1
|
Szabó R, Hornyánszky Á, Kiss DJ, Keserű GM. Fluorescent tools for imaging class A G-protein coupled receptors. Eur J Pharm Sci 2025; 209:107074. [PMID: 40113106 DOI: 10.1016/j.ejps.2025.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
G protein-coupled receptors (GPCRs) are pivotal in biological processes and represent a significant class of drug targets, with 516 approved drugs acting on 121 GPCRs. Many GPCRs, particularly orphan receptors, remain underexplored, emphasizing the need for innovative investigative tools. Fluorescent ligands provide a powerful means to characterize GPCRs including their functional mechanisms and spatial organization, bridging fundamental research and drug discovery. This review presents recent advances (2018-2024) in fluorescent probe development for Class A GPCRs, analyzing over 120 newly developed probes covering 60 GPCRs. We examine their distribution across receptor subclasses, comparing pre-2018 data with contemporary findings and identifying previously uncharted GPCRs that now have fluorescent ligands. Notably, novel probes have been developed for 12 new receptor subtypes and 6 orphan receptors such as GPR6, GPR52, GPR84, MAS1, MRGPRX2, and MRGPRX4. Advances in GPCR structural biology, driven by cryo-EM and AlphaFold technologies, have significantly enhanced probe development, facilitating the design of selective fluorescent ligands across aminergic, peptidergic, lipid, nucleotide, alicarboxylic, melatonin, protein, and orphan GPCRs. These innovations support a broad range of applications, from single-molecule imaging and in vivo bioimaging to diagnostics and fluorescence-guided surgery. By integrating fluorescence-based approaches with structural and pharmacological insights, this field continues to refine polypharmacology profiling, optimize drug-receptor interactions, and accelerate GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Renáta Szabó
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Ágnes Hornyánszky
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary.
| |
Collapse
|
2
|
Chen A, Su C, Zhang Z, Zhang H. Cryo-EM Structures and AlphaFold3 Models of Histamine Receptors Reveal Diverse Ligand Binding and G Protein Bias. Pharmaceuticals (Basel) 2025; 18:292. [PMID: 40143071 PMCID: PMC11946611 DOI: 10.3390/ph18030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background: The four subtypes of G protein-coupled receptors (GPCRs) regulated by histamine play critical roles in various physiological and pathological processes, such as allergy, gastric acid secretion, cognitive and sleep disorders, and inflammation. Previous experimental structures of histamine receptors (HRs) with agonists and antagonists exhibited multiple conformations for the ligands and G protein binding. However, the structural basis for HR regulation and signaling remains elusive. Methods: We determined the cryo-electron microscopy (cryo-EM) structure of the H4R-histamine-Gi complex at 2.9 Å resolution, and predicted the models for all four HRs in the ligand-free apo and G protein subtype binding states using AlphaFold3 (AF3). Results: By comparing our H4R structure with the experimental HR structures and the computational AF3 models, we elucidated the distinct histamine binding modes and G protein interfaces, and proposed the essential roles of Y6.51 and Q7.42 in receptor activation and the intracellular loop 2 (ICL2) in G protein bias. Conclusions: Our findings deciphered the molecular mechanisms underlying the regulation of different HRs, from the extracellular ligand-binding pockets and transmembrane motifs to the intracellular G protein coupling interfaces. These insights are expected to facilitate selective drug discovery targeting HRs for diverse therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Haitao Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Research Center for Clinical Pharmacy, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Chan CB, Pottie E, Simon IA, Rossebø AG, Herth MM, Harpsøe K, Kristensen JL, Stove CP, Poulie CBM. Synthesis, Pharmacological Characterization, and Binding Mode Analysis of 8-Hydroxy-Tetrahydroisoquinolines as 5-HT 7 Receptor Inverse Agonists. ACS Chem Neurosci 2025; 16:439-451. [PMID: 39836645 DOI: 10.1021/acschemneuro.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
The serotonin 7 receptor (5-HT7R) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gαs protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission. Recently, pellotine (1a), a Lophophora alkaloid, was unexpectedly shown to be an inverse agonist of the 5-HT7R. Therefore, we evaluated close analogs of compound 1a, both naturally occurring and synthetic analogs, as inverse agonists of the 5-HT7R. Functional evaluation in a GloSensor cAMP assay revealed a preference for an 8-hydroxy-6,7-dimethoxy substitution pattern over 6,7,8-trimethoxy analogs or 8-hydroxy-6,7-methylenedioxy analogs. This was supported by molecular dynamics simulations, where the 8-hydroxy substitution allowed more robust interaction with the 5-HT7R, which correlated with inverse agonism efficacy. Additionally, N-methylation (as in 1a) improved the potency of the evaluated analogs. In this series, the most potent inverse agonist was anhalidine (1b) (EC50 = 219 nM, Emax = -95.4%), which lacks the 1-methyl, compared to pellotine (1a), and showed a 2-fold higher functional potency. Altogether, these results provide key insights for the further development of potent low molecular weight inverse agonists of the 5-HT7R.
Collapse
Affiliation(s)
- Camilla B Chan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Icaro A Simon
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Adrian G Rossebø
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Fan L, Zhuang Y, Wu H, Li H, Xu Y, Wang Y, He L, Wang S, Chen Z, Cheng J, Xu HE, Wang S. Structural basis of psychedelic LSD recognition at dopamine D 1 receptor. Neuron 2024; 112:3295-3310.e8. [PMID: 39094559 DOI: 10.1016/j.neuron.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiqiong Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Licong He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang 261021, China
| | - Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China.
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Díaz-Holguín A, Saarinen M, Vo DD, Sturchio A, Branzell N, Cabeza de Vaca I, Hu H, Mitjavila-Domènech N, Lindqvist A, Baranczewski P, Millan MJ, Yang Y, Carlsson J, Svenningsson P. AlphaFold accelerated discovery of psychotropic agonists targeting the trace amine-associated receptor 1. SCIENCE ADVANCES 2024; 10:eadn1524. [PMID: 39110804 PMCID: PMC11305387 DOI: 10.1126/sciadv.adn1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Artificial intelligence is revolutionizing protein structure prediction, providing unprecedented opportunities for drug design. To assess the potential impact on ligand discovery, we compared virtual screens using protein structures generated by the AlphaFold machine learning method and traditional homology modeling. More than 16 million compounds were docked to models of the trace amine-associated receptor 1 (TAAR1), a G protein-coupled receptor of unknown structure and target for treating neuropsychiatric disorders. Sets of 30 and 32 highly ranked compounds from the AlphaFold and homology model screens, respectively, were experimentally evaluated. Of these, 25 were TAAR1 agonists with potencies ranging from 12 to 0.03 μM. The AlphaFold screen yielded a more than twofold higher hit rate (60%) than the homology model and discovered the most potent agonists. A TAAR1 agonist with a promising selectivity profile and drug-like properties showed physiological and antipsychotic-like effects in wild-type but not in TAAR1 knockout mice. These results demonstrate that AlphaFold structures can accelerate drug discovery.
Collapse
Affiliation(s)
- Alejandro Díaz-Holguín
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Marcus Saarinen
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Andrea Sturchio
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Niclas Branzell
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Israel Cabeza de Vaca
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Huabin Hu
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Núria Mitjavila-Domènech
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Annika Lindqvist
- Department of Pharmacy, SciLifeLab Drug Discovery and Development Platform, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Pawel Baranczewski
- Department of Pharmacy, SciLifeLab Drug Discovery and Development Platform, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Mark J. Millan
- Neuroinflammation Therapeutic Area, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris, France and Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, Scotland, Glasgow, UK
| | - Yunting Yang
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institute, SE-171 76 Stockholm, Sweden
| |
Collapse
|
6
|
Shi S, Zheng Y, Goulding J, Marri S, Lucarini L, Konecny B, Sgambellone S, Villano S, Bosma R, Wijtmans M, Briddon SJ, Zarzycka BA, Vischer HF, Leurs R. A high-affinity, cis-on photoswitchable beta blocker to optically control β 2-adrenergic receptors in vitro and in vivo. Biochem Pharmacol 2024; 226:116396. [PMID: 38942089 DOI: 10.1016/j.bcp.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of β2-adrenoceptor (β2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher β2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound β2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of β2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of β2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible β2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in β2AR-associated pathologies.
Collapse
Affiliation(s)
- Shuang Shi
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Yang Zheng
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K; Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Silvia Marri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Benjamin Konecny
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Silvia Sgambellone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Serafina Villano
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Reggie Bosma
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Stephen J Briddon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K; Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Barbara A Zarzycka
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Kotova PD, Dymova EA, Lyamin OO, Rogachevskaja OA, Kolesnikov SS. PI3 kinase inhibitor PI828 uncouples aminergic GPCRs and Ca 2+ mobilization irrespectively of its primary target. Biochim Biophys Acta Gen Subj 2024; 1868:130649. [PMID: 38823731 DOI: 10.1016/j.bbagen.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/20/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The phosphoinositide 3-kinase (PI3K) is involved in regulation of multiple intracellular processes. Although the inhibitory analysis is generally employed for validating a physiological role of PI3K, increasing body of evidence suggests that PI3K inhibitors can exhibit PI3K-unrelated activity as well. Here we studied Ca2+ signaling initiated by aminergic agonists in a variety of different cells and analyzed effects of the PI3K inhibitor PI828 on cell responsiveness. It turned out that PI828 inhibited Ca2+ transients elicited by acetylcholine (ACh), histamine, and serotonin, but did not affect Ca2+ responses to norepinephrine and ATP. Another PI3K inhibitor wortmannin negligibly affected Ca2+ signaling initiated by any one of the tested agonists. Using the genetically encoded PIP3 sensor PH(Akt)-Venus, we confirmed that both PI828 and wortmannin effectively inhibited PI3K and ascertained that this kinase negligibly contributed to ACh transduction. These findings suggested that PI828 inhibited Ca2+ responses to aminergic agonists tested, involving an unknown cellular mechanism unrelated to the PI3K inhibition. Complementary physiological experiments provided evidence that PI828 could inhibit Ca2+ signals induced by certain agonists, by acting extracellularly, presumably, through their surface receptors. For the muscarinic M3 receptor, this possibility was verified with molecular docking and molecular dynamics. As demonstrated with these tools, wortmannin could be bound in the extracellular vestibule at the muscarinic M3 receptor but this did not preclude binding of ACh to the M3 receptor followed by its activation. In contrast, PI828 could sterically block the passage of ACh into the allosteric site, preventing activation of the muscarinic M3 receptor.
Collapse
Affiliation(s)
- Polina D Kotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya Street 3, Pushchino, Russia.
| | - Ekaterina A Dymova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya Street 3, Pushchino, Russia
| | - Oleg O Lyamin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya Street 3, Pushchino, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya Street 3, Pushchino, Russia
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya Street 3, Pushchino, Russia
| |
Collapse
|
8
|
Heinzke AL, Pahl A, Zdrazil B, Leach AR, Waldmann H, Young RJ, Leeson PD. Occurrence of "Natural Selection" in Successful Small Molecule Drug Discovery. J Med Chem 2024; 67:11226-11241. [PMID: 38949112 PMCID: PMC11247505 DOI: 10.1021/acs.jmedchem.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Published compounds from ChEMBL version 32 are used to seek evidence for the occurrence of "natural selection" in drug discovery. Three measures of natural product (NP) character were applied, to compare time- and target-matched compounds reaching the clinic (clinical compounds in phase 1-3 development and approved drugs) with background compounds (reference compounds). Pseudo-NPs (PNPs), containing NP fragments combined in ways inaccessible by nature, are increasing over time, reaching 67% of clinical compounds first disclosed since 2010. PNPs are 54% more likely to be found in post-2008 clinical versus reference compounds. The majority of target classes show increased clinical compound NP character versus their reference compounds. Only 176 NP fragments appear in >1000 clinical compounds published since 2008, yet these make up on average 63% of the clinical compound's core scaffolds. There is untapped potential awaiting exploitation, by applying nature's building blocks─"natural intelligence"─to drug design.
Collapse
Affiliation(s)
- A. Lina Heinzke
- European
Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, U.K.
| | - Axel Pahl
- Compound
Management and Screening Center, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Barbara Zdrazil
- European
Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, U.K.
| | - Andrew R. Leach
- European
Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, U.K.
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | | | - Paul D. Leeson
- Paul Leeson
Consulting Ltd., Nuneaton CV13 6LZ, Warwickshire, U.K.
| |
Collapse
|
9
|
Chen J, Song Y, Ma L, Jin Y, Yu J, Guo Y, Huang Y, Pu X. Computational insights into diverse binding modes of the allosteric modulator and their regulation on dopamine D1 receptor. Comput Biol Med 2024; 173:108283. [PMID: 38552278 DOI: 10.1016/j.compbiomed.2024.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Allosteric drugs hold the promise of addressing many challenges in the current drug development of GPCRs. However, the molecular mechanism underlying their allosteric modulations remain largely elusive. The dopamine D1 receptor (DRD1), a member of Class A GPCRs, is critical for treating psychiatric disorders, and LY3154207 serves as its promising positive allosteric modulator (PAM). In the work, we utilized extensive Gaussian-accelerated molecular dynamics simulations (a total of 41μs) for the first time probe the diverse binding modes of the allosteric modulator and their regulation effects, based on the DRD1 and LY3154207 as representative. Our simulations identify four binding modes of LY3154207 (one boat mode, two metastable vertical modes and a novel cleft-anchored mode), in which the boat mode is the most stable while there three modes are similar in the stability. However, it is interesting to observed that the most stable boat mode inversely exhibits the weakest positive allosteric effect on influencing the orthosteric ligand binding and maintaining the activity of the transducer binding site. It should result from its induced weaker correlation between the allosteric site and the orthosteric site, and between the orthosteric site and the transducer binding site than the other three binding modes, as well as its weakened interaction between a crucial activation-related residue (S2025.46) and the orthosteric ligand (dopamine). Overall, the work offers atomic-level information to advance our understanding of the complex allosteric regulation on GPCRs, which is beneficial to the allosteric modulator design and development.
Collapse
Affiliation(s)
- Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yuanpeng Song
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Luhan Ma
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yizhou Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
10
|
Montejo-López W, Sampieri-Cabrera R, Nicolás-Vázquez MI, Aceves-Hernández JM, Razo-Hernández RS. Analysing the effect caused by increasing the molecular volume in M1-AChR receptor agonists and antagonists: a structural and computational study. RSC Adv 2024; 14:8615-8640. [PMID: 38495977 PMCID: PMC10938299 DOI: 10.1039/d3ra07380g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
M1 muscarinic acetylcholine receptor (M1-AChR), a member of the G protein-coupled receptors (GPCR) family, plays a crucial role in learning and memory, making it an important drug target for Alzheimer's disease (AD) and schizophrenia. M1-AChR activation and deactivation have shown modifying effects in AD and PD preclinical models, respectively. However, understanding the pharmacology associated with M1-AChR activation or deactivation is complex, because of the low selectivity among muscarinic subtypes, hampering their therapeutic applications. In this regard, we constructed two quantitative structure-activity relationship (QSAR) models, one for M1-AChR agonists (total and partial), and the other for the antagonists. The binding mode of 59 structurally different compounds, including agonists and antagonists with experimental binding affinity values (pKi), were analyzed employing computational molecular docking over different structures of M1-AChR. Furthermore, we considered the interaction energy (Einter), the number of rotatable bonds (NRB), and lipophilicity (ilogP) for the construction of the QSAR model for agonists (R2 = 89.64, QLMO2 = 78, and Qext2 = 79.1). For the QSAR model of antagonists (R2 = 88.44, QLMO2 = 82, and Qext2 = 78.1) we considered the Einter, the fraction of sp3 carbons fCsp3, and lipophilicity (MlogP). Our results suggest that the ligand volume is a determinant to establish its biological activity (agonist or antagonist), causing changes in binding energy, and determining the affinity for M1-AChR.
Collapse
Affiliation(s)
- Wilber Montejo-López
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Raúl Sampieri-Cabrera
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Juan Manuel Aceves-Hernández
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Cuautitlán Izcalli Estado de Mexico 54714 Mexico
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca 62209 Mexico
| |
Collapse
|
11
|
Abdul-Ridha A, de Zhang LA, Betrie AH, Deluigi M, Vaid TM, Whitehead A, Zhang Y, Davis B, Harris R, Simmonite H, Hubbard RE, Gooley PR, Plückthun A, Bathgate RA, Chalmers DK, Scott DJ. Identification of a Novel Subtype-Selective α 1B-Adrenoceptor Antagonist. ACS Chem Neurosci 2024; 15:671-684. [PMID: 38238043 PMCID: PMC10854767 DOI: 10.1021/acschemneuro.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.
Collapse
Affiliation(s)
- Alaa Abdul-Ridha
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lazarus A. de Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Mattia Deluigi
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tasneem M. Vaid
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice Whitehead
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yifan Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben Davis
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | - Richard Harris
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | | | - Roderick E. Hubbard
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Paul R. Gooley
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ross A.D. Bathgate
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniel J. Scott
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
McGlynn RP, Cui M, Brems B, Holbrook O, Booth RG. Development of 2-Aminotetralin-Type Serotonin 5-HT 1 Agonists: Molecular Determinants for Selective Binding and Signaling at 5-HT 1A, 5-HT 1B, 5-HT 1D, and 5-HT 1F Receptors. ACS Chem Neurosci 2024; 15:357-370. [PMID: 38150333 PMCID: PMC10797628 DOI: 10.1021/acschemneuro.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) 5-HT1 G-protein coupled receptor subtypes (5-HT1A/1B/1D/1E/1F) share a high sequence homology, confounding development of subtype-specific ligands. This study used a 5-HT1 structure-based ligand design approach to develop subtype-selective ligands using a 5-substituted-2-aminotetralin (5-SAT) chemotype, leveraging results from pharmacological, molecular modeling, and mutagenesis studies to delineate molecular determinants for 5-SAT binding and function at 5-HT1 subtypes. 5-SATs demonstrated high affinity (Ki ≤ 25 nM) and at least 50-fold stereoselective preference ([2S] > [2R]) at 5-HT1A, 5-HT1B, and 5-HT1D receptors but essentially nil affinity (Ki > 1 μM) at 5-HT1F receptors. The 5-SATs tested were agonists with varying degrees of potency and efficacy, depending on chemotype substitution and 5-HT1 receptor subtype. Models were built from the 5-HT1A (cryo-EM), 5-HT1B (crystal), and 5-HT1D (cryo-EM) structures, and 5-SATs underwent docking studies with up to 1 μs molecular dynamics simulations. 5-SAT interactions observed at positions 3.33, 5.38, 5.42, 5.43, and 7.39 of 5-HT1 subtypes were confirmed with point mutation experiments. Additional 5-SATs were designed and synthesized to exploit experimental and computational results, yielding a new full efficacy 5-HT1A agonist with 100-fold selectivity over 5-HT1B/1D receptors. The results presented lay the foundation for the development of additional 5-HT1 subtype selective ligands for drug discovery purposes.
Collapse
Affiliation(s)
- Ryan P. McGlynn
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Meng Cui
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Brittany Brems
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Otto Holbrook
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Raymond G. Booth
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Nicoli A, Weber V, Bon C, Steuer A, Gustincich S, Gainetdinov RR, Lang R, Espinoza S, Di Pizio A. Structure-Based Discovery of Mouse Trace Amine-Associated Receptor 5 Antagonists. J Chem Inf Model 2023; 63:6667-6680. [PMID: 37847527 PMCID: PMC10647090 DOI: 10.1021/acs.jcim.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 10/18/2023]
Abstract
Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Verena Weber
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Institute
for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine
(INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany
- Faculty
of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062 Germany
| | - Carlotta Bon
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
| | - Alexandra Steuer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | | | - Raul R. Gainetdinov
- Institute
of Translational Biomedicine and Saint Petersburg University Hospital,
Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Roman Lang
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| | - Stefano Espinoza
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
- Dipartimento
di Scienze della Salute, Università
del Piemonte Orientale, 28100 Novara, Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| |
Collapse
|
14
|
Dong L, Shi S, Qu X, Luo D, Wang B. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph. Phys Chem Chem Phys 2023; 25:24110-24120. [PMID: 37655493 DOI: 10.1039/d3cp03651k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Accurate prediction of protein-ligand binding affinity is pivotal for drug design and discovery. Here, we proposed a novel deep fusion graph neural networks framework named FGNN to learn the protein-ligand interactions from the 3D structures of protein-ligand complexes. Unlike 1D sequences for proteins or 2D graphs for ligands, the 3D graph of protein-ligand complex enables the more accurate representations of the protein-ligand interactions. Benchmark studies have shown that our fusion models FGNN can achieve more accurate prediction of binding affinity than any individual algorithm. The advantages of fusion strategies have been demonstrated in terms of expressive power of data, learning efficiency and model interpretability. Our fusion models show satisfactory performances on diverse data sets, demonstrating their generalization ability. Given the good performances in both binding affinity prediction and virtual screening, our fusion models are expected to be practically applied for drug screening and design. Our work highlights the potential of the fusion graph neural network algorithm in solving complex prediction problems in computational biology and chemistry. The fusion graph neural networks (FGNN) model is freely available in https://github.com/LinaDongXMU/FGNN.
Collapse
Affiliation(s)
- Lina Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shuai Shi
- Department of Algorithm, TuringQ Co., Ltd., Shanghai, 200240, China
| | - Xiaoyang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Ding Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
15
|
Pottie E, Poulie CBM, Simon IA, Harpsøe K, D’Andrea L, Komarov IV, Gloriam DE, Jensen AA, Kristensen JL, Stove CP. Structure-Activity Assessment and In-Depth Analysis of Biased Agonism in a Set of Phenylalkylamine 5-HT 2A Receptor Agonists. ACS Chem Neurosci 2023; 14:2727-2742. [PMID: 37474114 PMCID: PMC10401645 DOI: 10.1021/acschemneuro.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of β-arrestin2 (βarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the βarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Icaro A. Simon
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laura D’Andrea
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - David E. Gloriam
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Toyoda Y, Zhu A, Kong F, Shan S, Zhao J, Wang N, Sun X, Zhang L, Yan C, Kobilka BK, Liu X. Structural basis of α 1A-adrenergic receptor activation and recognition by an extracellular nanobody. Nat Commun 2023; 14:3655. [PMID: 37339967 DOI: 10.1038/s41467-023-39310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.
Collapse
Affiliation(s)
- Yosuke Toyoda
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sisi Shan
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhao
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Nan Wang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Linqi Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Xiangyu Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Patel A, Marquez-Gomez PL, Torp LR, Gao L, Peralta-Yahya P. Insight into the Mode of Action of 8-Hydroxyquinoline-Based Blockers on the Histamine Receptor 2. BIOSENSORS 2023; 13:571. [PMID: 37366936 PMCID: PMC10295836 DOI: 10.3390/bios13060571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Histamine receptor 2 (HRH2) blockers are used to treat peptic ulcers and gastric reflux. Chlorquinaldol and chloroxine, which contain an 8-hydroxyquinoline (8HQ) core, have recently been identified as blocking HRH2. To gain insight into the mode of action of 8HQ-based blockers, here, we leverage an HRH2-based sensor in yeast to evaluate the role of key residues in the HRH2 active site on histamine and 8HQ-based blocker binding. We find that the HRH2 mutations D98A, F254A, Y182A, and Y250A render the receptor inactive in the presence of histamine, while HRH2:D186A and HRH2:T190A retain residual activity. Based on molecular docking studies, this outcome correlates with the ability of the pharmacologically relevant histamine tautomers to interact with D98 via the charged amine. Docking studies also suggest that, unlike established HRH2 blockers that interact with both ends of the HRH2 binding site, 8HQ-based blockers interact with only one end, either the end framed by D98/Y250 or T190/D186. Experimentally, we find that chlorquinaldol and chloroxine still inactivate HRH2:D186A by shifting their engagement from D98 to Y250 in the case of chlorquinaldol and D186 to Y182 in the case of chloroxine. Importantly, the tyrosine interactions are supported by the intramolecular hydrogen bonding of the 8HQ-based blockers. The insight gained in this work will aid in the development of improved HRH2 therapeutics. More generally, this work demonstrates that Gprotein-coupled receptor (GPCR)-based sensors in yeast can help elucidate the mode of action of novel ligands for GPCRs, a family of receptors that bind 30% of FDA therapeutics.
Collapse
Affiliation(s)
- Amisha Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Paola L Marquez-Gomez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lily R Torp
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lily Gao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pamela Peralta-Yahya
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Zell L, Bretl A, Temml V, Schuster D. Dopamine Receptor Ligand Selectivity-An In Silico/In Vitro Insight. Biomedicines 2023; 11:1468. [PMID: 37239139 PMCID: PMC10216180 DOI: 10.3390/biomedicines11051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.
Collapse
Affiliation(s)
| | | | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; (L.Z.); (A.B.); (V.T.)
| |
Collapse
|
19
|
Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell 2022; 185:4361-4375.e19. [PMID: 36368306 DOI: 10.1016/j.cell.2022.09.041] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of μ-opioid receptor (μOR). Here, we report structures of the human μOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of μOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of μOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of μOR, which may facilitate rational design of next-generation analgesics.
Collapse
|
20
|
Peng X, Yang L, Liu Z, Lou S, Mei S, Li M, Chen Z, Zhang H. Structural basis for recognition of antihistamine drug by human histamine receptor. Nat Commun 2022; 13:6105. [PMID: 36243875 PMCID: PMC9569329 DOI: 10.1038/s41467-022-33880-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
The histamine receptors belong to the G protein-coupled receptor (GPCR) superfamily, and play important roles in the regulation of histamine and other neurotransmitters in the central nervous system, as potential targets for the treatment of neurologic and psychiatric disorders. Here we report the crystal structure of human histamine receptor H3R bound to an antagonist PF-03654746 at 2.6 Å resolution. Combined with the computational and functional assays, our structure reveals binding modes of the antagonist and allosteric cholesterol. Molecular dynamic simulations and molecular docking of different antihistamines further elucidate the conserved ligand-binding modes. These findings are therefore expected to facilitate the structure-based design of novel antihistamines.
Collapse
Affiliation(s)
- Xueqian Peng
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Linlin Yang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Zixuan Liu
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Siyi Lou
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Shiliu Mei
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Meiling Li
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Zhong Chen
- grid.268505.c0000 0000 8744 8924Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang China
| | - Haitao Zhang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XThe Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| |
Collapse
|
21
|
Thomas M, O’Boyle NM, Bender A, de Graaf C. Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation. J Cheminform 2022; 14:68. [PMID: 36192789 PMCID: PMC9531503 DOI: 10.1186/s13321-022-00646-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
A plethora of AI-based techniques now exists to conduct de novo molecule generation that can devise molecules conditioned towards a particular endpoint in the context of drug design. One popular approach is using reinforcement learning to update a recurrent neural network or language-based de novo molecule generator. However, reinforcement learning can be inefficient, sometimes requiring up to 105 molecules to be sampled to optimize more complex objectives, which poses a limitation when using computationally expensive scoring functions like docking or computer-aided synthesis planning models. In this work, we propose a reinforcement learning strategy called Augmented Hill-Climb based on a simple, hypothesis-driven hybrid between REINVENT and Hill-Climb that improves sample-efficiency by addressing the limitations of both currently used strategies. We compare its ability to optimize several docking tasks with REINVENT and benchmark this strategy against other commonly used reinforcement learning strategies including REINFORCE, REINVENT (version 1 and 2), Hill-Climb and best agent reminder. We find that optimization ability is improved ~ 1.5-fold and sample-efficiency is improved ~ 45-fold compared to REINVENT while still delivering appealing chemistry as output. Diversity filters were used, and their parameters were tuned to overcome observed failure modes that take advantage of certain diversity filter configurations. We find that Augmented Hill-Climb outperforms the other reinforcement learning strategies used on six tasks, especially in the early stages of training or for more difficult objectives. Lastly, we show improved performance not only on recurrent neural networks but also on a reinforcement learning stabilized transformer architecture. Overall, we show that Augmented Hill-Climb improves sample-efficiency for language-based de novo molecule generation conditioning via reinforcement learning, compared to the current state-of-the-art. This makes more computationally expensive scoring functions, such as docking, more accessible on a relevant timescale.
Collapse
Affiliation(s)
- Morgan Thomas
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Noel M. O’Boyle
- Computational Chemistry, Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Chris de Graaf
- Computational Chemistry, Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG UK
| |
Collapse
|
22
|
Selçuk B, Erol I, Durdağı S, Adebali O. Evolutionary association of receptor-wide amino acids with G protein-coupling selectivity in aminergic GPCRs. Life Sci Alliance 2022; 5:e202201439. [PMID: 35613896 PMCID: PMC9133432 DOI: 10.26508/lsa.202201439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) induce signal transduction pathways through coupling to four main subtypes of G proteins (Gs, Gi, Gq, and G12/13), selectively. However, G protein selective activation mechanisms and residual determinants in GPCRs have remained obscure. Herein, we performed extensive phylogenetic analysis and identified specifically conserved residues for the aminergic receptors having similar coupling profiles. By integrating our methodology of differential evolutionary conservation of G protein-specific amino acids with structural analyses, we identified specific activation networks for Gs, Gi1, Go, and Gq To validate that these networks could determine coupling selectivity we further analyzed Gs-specific activation network and its association with Gs selectivity. Through molecular dynamics simulations, we showed that previously uncharacterized Glycine at position 7x41 plays an important role in receptor activation and it may determine Gs coupling selectivity by facilitating a larger TM6 movement. Finally, we gathered our results into a comprehensive model of G protein selectivity called "sequential switches of activation" describing three main molecular switches controlling GPCR activation: ligand binding, G protein selective activation mechanisms, and G protein contact.
Collapse
Affiliation(s)
- Berkay Selçuk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Chemistry, Gebze Technical University, Gebze, Turkey
| | - Serdar Durdağı
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ogün Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- TÜBiTAK Research Institute for Fundamental Sciences, Gebze, Turkey
| |
Collapse
|
23
|
Agarwal P, Huckle J, Newman J, Reid DL. Trends in small molecule drug properties: A developability molecule assessment perspective. Drug Discov Today 2022; 27:103366. [PMID: 36122862 DOI: 10.1016/j.drudis.2022.103366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Developability molecule assessment is a key interfacial capability across the biopharmaceutical industry, screening and staging molecules discovered by medicinal chemists for successful chemistry manufacturing controls (CMC) development and launch. The breadth of responsibility and expertise such teams possess puts them in a unique position to understand the impact of the physicochemical properties of a drug during its initial discovery and subsequent development. However, most of the publications describing trends in physicochemical properties are written from a medicinal chemistry perspective with the aim to identify molecules with better ADMET profiles that are either lead-like or drug-like, failing to describe the impact these properties have on CMC development. To systematically uncover knowledge obtained from recent trends in physicochemical properties and the corresponding impact on CMC development, a comprehensive analysis was conducted on molecules in the drug repurposing hub dataset. The only physicochemical property that seems to have been preserved in FDA-approved oral molecules over the decades (1900-2020) is a constant H-bond donor count, highlighting the importance this property has on cell permeability and lattice energy. Pharmaceutical attrition analysis suggests that partition-distribution coefficient, H-bond acceptors, polar surface area and the fraction of sp3 carbons are properties that are associated with compound attrition. Looking at pharmaceutical attrition asynchronously with the temporal analysis of FDA-approved oral molecules highlights the opposing trends, risks and diminishing effects some of these physiochemical properties (cLogP, cLogD and Fsp3) have on describing compound attrition during the past decade. Trellising the dataset by target class suggests that certain formulation and drug delivery strategies can be anticipated or put into place based on target class of a molecule. For example, molecules binding to nuclear hormone receptors are amenable to lipid-based drug delivery systems with proven commercial success. Although the poor solubility of kinase inhibitors is a combination of hydrophobicity (due to aromaticity) required to bind to its target and high lattice energy (melting point), they are a challenging target class to formulate. The influence of drug targets on physicochemical properties and the temporal nature of these properties is highlighted when comparing molecules in the drug repurposing dataset to those developed at Amgen. An improved understanding of the impact of molecular properties on performance attributes can accelerate decisions and facilitate risk assessments during candidate selection and development.
Collapse
Affiliation(s)
- Prashant Agarwal
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - James Huckle
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Jake Newman
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, 360 Binney St, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Marquez-Gomez PL, Kruyer NS, Eisen SL, Torp LR, Howie RL, Jones EV, France S, Peralta-Yahya P. Discovery of 8-Hydroxyquinoline as a Histamine Receptor 2 Blocker Scaffold. ACS Synth Biol 2022; 11:2820-2828. [PMID: 35930594 PMCID: PMC9396701 DOI: 10.1021/acssynbio.2c00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Histamine receptor 2 (HRH2) activation in
the stomach
results in gastric acid secretion, and HRH2 blockers are
used for the treatment of peptidic ulcers and acid reflux. Over-the-counter
HRH2 blockers carry a five-membered aromatic heterocycle,
with two of them additionally carrying a tertiary amine that decomposes
to N-nitrosodimethylamine, a human carcinogen. To discover a novel
HRH2 blocker scaffold to serve in the development of next-generation
HRH2 blockers, we developed an HRH2-based sensor
in yeast by linking human HRH2 activation to cell luminescence.
We used the HRH2-based sensor to screen a 403-member anti-infection
chemical library and identified three HRH2 blockers, chlorquinaldol,
chloroxine, and broxyquinoline, all sharing an 8-hydroxyquinoline
scaffold, which is not found among known HRH2 antagonists.
Critically, we validate their HRH2-blocking ability in
mammalian cells. Molecular docking suggests that the HRH2 blockers bind the histamine binding pocket and structure–activity
data point toward these blockers acting as competitive antagonists.
Chloroxine and broxyquinoline are antimicrobials that can be found
in the gastrointestinal tract at concentrations that would block HRH2, thus likely modulating gastric acid secretion. Taken together,
this work demonstrates the utility of GPCR-based sensors for rapid
drug discovery applications, identifies a novel HRH2 blocker
scaffold, and provides further evidence that antimicrobials not only
target the human microbiota but also the human host.
Collapse
Affiliation(s)
- Paola L Marquez-Gomez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nicholas S Kruyer
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sara L Eisen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lily R Torp
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rebecca L Howie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elizabeth V Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Huang S, Xu P, Shen DD, Simon IA, Mao C, Tan Y, Zhang H, Harpsøe K, Li H, Zhang Y, You C, Yu X, Jiang Y, Zhang Y, Gloriam DE, Xu HE. GPCRs steer G i and G s selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol Cell 2022; 82:2681-2695.e6. [PMID: 35714614 DOI: 10.1016/j.molcel.2022.05.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/27/2022] [Accepted: 05/26/2022] [Indexed: 01/23/2023]
Abstract
Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.
Collapse
Affiliation(s)
- Sijie Huang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Icaro A Simon
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; SARomics Biostructures AB, Scheelevägen 2, 223 63 Lund, Sweden; Present address: Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yangxia Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huadong Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yumu Zhang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chongzhao You
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuekui Yu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
26
|
Casey AB, Cui M, Booth RG, Canal CE. "Selective" serotonin 5-HT 2A receptor antagonists. Biochem Pharmacol 2022; 200:115028. [PMID: 35381208 PMCID: PMC9252399 DOI: 10.1016/j.bcp.2022.115028] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/29/2023]
Abstract
Blockade of the serotonin 5-HT2A G protein-coupled receptor (5-HT2AR) is a fundamental pharmacological characteristic of numerous antipsychotic medications, which are FDA-approved to treat schizophrenia, bipolar disorder, and as adjunctive therapies in major depressive disorder. Meanwhile, activation of the 5-HT2AR by serotonergic psychedelics may be useful in treating neuropsychiatric indications, including major depressive and substance use disorders. Serotonergic psychedelics and other 5-HT2AR agonists, however, often bind other receptors, and standard 5-HT2AR antagonists lack sufficient selectivity to make well-founded mechanistic conclusions about the 5-HT2AR-dependent effects of these compounds and the general neurobiological function of 5-HT2ARs. This review discusses the limitations and strengths of currently available "selective" 5-HT2AR antagonists, the molecular determinants of antagonist selectivity at 5-HT2ARs, and the utility of molecular pharmacology and computational methods in guiding the discovery of novel unambiguously selective 5-HT2AR antagonists.
Collapse
Affiliation(s)
- Austen B Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Raymond G Booth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA; Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| |
Collapse
|
27
|
Lengger B, Hoch-Schneider EE, Jensen CN, Jakočiu̅nas T, Petersen AA, Frimurer TM, Jensen ED, Jensen MK. Serotonin G Protein-Coupled Receptor-Based Biosensing Modalities in Yeast. ACS Sens 2022; 7:1323-1335. [PMID: 35452231 PMCID: PMC9150182 DOI: 10.1021/acssensors.1c02061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Serotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to Gα proteins. In yeast, human serotonin GPCRs coupled to Gα proteins have previously been shown to function as whole-cell biosensors of serotonin. However, systematic characterization of serotonin biosensing modalities between variant serotonin GPCRs and application thereof for high-resolution serotonin quantification is still awaiting. To systematically assess GPCR signaling in response to serotonin, we characterized reporter gene expression at two different pHs of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins engineered in yeast. From this screen, we observed changes in the biosensor sensitivities of >4 orders of magnitude. Furthermore, adopting optimal biosensing designs and pH conditions enabled high-resolution high-performance liquid chromatography-validated sensing of serotonin produced in yeast. Lastly, we used the yeast platform to characterize 19 serotonin GPCR polymorphisms found in human populations. While major differences in signaling were observed among the individual polymorphisms when studied in yeast, a cross-comparison of selected variants in mammalian cells showed both similar and disparate results. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and potential human health applications.
Collapse
Affiliation(s)
- Bettina Lengger
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Emma E. Hoch-Schneider
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christina N. Jensen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tadas Jakočiu̅nas
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Anja A. Petersen
- Novo
Nordisk Foundation Center for Basic Metabolic Research, Faculty of
Health and Medical Sciences, University
of Copenhagen, Maersk
Tower, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Thomas M. Frimurer
- Novo
Nordisk Foundation Center for Basic Metabolic Research, Faculty of
Health and Medical Sciences, University
of Copenhagen, Maersk
Tower, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Emil D. Jensen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Michael K. Jensen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
29
|
Ladefoged LK, Koch R, Biggin PC, Schiøtt B. Binding and Activation of Serotonergic G-Protein Coupled Receptors by the Multimodal Antidepressant Vortioxetine. ACS Chem Neurosci 2022; 13:1129-1142. [PMID: 35348335 DOI: 10.1021/acschemneuro.1c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are important pharmacological targets. Despite substantial progress, important questions still remain concerning the details of activation: how can a ligand act as an agonist in one receptor but as an antagonist in a homologous receptor, and how can agonists activate a receptor despite lacking polar functional groups able to interact with helix 5 as is the case for the related adrenergic receptors? Studying vortioxetine (VXT), an important multimodal antidepressant drug, may elucidate both questions. Herein, we present a thorough in silico analysis of VXT binding to 5-HT1A, 5-HT1B, and 5-HT7 receptors and compare it with available experimental data. We are able to rationalize the differential mode of action of VXT at different receptors, but also, in the case of the 5-HT1A receptor, we observe the initial steps of activation that inform about an activation mechanism that does not involve polar interaction with helix 5. The results extend our current understanding of agonist and antagonist action at aminergic GPCRs.
Collapse
Affiliation(s)
- Lucy Kate Ladefoged
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Rebekka Koch
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Moo EV, Harpsøe K, Hauser AS, Masuho I, Bräuner-Osborne H, Gloriam DE, Martemyanov KA. Ligand-directed bias of G protein signaling at the dopamine D 2 receptor. Cell Chem Biol 2022; 29:226-238.e4. [PMID: 34302750 PMCID: PMC8770702 DOI: 10.1016/j.chembiol.2021.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) represent the largest family of drug targets. Upon activation, GPCRs signal primarily via a diverse set of heterotrimeric G proteins. Most GPCRs can couple to several different G protein subtypes. However, how drugs act at GPCRs contributing to the selectivity of G protein recognition is poorly understood. Here, we examined the G protein selectivity profile of the dopamine D2 receptor (D2), a GPCR targeted by antipsychotic drugs. We show that D2 discriminates between six individual members of the Gi/o family, and its profile of functional selectivity is remarkably different across its ligands, which all engaged D2 with a distinct G protein coupling pattern. Using structural modeling, receptor mutagenesis, and pharmacological evaluation, we identified residues in the D2 binding pocket that shape these ligand-directed biases. We further provide pharmacogenomic evidence that natural variants in D2 differentially affect its G protein biases in response to different ligands.
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA,Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
31
|
Xu Z, Guo L, Qian X, Yu C, Li S, Zhu C, Ma X, Li H, Zhu G, Zhou H, Dai W, Li Q, Gao X. Two entry tunnels in mouse TAAR9 suggest the possibility of multi-entry tunnels in olfactory receptors. Sci Rep 2022; 12:2691. [PMID: 35177711 PMCID: PMC8854740 DOI: 10.1038/s41598-022-06591-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Orthosteric binding sites of olfactory receptors have been well understood for ligand-receptor interactions. However, a lack of explanation for subtle differences in ligand profile of olfactory receptors even with similar orthosteric binding sites promotes more exploration into the entry tunnels of the receptors. An important question regarding entry tunnels is the number of entry tunnels, which was previously believed to be one. Here, we used TAAR9 that recognizes important biogenic amines such as cadaverine, spermine, and spermidine as a model for entry tunnel study. We identified two entry tunnels in TAAR9 and described the residues that form the tunnels. In addition, we found two vestibular binding pockets, each located in one tunnel. We further confirmed the function of two tunnels through site-directed mutagenesis. Our study challenged the existing views regarding the number of entry tunnels in the subfamily of olfactory receptors and demonstrated the possible mechanism how the entry tunnels function in odorant recognition.
Collapse
Affiliation(s)
- ZhengRong Xu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - LingNa Guo
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - XiaoYun Qian
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - ShengJu Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - ChengWen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - XiaoFeng Ma
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Li
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - GuangJie Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - WenXuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
32
|
Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PRE, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, Plückthun A. Crystal structure of the α 1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun 2022; 13:382. [PMID: 35046410 PMCID: PMC8770593 DOI: 10.1038/s41467-021-27911-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
α-adrenergic receptors (αARs) are G protein-coupled receptors that regulate vital functions of the cardiovascular and nervous systems. The therapeutic potential of αARs, however, is largely unexploited and hampered by the scarcity of subtype-selective ligands. Moreover, several aminergic drugs either show off-target binding to αARs or fail to interact with the desired subtype. Here, we report the crystal structure of human α1BAR bound to the inverse agonist (+)-cyclazosin, enabled by the fusion to a DARPin crystallization chaperone. The α1BAR structure allows the identification of two unique secondary binding pockets. By structural comparison of α1BAR with α2ARs, and by constructing α1BAR-α2CAR chimeras, we identify residues 3.29 and 6.55 as key determinants of ligand selectivity. Our findings provide a basis for discovery of α1BAR-selective ligands and may guide the optimization of aminergic drugs to prevent off-target binding to αARs, or to elicit a selective interaction with the desired subtype. This study reports the X-ray structure of the α1B-adrenergic G protein-coupled receptor bound to an inverse agonist, and unveils key determinants of subtype-selective ligand binding that may help the design of aminergic drugs with fewer side-effects.
Collapse
Affiliation(s)
- Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Riley R Cridge
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lazarus A de Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alexander Klipp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stefanie A Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
33
|
Chen Z, Fan L, Wang H, Yu J, Lu D, Qi J, Nie F, Luo Z, Liu Z, Cheng J, Wang S. Structure-based design of a novel third-generation antipsychotic drug lead with potential antidepressant properties. Nat Neurosci 2021; 25:39-49. [PMID: 34887590 DOI: 10.1038/s41593-021-00971-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Partial agonist activity at the dopamine D2 receptor (DRD2) is a key feature of third-generation antipsychotics (TGAs). However, TGAs also act as antagonists or weak partial agonists to the serotonin (5-hydroxytryptamine; 5-HT) 2A receptor (5-HT2AR). Here we present the crystal structures of aripiprazole- and cariprazine-bound human 5-HT2AR. Both TGAs adopt an unexpected 'upside-down' pose in the 5-HT2AR binding pocket, with secondary pharmacophores inserted in a similar way to a 'bolt'. This insight into the binding modes of TGAs offered a structural mechanism underlying their varied partial efficacies at 5-HT2AR and DRD2. These structures enabled the design of a partial agonist at DRD2/3 and 5-HT1AR with negligible 5-HT2AR binding that displayed potent antipsychotic-like activity without motor side effects in mice. This TGA lead also had antidepressant-like effects and improved cognitive performance in mouse models via 5-HT1AR. This work indicates that 5-HT2AR affinity is a dispensable contributor to the therapeutic actions of TGAs.
Collapse
Affiliation(s)
- Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luyu Fan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dengyu Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technolog, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fen Nie
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technolog, Chinese Academy of Sciences, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Casey AB, Mukherjee M, McGlynn RP, Cui M, Kohut SJ, Booth RG. A new class of serotonin 5-HT 2A /5-HT 2C receptor inverse agonists: Synthesis, molecular modeling, in vitro and in vivo pharmacology of novel 2-aminotetralins. Br J Pharmacol 2021; 179:2610-2630. [PMID: 34837227 DOI: 10.1111/bph.15756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-HT receptor (5-HTR) subtypes 5-HT2A and 5-HT2C are important neurotherapeutic targets, though, obtaining selectivity over 5-HT2B and closely related histamine H1 Rs is challenging. Here, we delineated molecular determinants of selective binding to 5-HT2A and 5-HT2C Rs for novel 4-phenyl-2-dimethylaminotetralins (4-PATs). EXPERIMENTAL APPROACH We synthesized 42 novel 4-PATs with halogen or aryl moieties at the C(4)-phenyl meta position. Affinity, function, molecular modeling, and 5-HT2A R mutagenesis studies were undertaken to understand structure-activity relationships at 5-HT2 -type and H1 Rs. Lead 4-PAT-type selective 5-HT2A /5-HT2C R inverse agonists were compared to pimavanserin, a selective 5-HT2A /5-HT2C R inverse agonist approved to treat psychoses, in the mouse head twitch response, and locomotor activity assays, as models relevant to antipsychotic drug development. KEY RESULTS Most 4-PAT diastereomers in the (2S,4R)-configuration bound non-selectively to 5-HT2A , 5-HT2C, and H1 Rs, with >100-fold selectivity over 5-HT2B Rs, whereas, diastereomers in the (2R,4R)-configuration bound preferentially to 5-HT2A over 5-HT2C Rs and had >100-fold selectivity over 5-HT2B and H1 Rs. Results suggest that G2385.42 and V2355.39 in 5-HT2A Rs (conserved in 5-HT2C Rs) are important for high affinity binding, whereas, interactions with T1945.42 and W1584.56 determine H1 R affinity. The 4-PAT (2S,4R)-2k, a potent and selective 5-HT2A /5-HT2C R inverse agonist, had activity like pimavanserin in the mouse head-twitch response assay, but was distinct in not suppressing locomotor activity. CONCLUSIONS AND IMPLICATIONS We provide evidence that the novel 4-PAT chemotype can yield selective 5-HT2A /5-HT2C R inverse agonists for antipsychotic drug development by optimizing ligand-receptor interactions in transmembrane domain 5. We also show that chirality can be exploited to attain selectivity over H1 Rs which may circumvent sedative effects.
Collapse
Affiliation(s)
- Austen B Casey
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Munmun Mukherjee
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Ryan P McGlynn
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Meng Cui
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Stephen J Kohut
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Behavioral Neuroimaging Laboratory, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts, United States
| | - Raymond G Booth
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
35
|
Brown AJH, Bradley SJ, Marshall FH, Brown GA, Bennett KA, Brown J, Cansfield JE, Cross DM, de Graaf C, Hudson BD, Dwomoh L, Dias JM, Errey JC, Hurrell E, Liptrot J, Mattedi G, Molloy C, Nathan PJ, Okrasa K, Osborne G, Patel JC, Pickworth M, Robertson N, Shahabi S, Bundgaard C, Phillips K, Broad LM, Goonawardena AV, Morairty SR, Browning M, Perini F, Dawson GR, Deakin JFW, Smith RT, Sexton PM, Warneck J, Vinson M, Tasker T, Tehan BG, Teobald B, Christopoulos A, Langmead CJ, Jazayeri A, Cooke RM, Rucktooa P, Congreve MS, Weir M, Tobin AB. From structure to clinic: Design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer's disease. Cell 2021; 184:5886-5901.e22. [PMID: 34822784 PMCID: PMC7616177 DOI: 10.1016/j.cell.2021.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/29/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.
Collapse
Affiliation(s)
- Alastair J H Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Sophie J Bradley
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fiona H Marshall
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giles A Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Kirstie A Bennett
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jason Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Julie E Cansfield
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - David M Cross
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Cross Pharma Consulting Ltd, 20-22 Wenlock Road, London, N17GU, UK
| | - Chris de Graaf
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Brian D Hudson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - João M Dias
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - James C Errey
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Edward Hurrell
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jan Liptrot
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giulio Mattedi
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pradeep J Nathan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Brain Mapping Unit, University of Cambridge, Department of Psychiatry, Herchel Smith Building, Cambridge, CB20SZ, UK
| | - Krzysztof Okrasa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Greg Osborne
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jayesh C Patel
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Mark Pickworth
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Nathan Robertson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Shahram Shahabi
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Christoffer Bundgaard
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK; H. Lundbeck A/S, Neuroscience Research, Ottiliavej 9, 2500 Valby, Copenhagen, Denmark
| | - Keith Phillips
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Lisa M Broad
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Anushka V Goonawardena
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Stephen R Morairty
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK; P1vital, Manor house, Howbery Buisness Park, Wallingford, OX108BA, UK
| | - Francesca Perini
- Centre for Cognitive Neuroscience - Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Gerard R Dawson
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK
| | - John F W Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, M139PT UK
| | - Robert T Smith
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Julie Warneck
- Protogenia Consulting Ltd, PO-Box 289, Ely, CB79DR, UK
| | - Mary Vinson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Tim Tasker
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Benjamin G Tehan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Barry Teobald
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Christopher J Langmead
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Ali Jazayeri
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Robert M Cooke
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Prakash Rucktooa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Miles S Congreve
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Malcolm Weir
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK.
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
36
|
Pietruś W, Kurczab R, Stumpfe D, Bojarski AJ, Bajorath J. Data-Driven Analysis of Fluorination of Ligands of Aminergic G Protein Coupled Receptors. Biomolecules 2021; 11:1647. [PMID: 34827645 PMCID: PMC8615825 DOI: 10.3390/biom11111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, G protein-coupled receptors are the targets with the highest number of drugs in many therapeutic areas. Fluorination has become a common strategy in designing highly active biological compounds, as evidenced by the steadily increasing number of newly approved fluorine-containing drugs. Herein, we identified in the ChEMBL database and analysed 1554 target-based FSAR sets (non-fluorinated compounds and their fluorinated analogues) comprising 966 unique non-fluorinated and 2457 unique fluorinated compounds active against 33 different aminergic GPCRs. Although a relatively small number of activity cliffs (defined as a pair of structurally similar compounds showing significant differences of activity -ΔpPot > 1.7) was found in FSAR sets, it is clear that appropriately introduced fluorine can increase ligand potency more than 50-fold. The analysis of matched molecular pairs (MMPs) networks indicated that the fluorination of the aromatic ring showed no clear trend towards a positive or negative effect on affinity; however, a favourable site for a positive potency effect of fluorination was the ortho position. Fluorination of aliphatic fragments more often led to a decrease in biological activity. The results may constitute the rules of thumb for fluorination of aminergic receptor ligands and provide insights into the role of fluorine substitutions in medicinal chemistry.
Collapse
Affiliation(s)
- Wojciech Pietruś
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (W.P.); (A.J.B.)
- Department of Life Science Informatics, LIMES Program Unit Chemical Biology and Medicinal Chemistry, B-IT, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany;
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (W.P.); (A.J.B.)
| | - Dagmar Stumpfe
- Department of Life Science Informatics, LIMES Program Unit Chemical Biology and Medicinal Chemistry, B-IT, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany;
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (W.P.); (A.J.B.)
| | - Jürgen Bajorath
- Department of Life Science Informatics, LIMES Program Unit Chemical Biology and Medicinal Chemistry, B-IT, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany;
| |
Collapse
|
37
|
Jia L, Li S, Dai W, Guo L, Xu Z, Scott AM, Zhang Z, Ren J, Zhang Q, Dexheimer TS, Chung-Davidson YW, Neubig RR, Li Q, Li W. Convergent olfactory trace amine-associated receptors detect biogenic polyamines with distinct motifs via a conserved binding site. J Biol Chem 2021; 297:101268. [PMID: 34600890 PMCID: PMC8546428 DOI: 10.1016/j.jbc.2021.101268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.
Collapse
Affiliation(s)
- Liang Jia
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Shengju Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingna Guo
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengrong Xu
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Zhe Zhang
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Jianfeng Ren
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qinghua Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Thomas S Dexheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
38
|
Kampen S, Duy Vo D, Zhang X, Panel N, Yang Y, Jaiteh M, Matricon P, Svenningsson P, Brea J, Loza MI, Kihlberg J, Carlsson J. Structure‐Guided Design of G‐Protein‐Coupled Receptor Polypharmacology. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefanie Kampen
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Duc Duy Vo
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience Karolinska Institute 17177 Stockholm Sweden
| | - Nicolas Panel
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Yunting Yang
- Department of Clinical Neuroscience Karolinska Institute 17177 Stockholm Sweden
| | - Mariama Jaiteh
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Pierre Matricon
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience Karolinska Institute 17177 Stockholm Sweden
| | - Jose Brea
- USEF Screening Platform-BioFarma Research Group Centre for Research in Molecular Medicine and Chronic Diseases University of Santiago de Compostela 15706 Santiago de Compostela Spain
| | - Maria Isabel Loza
- USEF Screening Platform-BioFarma Research Group Centre for Research in Molecular Medicine and Chronic Diseases University of Santiago de Compostela 15706 Santiago de Compostela Spain
| | - Jan Kihlberg
- Department of Chemistry-BMC Uppsala University 75123 Uppsala Sweden
| | - Jens Carlsson
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| |
Collapse
|
39
|
Kampen S, Duy Vo D, Zhang X, Panel N, Yang Y, Jaiteh M, Matricon P, Svenningsson P, Brea J, Loza MI, Kihlberg J, Carlsson J. Structure-Guided Design of G-Protein-Coupled Receptor Polypharmacology. Angew Chem Int Ed Engl 2021; 60:18022-18030. [PMID: 33904641 PMCID: PMC8456950 DOI: 10.1002/anie.202101478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 12/29/2022]
Abstract
Many diseases are polygenic and can only be treated efficiently with drugs that modulate multiple targets. However, rational design of compounds with multi-target profiles is rarely pursued because it is considered too difficult, in particular if the drug must enter the central nervous system. Here, a structure-based strategy to identify dual-target ligands of G-protein-coupled receptors is presented. We use this approach to design compounds that both antagonize the A2A adenosine receptor and activate the D2 dopamine receptor, which have excellent potential as antiparkinson drugs. Atomic resolution models of the receptors guided generation of a chemical library with compounds designed to occupy orthosteric and secondary binding pockets in both targets. Structure-based virtual screens identified ten compounds, of which three had affinity for both targets. One of these scaffolds was optimized to nanomolar dual-target activity and showed the predicted pharmacodynamic effect in a rat model of Parkinsonism.
Collapse
Affiliation(s)
- Stefanie Kampen
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Nicolas Panel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Yunting Yang
- Department of Clinical Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Mariama Jaiteh
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Pierre Matricon
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Jose Brea
- USEF Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, 15706, Santiago, de Compostela, Spain
| | - Maria Isabel Loza
- USEF Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, 15706, Santiago, de Compostela, Spain
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| |
Collapse
|
40
|
Staszewski M, Nelic D, Jończyk J, Dubiel M, Frank A, Stark H, Bajda M, Jakubik J, Walczyński K. Guanidine Derivatives: How Simple Structural Modification of Histamine H 3R Antagonists Has Led to the Discovery of Potent Muscarinic M 2R/M 4R Antagonists. ACS Chem Neurosci 2021; 12:2503-2519. [PMID: 34100603 PMCID: PMC8291587 DOI: 10.1021/acschemneuro.1c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
This article describes
the discovery of novel potent muscarinic
receptor antagonists identified during a search for more active histamine
H3 receptor (H3R) ligands. The idea was to replace
the flexible seven methylene linker with a semirigid 1,4-cyclohexylene
or p-phenylene substituted group of the previously
described histamine H3R antagonists ADS1017 and ADS1020. These simple structural modifications
of the histamine H3R antagonist led to the emergence of
additional pharmacological effects, some of which unexpectedly showed
strong antagonist potency at muscarinic receptors. This paper reports
the routes of synthesis and pharmacological characterization of guanidine
derivatives, a novel chemotype of muscarinic receptor antagonists
binding to the human muscarinic M2 and M4 receptors
(hM2R and hM4R, respectively) in nanomolar concentration
ranges. The affinities of the newly synthesized ADS10227 (1-{4-{4-{[4-(phenoxymethyl)cyclohexyl]methyl}piperazin-1-yl}but-1-yl}-1-(benzyl)guanidine)
at hM2R and hM4R were 2.8 nM and 5.1 nM, respectively.
Collapse
Affiliation(s)
- Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Łódź, Poland
| | - Dominik Nelic
- Department of Neurochemistry, Institute of Physiology CAS, Videnska 1083, CZ142 20, Prague, Czech Republic
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Jan Jakubik
- Department of Neurochemistry, Institute of Physiology CAS, Videnska 1083, CZ142 20, Prague, Czech Republic
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
41
|
Tropmann K, Bresinsky M, Forster L, Mönnich D, Buschauer A, Wittmann HJ, Hübner H, Gmeiner P, Pockes S, Strasser A. Abolishing Dopamine D 2long/D 3 Receptor Affinity of Subtype-Selective Carbamoylguanidine-Type Histamine H 2 Receptor Agonists. J Med Chem 2021; 64:8684-8709. [PMID: 34110814 DOI: 10.1021/acs.jmedchem.1c00692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
3-(2-Amino-4-methylthiazol-5-yl)propyl-substituted carbamoylguanidines are potent, subtype-selective histamine H2 receptor (H2R) agonists, but their applicability as pharmacological tools to elucidate the largely unknown H2R functions in the central nervous system (CNS) is compromised by their concomitant high affinity toward dopamine D2-like receptors (especially to the D3R). To improve the selectivity, a series of novel carbamoylguanidine-type ligands containing various heterocycles, spacers, and side residues were rationally designed, synthesized, and tested in binding and/or functional assays at H1-4 and D2long/3 receptors. This study revealed a couple of selective candidates (among others 31 and 47), and the most promising ones were screened at several off-target receptors, showing good selectivities. Docking studies suggest that the amino acid residues (3.28, 3.32, E2.49, E2.51, 5.42, and 7.35) are responsible for the different affinities at the H2- and D2long/3-receptors. These results provide a solid base for the exploration of the H2R functions in the brain in further studies.
Collapse
Affiliation(s)
- Katharina Tropmann
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Merlin Bresinsky
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Lisa Forster
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.,Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Andrea Strasser
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
42
|
Zhuang Y, Krumm B, Zhang H, Zhou XE, Wang Y, Huang XP, Liu Y, Cheng X, Jiang Y, Jiang H, Zhang C, Yi W, Roth BL, Zhang Y, Xu HE. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res 2021; 31:593-596. [PMID: 33750903 PMCID: PMC8089099 DOI: 10.1038/s41422-021-00482-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 01/30/2023] Open
Affiliation(s)
- Youwen Zhuang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brian Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand, Rapids, MI, USA
| | - Yue Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA
| | - Xi Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology, and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, 311121, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
43
|
Egyed A, Kelemen ÁA, Vass M, Visegrády A, Thee SA, Wang Z, de Graaf C, Brea J, Loza MI, Leurs R, Keserű GM. Controlling the selectivity of aminergic GPCR ligands from the extracellular vestibule. Bioorg Chem 2021; 111:104832. [PMID: 33826962 DOI: 10.1016/j.bioorg.2021.104832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
In addition to the orthosteric binding pocket (OBP) of GPCRs, recent structural studies have revealed that there are several allosteric sites available for pharmacological intervention. The secondary binding pocket (SBP) of aminergic GPCRs is located in the extracellular vestibule of these receptors, and it has been suggested to be a potential selectivity pocket for bitopic ligands. Here, we applied a virtual screening protocol based on fragment docking to the SBP of the orthosteric ligand-receptor complex. This strategy was employed for a number of aminergic receptors. First, we designed dopamine D3 preferring bitopic compounds from a D2 selective orthosteric ligand. Next, we designed 5-HT2B selective bitopic compounds starting from the 5-HT1B preferring ergoline core of LSD. Comparing the serotonergic profiles of the new derivatives to that of LSD, we found that these derivatives became significantly biased towards the desired 5-HT2B receptor target. Finally, addressing the known limitations of H1 antihistamines, our protocol was successfully used to eliminate the well-known side effects related to the muscarinic M1 activity of amitriptyline while preserving H1 potency in some of the designed bitopic compounds. These applications highlight the usefulness of our new virtual screening protocol and offer a powerful strategy towards bitopic GPCR ligands with designed receptor profiles.
Collapse
Affiliation(s)
- Attila Egyed
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Ádám A Kelemen
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Márton Vass
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary; Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | | | - Stephanie A Thee
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - Zhiyong Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Granta Park, Great Abington, Cambridge CB21 6DG, UK
| | - Jose Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary.
| |
Collapse
|
44
|
Zhuang Y, Xu P, Mao C, Wang L, Krumm B, Zhou XE, Huang S, Liu H, Cheng X, Huang XP, Shen DD, Xu T, Liu YF, Wang Y, Guo J, Jiang Y, Jiang H, Melcher K, Roth BL, Zhang Y, Zhang C, Xu HE. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 2021; 184:931-942.e18. [PMID: 33571431 PMCID: PMC8215686 DOI: 10.1016/j.cell.2021.01.027] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
The D1- and D2-dopamine receptors (D1R and D2R), which signal through Gs and Gi, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-Gs and D2R-Gi signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amino Acid Sequence
- Conserved Sequence
- Cryoelectron Microscopy
- Cyclic AMP/metabolism
- GTP-Binding Proteins/metabolism
- HEK293 Cells
- Humans
- Ligands
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/ultrastructure
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/ultrastructure
- Signal Transduction
- Structural Homology, Protein
Collapse
Affiliation(s)
- Youwen Zhuang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Laboratory for Systems and Precison Medicine, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brian Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Sijie Huang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xi Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Laboratory for Systems and Precison Medicine, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tinghai Xu
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Yong-Feng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Yue Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Guo
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Laboratory for Systems and Precison Medicine, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou 310058, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
45
|
Current and Future Challenges in Modern Drug Discovery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2114:1-17. [PMID: 32016883 DOI: 10.1007/978-1-0716-0282-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug discovery is an expensive, time-consuming, and risky business. To avoid late-stage failure, learnings from past projects and the development of new approaches are crucial. New modalities and emerging new target spaces allow the exploration of unprecedented indications or to address so far undrugable targets. Late-stage attrition is usually attributed to the lack of efficacy or to compound-related safety issues. Efficacy has been shown to be related to a strong genetic link to human disease, a better understanding of the target biology, and the availability of biomarkers to bridge from animals to humans. Compound safety can be improved by ligand optimization, which is becoming increasingly demanding for difficult targets. Therefore, new strategies include the design of allosteric ligands, covalent binders, and other modalities. Design methods currently heavily rely on artificial intelligence and advanced computational methods such as free energy calculations and quantum chemistry. Especially for quantum chemical methods, a more detailed overview is given in this chapter.
Collapse
|
46
|
Radan M, Bošković J, Dobričić V, Čudina O, Nikolić K. Current computer-aided drug design methodologies in discovery of novel drug candidates for neuropsychiatric and inflammatory diseases. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-32523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drug discovery and development is a very challenging, expensive and time-consuming process. Impressive technological advances in computer sciences and molecular biology have made it possible to use computer-aided drug design (CADD) methods in various stages of the drug discovery and development pipeline. Nowadays, CADD presents an efficacious and indispensable tool, widely used in medicinal chemistry, to lead rational drug design and synthesis of novel compounds. In this article, an overview of commonly used CADD approaches from hit identification to lead optimization was presented. Moreover, different aspects of design of multitarget ligands for neuropsychiatric and anti-inflammatory diseases were summarized. Apparently, designing multi-target directed ligands for treatment of various complex diseases may offer better efficacy, and fewer side effects. Antipsychotics that act through aminergic G protein-coupled receptors (GPCRs), especially Dopamine D2 and serotonin 5-HT2A receptors, are the best option for treatment of various symptoms associated with neuropsychiatric disorders. Furthermore, multi-target directed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors are also a successful approach to aid the discovery of new anti-inflammatory drugs with fewer side effects. Overall, employing CADD approaches in the process of rational drug design provides a great opportunity for future development, allowing rapid identification of compounds with the optimal polypharmacological profile.
Collapse
|
47
|
Biased Ligands Differentially Shape the Conformation of the Extracellular Loop Region in 5-HT 2B Receptors. Int J Mol Sci 2020; 21:ijms21249728. [PMID: 33419260 PMCID: PMC7767279 DOI: 10.3390/ijms21249728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023] Open
Abstract
G protein-coupled receptors are linked to various intracellular transducers, each pathway associated with different physiological effects. Biased ligands, capable of activating one pathway over another, are gaining attention for their therapeutic potential, as they could selectively activate beneficial pathways whilst avoiding those responsible for adverse effects. We performed molecular dynamics simulations with known β-arrestin-biased ligands like lysergic acid diethylamide and ergotamine in complex with the 5-HT2B receptor and discovered that the extent of ligand bias is directly connected with the degree of closure of the extracellular loop region. Given a loose allosteric coupling of extracellular and intracellular receptor regions, we delineate a concept for biased signaling at serotonin receptors, by which conformational interference with binding pocket closure restricts the signaling repertoire of the receptor. Molecular docking studies of biased ligands gathered from the BiasDB demonstrate that larger ligands only show plausible docking poses in the ergotamine-bound structure, highlighting the conformational constraints associated with bias. This emphasizes the importance of selecting the appropriate receptor conformation on which to base virtual screening workflows in structure-based drug design of biased ligands. As this mechanism of ligand bias has also been observed for muscarinic receptors, our studies provide a general mechanism of signaling bias transferable between aminergic receptors.
Collapse
|
48
|
Volpato D, Kauk M, Messerer R, Bermudez M, Wolber G, Bock A, Hoffmann C, Holzgrabe U. The Role of Orthosteric Building Blocks of Bitopic Ligands for Muscarinic M1 Receptors. ACS OMEGA 2020; 5:31706-31715. [PMID: 33344823 PMCID: PMC7745449 DOI: 10.1021/acsomega.0c04220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
The muscarinic M1 acetylcholine receptor is an important drug target for the treatment of various neurological disorders. Designing M1 receptor-selective drugs has proven challenging, mainly due to the high conservation of the acetylcholine binding site among muscarinic receptor subtypes. Therefore, less conserved and topographically distinct allosteric binding sites have been explored to increase M1 receptor selectivity. In this line, bitopic ligands, which target orthosteric and allosteric binding sites simultaneously, may provide a promising strategy. Here, we explore the allosteric, M1-selective BQCAd scaffold derived from BQCA as a starting point for the design, synthesis, and pharmacological evaluation of a series of novel bitopic ligands in which the orthosteric moieties and linker lengths are systematically varied. Since β-arrestin recruitment seems to be favorable to therapeutic implication, all the compounds were investigated by G protein and β-arrestin assays. Some bitopic ligands are partial to full agonists for G protein activation, some activate β-arrestin recruitment, and the degree of β-arrestin recruitment varies according to the respective modification. The allosteric BQCAd scaffold controls the positioning of the orthosteric ammonium group of all ligands, suggesting that this interaction is essential for stimulating G protein activation. However, β-arrestin recruitment is not affected. The novel set of bitopic ligands may constitute a toolbox to study the requirements of β-arrestin recruitment during ligand design for therapeutic usage.
Collapse
Affiliation(s)
- Daniela Volpato
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Kauk
- Institute
for Molecular Cell Biology, CMB-Center for Molecular Biomedicine,
University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Regina Messerer
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Bermudez
- Institute
of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2-4 in 14195 Berlin-Dahlem, Germany
| | - Gerhard Wolber
- Institute
of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2-4 in 14195 Berlin-Dahlem, Germany
| | - Andreas Bock
- Max
Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carsten Hoffmann
- Institute
for Molecular Cell Biology, CMB-Center for Molecular Biomedicine,
University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Ulrike Holzgrabe
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- . Tel.: +49 931 31-85460
| |
Collapse
|
49
|
Kułaga D, Jaśkowska J, Satała G, Latacz G, Śliwa P. Aminotriazines with indole motif as novel, 5-HT7 receptor ligands with atypical binding mode. Bioorg Chem 2020; 104:104254. [DOI: 10.1016/j.bioorg.2020.104254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
|
50
|
Calcium signaling mediated by aminergic GPCRs is impaired by the PI3K inhibitor LY294002 and its analog LY303511 in a PI3K-independent manner. Eur J Pharmacol 2020; 880:173182. [PMID: 32416185 DOI: 10.1016/j.ejphar.2020.173182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (LY294) and its much less active analog LY303511 (LY303) constitute the paired probe that is commonly used to demonstrate the involvement of PI3K in intracellular signaling. We studied effects of LY294 and LY303 on Ca2+ signaling initiated by certain GPCR agonists in cells of several lines, including CHO cells expressing the recombinant serotonin receptor 5-HT2C and mesenchymal stromal cells derived from the human adipose tissue (AD-MSCs) and umbilical cord (UD-MSCs). The LY294/LY303 pair exerted apparently specific effects on responsiveness of AD-MSCs to ATP, suggesting the involvement of PI3K in ATP transduction. Surprisingly, LY303 inhibited Ca2+ transients elicited by histamine in the same cells, while LY294 was ineffective. This observation and other findings implicated a PI3K-unrelated mechanism in mediating effects of the LY compound on AD-MSC responsiveness to histamine. With LY303 in the bath, the dose dependence of histamine responses was shifted positively at the invariable number of responsive cells, as would be the case with a competitive antagonist of histamine receptors. Moreover, LY303 and LY294 inhibited Ca2+ transients elicited by acetylcholine and serotonin in UD-MSCs and CHO/5-HT2C cells, respectively. Our overall results argued for the possibility that LY294 and LY303 could directly affect activity of aminergic GPCRs. Thus, LY303511 and LY294002 should be used cautiously in studies of PI3K as a factor of GPCR signaling.
Collapse
|