatment of PD is imprinted with the power of these mysterious botanical chemicals.
Collapse
Affiliation(s)
- Peter Kempster
- Neurosciences Department, Monash Medical Centre, Clayton, VIC, Australia
- School of Clinical Sciences of Medicine, Monash University, Clayton, VIC, Australia
- *Correspondence: Peter Kempster,
| | - Andrew Ma
- Neurosciences Department, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
30
|
Lizazman MA, Jong VYM, Chua P, Lim WK, Karunakaran T. Phytochemicals from Calophyllum canum Hook f. ex T. Anderson and their neuroprotective effects. Nat Prod Res 2022; 37:2043-2048. [PMID: 35997666 DOI: 10.1080/14786419.2022.2116021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Previous phytochemical investigations reported that Calophyllum spp have biosynthesized a wide range of bioactive phenolics such as xanthones and coumarins. The phytochemical study conducted on the stem bark of C. canum has led to the isolation of eight trioxygenated xanthones namely: 5-methoxytrapezifolixanthone (1), 5-methoxyananixanthone (2), caloxanthone C (3), 1,5-dihydroxy-3-methoxy-4-isoprenylxanthone (4), 6-deoxyisojacareubin (5), euxanthone (6), trapezifolixanthone (7), ananixanthone (8), together with three common triterpenoids, β-sitosterol (9), friedelin (10), and stigmasterol (11). Furthermore, xanthones 1 and 2 were isolated for the first time as naturally occurring xanthones from the plant extract. The structures of these compounds were identified and elucidated using advanced spectroscopic techniques such as 1 D & 2 D NMR, MS, and FTIR. The neuroprotective property of selected compounds was tested through in vitro stroke model. Among all tested compounds, 1 µm of compounds 8, 9, and 10 showed significant neuroprotective activity via reduction of apoptosis by ∼ 50%.
Collapse
Affiliation(s)
- Mas Atikah Lizazman
- Faculty of Applied Science Studies, Universiti Teknologi MARA, Kota Samarahan, Sarawak, Malaysia
| | - Vivien Yi Mian Jong
- Faculty of Applied Science Studies, Universiti Teknologi MARA, Kota Samarahan, Sarawak, Malaysia
| | - PinFen Chua
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - William K Lim
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia.,School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
31
|
Soni JP, Kumawat A, Sathish M, Yadav S, Jadhav NA, Shankaraiah N. Catalyst‐Free Site‐Selective Diverse Functionalization of Inherent C–H Bonds in 1‐Aryl‐β‐carbolines, Norharmane and Harmine. ChemistrySelect 2022. [DOI: 10.1002/slct.202202299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500 037 India
| | - Akshay Kumawat
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500 037 India
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM) Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule Talca 3460000 Chile
| | - Sachin Yadav
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500 037 India
| | - Nayan Arvind Jadhav
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500 037 India
| |
Collapse
|
32
|
Xu T, Meng JR, Cheng W, Liu JZ, Chu J, Zhang Q, Ma N, Bai LP, Guo Y. Discovery of honokiol thioethers containing 1,3,4-oxadiazole moieties as potential α-glucosidase and SARS-CoV-2 entry inhibitors. Bioorg Med Chem 2022; 67:116838. [PMID: 35617790 PMCID: PMC9123836 DOI: 10.1016/j.bmc.2022.116838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure–activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 μM, which was lower than the positive control Evans blue (21.98 ± 1.98 μM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Jie-Ru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Jia-Zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Junyan Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Nannan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau.
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
33
|
Sharma A, Nuthakki VK, Gairola S, Singh B, Bharate SB. A Coumarin-donepezil Hybrid as a Blood-brain Barrier Permeable Dual Cholinesterase Inhibitor: Isolation, Synthetic Modifications and Biological Evaluation of Natural Coumarins. ChemMedChem 2022; 17:e202200300. [PMID: 35892288 DOI: 10.1002/cmdc.202200300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Plants have immensely contributed to the drug discovery for neurodegenerative diseases. Herein, we undertook the phytochemical investigation of Nardostachys jatamansi (D.Don) DC. rhizomes followed by semisynthetic modifications to discover cholinesterase (ChE) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors. The 8-acetyl-7-hydroxycoumarin isolated from the bioactive extract moderately inhibits acetylcholinesterase (AChE) and BACE-1 with IC50 values of 22.1 and 17.7 μM, respectively. The semisynthetic trifluoromethyl substituted coumarin chalcone display a 5-fold improvement in BACE-1 inhibition (IC50 3.3 μM). Another semisynthetic derivative, a coumarin-donepezil hybrid, exhibits dual inhibition of both ChEs with IC50 values of 1.22 and 3.09 μM, respectively. Molecular modeling and enzyme kinetics revealed that the coumarin-donepezil hybrid is a non-competitive inhibitor of AChE. It crosses the blood-brain barrier and also inhibits Aβ self-aggregation. The results presented herein warrant a detailed investigation of the coumarin-donepezil hybrid in preclinical models of Alzheimer's disease.
Collapse
Affiliation(s)
- Ankita Sharma
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Vijay K Nuthakki
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Sumeet Gairola
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Plant Sciences & Agrotechnology Division, Canal Road, 180001, Jammu, INDIA
| | - Bikarma Singh
- CSIR-National Botanical Research Institute, Botanical Garden Division, Canal Road, Lucknow, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
34
|
Tang Y, Zhang Y, Zhao J, Xue F, He H, Xue F, Liu XY, Qin Y. Asymmetric total synthesis of buprenorphine and dihydroetorphine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
36
|
Fulmali A, Bharate SS. Phosphate moiety in FDA-approved pharmaceutical salts and prodrugs. Drug Dev Res 2022; 83:1059-1074. [PMID: 35656613 DOI: 10.1002/ddr.21953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/12/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022]
Abstract
The salification and prodrug approaches modulate the physicochemical properties and absorption, distribution, metabolism, excretion, and toxicity parameters of drugs and lead candidates. The "phosphate" is one of the key counterions/promoiety used in the salt formation and prodrug synthesis. Salification with phosphoric acid enhances the aqueous solubility and thereby facilitates the administration of a drug by the parenteral route. Phosphate moiety in prodrug synthesis mainly improves permeability by lipophilic substitution. Histamine phosphate is the first phosphate salt, and hydrocortisone phosphate was the first prodrug approved by FDA in 1939 and 1952, respectively. The orange book enlists 12 phosphate salts and 17 phosphate prodrugs. Phosphate prodrugs, namely combretastatin A-4 diphosphate, combretastatin A-4 phosphate, lufotrelvir, TP-1287, pyridoxal phosphate, riboflavin phosphate, and psilocybin are clinical candidates. This review focuses on the FDA-approved phosphate salts and prodrugs from 1939 to 2021. The biopharmaceutical advantage of phosphate salts and prodrugs over the parent molecule is also deliberated.
Collapse
Affiliation(s)
- Ameya Fulmali
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
37
|
Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur J Med Chem 2022; 238:114516. [DOI: 10.1016/j.ejmech.2022.114516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022]
|
38
|
Ahmadli D, Türkmen YE. Synthesis of the bioactive fungal natural product daldiquinone. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Bartoccini F, Regni A, Retini M, Piersanti G. Asymmetric Total Synthesis of All Rugulovasine Stereoisomers and Preliminary Evaluation of their Biological Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Francesca Bartoccini
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences Urbino ITALY
| | - Alessio Regni
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences ITALY
| | - Michele Retini
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences ITALY
| | - Giovanni Piersanti
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences P.zza Rinascimento 6 61029 Urbino ITALY
| |
Collapse
|
40
|
Marae IS, Ibrahim OF, Abdel‐Hafez SH, Mohamed SK, Mague JT, Bakhite EA. Synthesis, characterization and crystal structure of some novel partially hydrogenated isoquinolines and their fused heterocyclic systems. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Islam S. Marae
- Department of Chemistry, Faculty of science Assiut University Assiut Egypt
| | - Omaima F. Ibrahim
- Department of Chemistry, Faculty of science Assiut University Assiut Egypt
| | - Shams H. Abdel‐Hafez
- Department of Chemistry College of Science, Taif University, P.O. Box 11099 Taif Saudi Arabia
| | - Shaaban K. Mohamed
- Chemistry and Environmental Division Manchester Metropolitan University, Manchester M1 5GD UK
- Chemistry Department, Faculty of Science Minia University, 61519 El‐Minia Egypt
| | - Joel T. Mague
- Department of Chemistry Tulane University New Orleans Louisiana USA
| | - Etify A. Bakhite
- Department of Chemistry, Faculty of science Assiut University Assiut Egypt
| |
Collapse
|
41
|
Devadiga SJ, Bharate SS. Recent developments in the management of Huntington's disease. Bioorg Chem 2022; 120:105642. [PMID: 35121553 DOI: 10.1016/j.bioorg.2022.105642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a rare, incurable, inheritedneurodegenerative disorder manifested by chorea, hyperkinetic, and hypokinetic movements. The FDA has approved only two drugs, viz. tetrabenazine, and deutetrabenazine, to manage the chorea associated with HD. However, several other drugs are used as an off-label to manage chorea and other symptoms such as depression, anxiety, muscle tremors, and cognitive dysfunction associated with HD. So far, there is no disease-modifying treatment available. Drug repurposing has been a primary drive to search for new anti-HD drugs. Numerous molecular targets along with a wide range of small molecules and gene therapies are currently under clinical investigation. More than 200 clinical studies are underway for HD, 75% are interventional, and 25% are observational studies. The present review discusses the small molecule clinical pipeline and molecular targets for HD. Furthermore, the biomarkers, diagnostic tests, gene therapies, behavioral and observational studies for HD were also deliberated.
Collapse
Affiliation(s)
- Shanaika J Devadiga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
42
|
Wu L, Gao Y, Zhao C, Huang D, Chen W, Lin X, Liu A, Lin L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112608. [DOI: 10.1016/j.msec.2021.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
|
43
|
Discovery of Guanidine Derivatives from Buthus martensii Karsch with Metal-Binding and Cholinesterase Inhibition Properties. Molecules 2021; 26:molecules26216737. [PMID: 34771145 PMCID: PMC8588048 DOI: 10.3390/molecules26216737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Two rare guanidine-type alkaloids, Buthutin A (1) and Buthutin B (2), along with two other compounds (3, 4), were isolated from Buthus martensii Karsch, and determined using extensive spectroscopic data analysis and high resolution-mass spectrometry. Compound 1 showed the most potent inhibition on AChE and BChE with IC50 values of 7.83 ± 0.06 and 47.44 ± 0.95 μM, respectively. Kinetic characterization of compound 1 confirmed a mixed-type of AChE inhibition mechanism in accordance with the docking results, which shows its interaction with both catalytic active (CAS) and peripheral anionic (PAS) sites. The specific binding of compound 1 to PAS domain of AChE was also confirmed experimentally. Moreover, compounds 1 and 3 exhibited satisfactory biometal binding abilities toward Cu2+, Fe2+, Zn2+ and Al3+ ions. These results provide a new evidence for further development and utilization of B. martensii in health and pharmaceutical products.
Collapse
|
44
|
Gallagher-Duval S, Lapointe V, Bélanger G. Functionalized Polyhydroquinolines from Amino Acids Using a Key One-Pot Cyclization Cascade and Application to the Synthesis of (±)-Δ 7-Mesembrenone. Org Lett 2021; 23:8606-8611. [PMID: 34694806 DOI: 10.1021/acs.orglett.1c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substituted polyhydroquinolines are ubiquitous skeletal cores found in drugs and bioactive natural products. As a new route to access this motif, we successfully developed a one-pot cyclization cascade with high chemocontrol and diastereoselectivity. The sequence generates two cycles, three carbon-carbon bonds, and an all-carbon quaternary center in a highly convergent process. Functionalized polyhydroquinolines and congeners can be accessed from commercially available amino acids. This versatile and robust strategy was applied to the synthesis of (±)-Δ7-mesembrenone.
Collapse
Affiliation(s)
- Shawn Gallagher-Duval
- Département de chimie, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| | - Vincent Lapointe
- Département de chimie, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| | - Guillaume Bélanger
- Département de chimie, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
45
|
Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021; 13:5346. [PMID: 34771511 PMCID: PMC8582402 DOI: 10.3390/cancers13215346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
46
|
Uliassi E, de Oliveira AS, de Camargo Nascente L, Romeiro LAS, Bolognesi ML. Cashew Nut Shell Liquid (CNSL) as a Source of Drugs for Alzheimer's Disease. Molecules 2021; 26:5441. [PMID: 34576912 PMCID: PMC8466601 DOI: 10.3390/molecules26185441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luciana de Camargo Nascente
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| |
Collapse
|
47
|
Bang S, Baek JY, Kim GJ, Kim J, Kim S, Deyrup ST, Choi H, Kang KS, Shim SH. Azaphilones from an Endophytic Penicillium sp. Prevent Neuronal Cell Death via Inhibition of MAPKs and Reduction of Bax/Bcl-2 Ratio. JOURNAL OF NATURAL PRODUCTS 2021; 84:2226-2237. [PMID: 34378933 DOI: 10.1021/acs.jnatprod.1c00298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fourteen azaphilone-type polyketides (1-14), including nine new ones (1-6 and 8-10), were isolated from cultures of Vitex rotundifolia-associated Penicillium sp. JVF17, and their structures were determined by spectroscopic analysis together with computational methods and chemical reactions. Neuroprotective effects of the isolated compounds were evaluated against glutamate-induced neurotoxicity. Treatment with compounds 3, 6, 7, and 11-14 increased cell viabilities of hippocampal neuronal cells damaged by glutamate, with compound 12 being the most potent. Compound 12 markedly decreased intracellular Ca2+ and nuclear condensation levels. Mechanistically, molecular markers of apoptosis induced by treatment with glutamate, i.e., phosphorylation of MAPKs and elevated Bax/Bcl-2 expression ratio, were significantly lowered by compound 12. The azaphilones with an isoquinoline core structure were more active than those with pyranoquinones, but N-substitution decreased the activity. This study, including the structure-activity relationship, indicates that the azaphilone scaffold is a promising lead toward the development of novel neuroprotective agents.
Collapse
Affiliation(s)
- Sunghee Bang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Geum Jin Kim
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - SungJin Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Hyukjae Choi
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Zhang J, Wang M, Wang H, Xu H, Chen J, Guo Z, Ma B, Ban SR, Dai HX. Construction of 2-alkynyl aza-spiro[4,5]indole scaffolds via sequential C-H activations for modular click chemistry libraries. Chem Commun (Camb) 2021; 57:8656-8659. [PMID: 34373875 DOI: 10.1039/d1cc02798k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we have developed a strategy of sequential C-H activations of indole to construct novel 2-alkynyl aza-spiro[4,5]indole scaffolds, which incorporated both alkyne and spiro-units into indole. Gram-scale synthesis and a one-pot, three-step synthesis demonstrated the utility of this protocol. Hybrid conjugates with an oseltamivir derivative further offered a powerful tool for the construction of a versatile spiroindole-containing library via click chemistry.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang CC, Zhang GX, Zuo ZW, Zeng R, Zhai DD, Liu F, Shi ZJ. Photo-induced deep aerobic oxidation of alkyl aromatics. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1032-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
A metabolic regulon reveals early and late acting enzymes in neuroactive Lycopodium alkaloid biosynthesis. Proc Natl Acad Sci U S A 2021; 118:2102949118. [PMID: 34112718 DOI: 10.1073/pnas.2102949118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plants synthesize many diverse small molecules that affect function of the mammalian central nervous system, making them crucial sources of therapeutics for neurological disorders. A notable portion of neuroactive phytochemicals are lysine-derived alkaloids, but the mechanisms by which plants produce these compounds have remained largely unexplored. To better understand how plants synthesize these metabolites, we focused on biosynthesis of the Lycopodium alkaloids that are produced by club mosses, a clade of plants used traditionally as herbal medicines. Hundreds of Lycopodium alkaloids have been described, including huperzine A (HupA), an acetylcholine esterase inhibitor that has generated interest as a treatment for the symptoms of Alzheimer's disease. Through combined metabolomic profiling and transcriptomics, we have identified a developmentally controlled set of biosynthetic genes, or potential regulon, for the Lycopodium alkaloids. The discovery of this putative regulon facilitated the biosynthetic reconstitution and functional characterization of six enzymes that act in the initiation and conclusion of HupA biosynthesis. This includes a type III polyketide synthase that catalyzes a crucial imine-polyketide condensation, as well as three Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD) enzymes that catalyze transformations (pyridone ring-forming desaturation, piperidine ring cleavage, and redox-neutral isomerization) within downstream HupA biosynthesis. Our results expand the diversity of known chemical transformations catalyzed by 2OGDs and provide mechanistic insight into the function of noncanonical type III PKS enzymes that generate plant alkaloid scaffolds. These data offer insight into the chemical logic of Lys-derived alkaloid biosynthesis and demonstrate the tightly coordinated coexpression of secondary metabolic genes for the biosynthesis of medicinal alkaloids.
Collapse
|