1
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
2
|
Guha S, Jagadeesan Y, Pandey MM, Mittal A, Chitkara D. Targeting the epigenome with advanced delivery strategies for epigenetic modulators. Bioeng Transl Med 2025; 10:e10710. [PMID: 39801754 PMCID: PMC11711227 DOI: 10.1002/btm2.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth. Currently, a considerable amount of research is focused on discovering new drug molecules to combat the existing research gap in epigenetic drug therapy. A novel and efficient delivery system can be established as a promising approach to overcome the drawbacks associated with the current epigenetic modulators. Therefore, formulating the existing epigenetic drugs with distinct encapsulation strategies in nanocarriers, including solid lipid nanoparticles, nanogels, bio-engineered nanocarriers, liposomes, surface modified nanoparticles, and polymer-drug conjugates have been examined for therapeutic efficacy. Nonetheless, several epigenetic modulators are untouched for their therapeutic potential through different delivery strategies. This review provides a comprehensive up to date discussion on the research findings of various epigenetics mechanism, epigenetic modulators, and delivery strategies utilized to improve their therapeutic outcome. Furthermore, this review also highlights the recently emerged CRISPR tool for epigenome editing.
Collapse
Affiliation(s)
- Sonia Guha
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Yogeswaran Jagadeesan
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Murali Monohar Pandey
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Anupama Mittal
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Deepak Chitkara
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| |
Collapse
|
3
|
Liu B, Liang BB, Cao WD, Su XX, Cao Q, Mao ZW. Platinum-Metformin Conjugates Acting as Promising PD-L1 Inhibitors through the AMP-Activated Protein Kinase Mediated Lysosomal Degradation Pathway. Angew Chem Int Ed Engl 2024; 63:e202410586. [PMID: 39206686 DOI: 10.1002/anie.202410586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
With the development of metalloimmunology, the potential of platinum drugs in cancer immunotherapy has attracted extensive attention. Although immunochemotherapy combining PD-1/PD-L1 antibodies with platinum drugs has achieved great success in the clinic, combination therapy commonly brings new problems. Herein, we have developed a platinum-metformin conjugate as a promising alternative to antibody-based PD-L1 inhibitors, not only disrupting PD-1/PD-L1 axis on cell surface but also down-regulating the total PD-L1 levels in non-small cell lung cancer (NSCLC) cells comprehensively, thus achieving highly efficient immunochemotherapy by a single small molecule. Mechanism studies demonstrate that Pt-metformin conjugate can selectively accumulate in lysosomes, promote lysosomal-dependent PD-L1 degradation via the AMPK-TFEB pathway, and modulate the upstream regulatory proteins related to PD-L1 expression (e.g. HIF-1α and NF-κB), eventually decreasing the total abundance of PD-L1 in NSCLC, overcoming tumor hypoxia, and activating anti-tumor immunity in vivo. This work suggests an AMPK-mediated lysosomal degradation pathway of PD-L1 for the first time and provides a unique design perspective for the development of novel platinum drugs for immunochemotherapy.
Collapse
Affiliation(s)
- Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bing-Bing Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wan-Di Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xu-Xian Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering GBRCE for Functional Molecular Engineering School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
4
|
Wang FY, Yang LM, Xiong XL, Yang J, Yang Y, Tang JQ, Gao L, Lu Y, Wang Y, Zou T, Liang H, Huang KB. Rhodium(III) Complex Noncanonically Potentiates Antitumor Immune Responses by Inhibiting Wnt/β-Catenin Signaling. J Med Chem 2024; 67:13778-13787. [PMID: 39134504 DOI: 10.1021/acs.jmedchem.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-based chemoimmunotherapy has recently garnered significant attention for its capacity to stimulate tumor-specific immunity beyond direct cytotoxic effects. Such effects are usually caused by ICD via the activation of DAMP signals. However, metal complexes that can elicit antitumor immune responses other than ICD have not yet been described. Herein, we report that a rhodium complex (Rh-1) triggers potent antitumor immune responses by downregulating Wnt/β-catenin signaling with subsequent activation of T lymphocyte infiltration to the tumor site. The results of mechanistic experiments suggest that ROS accumulation following Rh-1 treatment is a critical trigger of a decrease in β-catenin and enhanced secretion of CCL4, a key mediator of T cell infiltration. Through these properties, Rh-1 exerts a synergistic effect in combination with PD-1 inhibitors against tumor growth in vivo. Taken together, our work describes a promising metal-based antitumor agent with a noncanonical mode of action to sensitize tumor tissues to ICB therapy.
Collapse
Affiliation(s)
- Feng-Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiao-Lin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiu-Qin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lei Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
5
|
Huang KB, Wang FY, Lu Y, Yang LM, Long N, Wang SS, Xie Z, Levine M, Zou T, Sessler JL, Liang H. Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2404668121. [PMID: 38833473 PMCID: PMC11181140 DOI: 10.1073/pnas.2404668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.
Collapse
Affiliation(s)
- Ke-Bin Huang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Feng-Yang Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Yuan Lu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Liang-Mei Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Nian Long
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Shan-Shan Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Zhiying Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou510006, China
| | - Matthew Levine
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou510006, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| |
Collapse
|
6
|
Xie P, Jin Q, Zhang L, Zhang H, Montesdeoca N, Karges J, Xiao H, Mao X, Song H, Shang K. Endowing Pt(IV) with Perfluorocarbon Chains and Human Serum Albumin Encapsulation for Highly Effective Antitumor Chemoimmunotherapy. ACS NANO 2024; 18:13683-13695. [PMID: 38749906 DOI: 10.1021/acsnano.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumor metastases and reoccurrence are considered the leading causes of cancer-associated deaths. As an emerging therapeutic method, increasing research efforts have been devoted to immunogenic cell death (ICD)-inducing compounds to solve the challenge. The clinically approved chemotherapeutic Pt complexes are not or are only poorly able to trigger ICD. Herein, the axial functionalization of the Pt(II) complex cisplatin with perfluorocarbon chains into ICD-inducing Pt(IV) prodrugs is reported. Strikingly, while the Pt(II) complex as well as the perfluorocarbon ligands did not induce ICD, the Pt(IV) prodrug demonstrated unexpectantly the induction of ICD through accumulation in the endoplasmic reticulum and generation of reactive oxygen species in this organelle. To enhance the pharmacological properties, the compound was encapsulated with human serum albumin into nanoparticles. While selectively accumulating in the tumorous tissue, the nanoparticles demonstrated a strong tumor growth inhibitory effect against osteosarcoma inside a mouse model. In vivo tumor vaccine analysis also demonstrated the ability of Pt(IV) to be an ideal ICD inducer. Overall, this study reports on axially perfluorocarbon chain-modified Pt(IV) complexes for ICD induction and chemoimmunotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Peng Xie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiao Jin
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum 44780, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum 44780, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, China
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
7
|
Tu L, Li C, Ding Q, Sharma A, Li M, Li J, Kim JS, Sun Y. Augmenting Cancer Therapy with a Supramolecular Immunogenic Cell Death Inducer: A Lysosome-Targeted NIR-Light-Activated Ruthenium(II) Metallacycle. J Am Chem Soc 2024; 146:8991-9003. [PMID: 38513217 DOI: 10.1021/jacs.3c13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 μM) compared to the conventional anticancer agent, oxaliplatin (300 μM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82A, Mohali, Punjab 140306, India
| | - Meiqin Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
8
|
Aher S, Zhu J, Bhagat P, Borse L, Liu X. Pt(IV) Complexes in the Search for Novel Platinum Prodrugs with Promising Activity. Top Curr Chem (Cham) 2024; 382:6. [PMID: 38400859 DOI: 10.1007/s41061-023-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.
Collapse
Affiliation(s)
- Sainath Aher
- K. K. Wagh College of Pharmacy, Nashik, Maharashtra, 422003, India
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Pundlik Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, India
| | - Laxmikant Borse
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, 422213, India
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
9
|
Jin S, Guo Y, Wang X. Development of Platinum Complexes for Tumor Chemoimmunotherapy. Chemistry 2024; 30:e202302948. [PMID: 38171804 DOI: 10.1002/chem.202302948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Indexed: 01/05/2024]
Abstract
Platinum complexes are potential antitumor drugs in chemotherapy. Their impact on tumor treatment could be greatly strengthened by combining with immunotherapy. Increasing evidences indicate that the antitumor activity of platinum complexes is not limited to chemical killing effects, but also extends to immunomodulatory actions. This review introduced the general concept of chemoimmunotherapy and summarized the progress of platinum complexes as chemoimmunotherapeutic agents in recent years. Platinum complexes could be developed into inducers of immunogenic cell death, blockers of immune checkpoint, regulators of immune signaling pathway, and modulators of tumor immune microenvironment, etc. The synergy between chemotherapeutic and immunomodulatory effects reinforces the antitumor activity of platinum complexes, and helps them circumvent the drug resistance and systemic toxicity. The exploration of platinum complexes for chemoimmunotherapy may create new opportunities to revive the discovery of metal anticancer drugs.
Collapse
Affiliation(s)
- Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan Guo
- School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Zhang M, Chen Y, Liu Z, Liu M, Wang Q. Series of Desloratadine Platinum(IV) Hybrids Displaying Potent Antimetastatic Competence by Inhibiting Epithelial-Mesenchymal Transition and Arousing Immune Response. J Med Chem 2024; 67:2031-2048. [PMID: 38232132 DOI: 10.1021/acs.jmedchem.3c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metastasis is the major obstacle to the survival of cancer patients. Herein, a series of new desloratadine platinum(IV) conjugates with promising antiproliferative and antimetastatic activities were developed and evaluated. The candidate complex caused significant DNA damage and stimulated mitochondrial apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it suppressed the epithelial-mesenchymal transition (EMT) process in tumors effectively through NMT-1/HPCAL1 and β-catenin signaling. Subsequently, the angiogenesis was inhibited with the downregulation of key proteins HIF-1α, VEGFA, MMP-9, and CD34. Moreover, the antitumor immunity was effectively aroused by the synergism of EMT reversion and decrease of the histamine level; then, the macrophage polarization from M2- to M1-type and the increase of CD4+ and CD8+ T cells were triggered simultaneously in tumors.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
11
|
Sarkar A, Novohradsky V, Maji M, Babu T, Markova L, Kostrhunova H, Kasparkova J, Gandin V, Brabec V, Gibson D. Multitargeting Prodrugs that Release Oxaliplatin, Doxorubicin and Gemcitabine are Potent Inhibitors of Tumor Growth and Effective Inducers of Immunogenic Cell Death. Angew Chem Int Ed Engl 2023; 62:e202310774. [PMID: 37646232 DOI: 10.1002/anie.202310774] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
A multitargeting prodrug (2) that releases gemcitabine, oxaliplatin, and doxorubicin in their active form in cancer cells is a potent cytotoxic agent with nM IC50s ; it is highly selective to cancer cells with mean selectivity indices to human (136) and murine (320) cancer cells. It effectively induces release of DAMPs (CALR, ATP & HMGB1) in CT26 cells facilitating more efficient phagocytosis by J774 macrophages than the FDA drugs or their co-administration. The viability of CT26 cells co-cultured with J774 macrophages and treated with 2 was reduced by 32 % compared to the non-treated cells, suggesting a synergistic antiproliferative effect between the chemical and immune reactions. 2 inhibited in vivo tumor growth in two murine models (LLC and CT26) better than the FDA drugs or their co-administration with significantly lower body weight loss. Mice inoculated with CT26 cells treated with 2 showed slightly better tumor free survival than doxorubicin.
Collapse
Affiliation(s)
- Amrita Sarkar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Moumita Maji
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
- Department of Biophysics, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, 35131, Padova, Italy
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| |
Collapse
|
12
|
Zhu L, Du W, Li Y, Li D, Wei W, Zhao J, Wang X. Chiral SPINOL-Based Pt(II) Metallacycles For Immunogenic Cell Death. Inorg Chem 2023; 62:14922-14930. [PMID: 37674254 DOI: 10.1021/acs.inorgchem.3c01635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The incorporation of chirality endows Pt(II)-based metal-organic complexes (MOCs) with unique potentials in several fields such as nonlinear optics and chiral catalysis. However, the exploration of chiral Pt(II) metallacycles in biological responses remains underdeveloped. Herein, we designed and synthesized two chiral Pt(II) metallacycles 1 and 2 via the coordination-driven self-assembly of chiral 1,1'-spirobiindane-7,7'-diol (SPINOL)-derived ligands and cis-Pt(PEt3)2(OTf)2 (90°Pt). Their structures were well characterized by 1H NMR, 31P{1H} NMR, ESI-TOF-MS, and X-ray crystallography, and their photophysical properties were investigated by UV-vis absorption, fluorescence, and circular dichroism (CD) spectroscopies. Then, the antitumor activity of the two chiral metallacycles in vitro was further tested. Complexes 1 and 2 exhibited strong cytotoxicity, especially toward the A549 cells. The destruction of the mitochondrial function, the inhibition of the glutathione (GSH)/glutathione disulfide (GSSG) level, and the inactivation of superoxide dismutase (SOD) induced by complexes 1 and 2 led to the massive accumulation of reactive oxygen species (ROS). The overloaded ROS then triggered apoptotic cell death, and the release of damage-associated molecular patterns (DAMPs) further induced immunogenic cell death (ICD). To the best of our knowledge, this is the first example of Pt(II)-based metallacycles that can induce immunogenic cell death, providing a new strategy for the future design and construction of immune-modulating platinum agents in cancer therapy.
Collapse
Affiliation(s)
- Lu Zhu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenjing Du
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ding Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Sino-Danish Ecolife Science Industrial Incubator, Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangbei New Area, Nanjing 210000, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Sino-Danish Ecolife Science Industrial Incubator, Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangbei New Area, Nanjing 210000, China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Gabano E, Gariboldi MB, Marras E, Barbato F, Ravera M. Platinum(IV) combo prodrugs containing cyclohexane-1 R,2 R-diamine, valproic acid, and perillic acid as a multiaction chemotherapeutic platform for colon cancer. Dalton Trans 2023; 52:11349-11360. [PMID: 37530512 DOI: 10.1039/d3dt01876h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The complex [PtCl2(cyclohexane-1R,2R-diamine)] has been combined in a Pt(IV) molecule with two different bioactive molecules (i.e., the histone deacetylase inhibitor 2-propylpentanoic acid or valproic acid, VPA, and the potential antimetastatic molecule 4-isopropenylcyclohexene-1-carboxylic acid or perillic acid, PA) in order to obtain a set of multiaction or multitarget antiproliferative agents. In addition to traditional thermal synthetic procedures, microwave-assisted heating was used to speed up their preparation. All Pt(IV) complexes showed antiproliferative activity on four human colon cancer cell lines (namely HCT116, HCT8, RKO and HT29) in the nanomolar range, considerably better than those of [PtCl2(cyclohexane-1R,2R-diamine)], VPA, PA, and the reference drug oxaliplatin. The synthesized complexes showed pro-apoptotic and pro-necrotic effects and the ability to induce cell cycle alterations. Moreover, the downregulation of histone deacetylase activity, leading to an increase in histone H3 and H4 levels, and the antimigratory activity, indicated by the reduction of the levels of matrix metalloproteinases MMP2 and MMP9, demonstrated the multiaction nature of the complexes, which showed biological properties similar to or better than those of VPA and PA, but at lower concentrations, probably due to the lipophilicity of the combo molecule that increases the intracellular concentration of the single components (i.e., [PtCl2(cyclohexane-1R,2R-diamine)], VPA and PA).
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Piazza Sant'Eusebio 5, 13100 Vercelli, Italy
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Francesca Barbato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
15
|
Liao LS, Chen Y, Hou C, Liu YH, Su GF, Liang H, Chen ZF. Potent Zinc(II)-Based Immunogenic Cell Death Inducer Triggered by ROS-Mediated ERS and Mitochondrial Ca 2+ Overload. J Med Chem 2023; 66:10497-10509. [PMID: 37498080 DOI: 10.1021/acs.jmedchem.3c00603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Zn1 and Zn2 are Zn-based complexes that activate the immunogenic cell death (ICD) effect by Ca2+-mediated endoplasmic reticulum stress (ERS) and mitochondrial dysfunction. Compared with Zn1, Zn2 effectively caused reactive oxidative species (ROS) overproduction in the early phase, leading to ERS response. Severe ERS caused the release of Ca2+ from ER to cytoplasm and further to mitochondria. Excessive Ca2+ in mitochondria triggered mitochondrial dysfunction. The damage-associated molecular patterns (DAMPs) of CRT, HMGB1, and ATP occurred in T-24 cells exposed to Zn1 and Zn2. The vaccination assay demonstrated that Zn1 and Zn2 efficiently suppressed the growth of distant tumors. The elevated CD8+ cytotoxic T cells and decreased Foxp3+ cells in vaccinated mice supported our conclusion. Moreover, Zn1 and Zn2 improved the survival rate of mice compared with oxaliplatin. Collectively, our findings provided a new design strategy for a zinc-based ICD inducer via ROS-induced ERS and mitochondrial Ca2+ overload.
Collapse
Affiliation(s)
- Lan-Shan Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, China
| | - Yin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yang-Han Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
16
|
Wei F, Ke L, Gao S, Karges J, Wang J, Chen Y, Ji L, Chao H. In situ oxidative polymerization of platinum(iv) prodrugs in pore-confined spaces of CaCO 3 nanoparticles for cancer chemoimmunotherapy. Chem Sci 2023; 14:7005-7015. [PMID: 37389267 PMCID: PMC10306087 DOI: 10.1039/d3sc02264a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Drug resistance and metastases are the leading causes of death in clinics. To overcome this limitation, there is an urgent need for new therapeutic agents and drug formulations that are able to therapeutically intervene by non-traditional mechanisms. Herein, the physical adsorption and oxidative polymerization of Pt(iv) prodrugs in pore-confined spaces of CaCO3 nanoparticles is presented, and the nanomaterial surface was coated with DSPE-PEG2000-Biotin to improve aqueous solubility and tumor targeting. While the nanoparticle scaffold remained stable in an aqueous solution, it quickly degraded into Ca2+ in the presence of acid and into cisplatin in the presence of GSH. The nanoparticles were found to interact in cisplatin-resistant non-small lung cancer cells by a multimodal mechanism of action involving mitochondrial Ca2+ overload, dual depletion of GSH, nuclear DNA platination, and amplification of ROS and lipid peroxide generation, resulting in triggering cell death by a combination of apoptosis, ferroptosis and immunogenic cell death in vitro and in vivo. This study could present a novel strategy for the treatment of drug-resistant and metastatic tumors and therefore overcome the limitations of currently used therapeutic agents in the clinics.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Siyuan Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
17
|
Yang Z, Bian M, Lv L, Chang X, Wen Z, Li F, Lu Y, Liu W. Tumor-Targeting NHC-Au(I) Complex Induces Immunogenic Cell Death in Hepatocellular Carcinoma. J Med Chem 2023; 66:3934-3952. [PMID: 36827091 DOI: 10.1021/acs.jmedchem.2c01798] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Immunogenic cell death (ICD) is a promising direction of cancer immunotherapy in hepatocellular carcinoma (HCC). A series of novel NHC-Au(I) complexes derived from 4,5-diarylimidazole, containing glycyrrhetinic acid (GA) as an efficient targeting ligand for HCC, were herein designed and synthesized. Among these, complex 4C exhibited excellent effectiveness for tumor targeting and antitumor activity, which induced the occurrence of ICD in HCC cells. Additionally, 4C can effectively inhibit TrxR enzyme activity, increase reactive oxygen species (ROS) expression, lead to redox homeostasis disorder, mediate mitochondrial dysfunction and endoplasmic reticulum stress (ERS), and cause the characteristic discharge of damage-associated molecular patterns (DAMPs) in HCC cells. More importantly, 4C showed a great ICD-inducing effect in a vaccination mouse model and activated antitumor immunity in a tumor-bearing C57BL/6 mouse model, which is consistent with the in vitro results. In conclusion, we found the potential of Au(I) complex with HCC-targeted capability for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, P. R. China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Fuwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Xiong X, Wang Y, Zou T. Towards Understanding the Molecular Mechanisms of Immunogenic Cell Death. Chembiochem 2023; 24:e202200621. [PMID: 36445798 DOI: 10.1002/cbic.202200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
The discovery of immunogenic cell death (ICD) by small molecules (e. g., chemotherapeutic drugs) intrigued medicinal chemists and led them to exploit anticancer agents with such a trait because ICD agents provoke anticancer immune responses in addition to their cytotoxicity. However, the unclear molecular mechanism of ICD hampers further achievements in drug development. Fortunately, increasing efforts have been made in this area in recent years by using either chemical or biological approaches. Here, we review the current achievements towards understanding the mechanisms of small molecule-induced ICD effects. Based on the established role of the unfolded protein response (UPR) in ICD, we classify the mechanisms of different inducers by their dependency on UPR. Key proteins and pathways with important implications are discussed in depth. We also give our perspectives on the research strategies for future investigation in this field.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Zhang M, Li L, Li S, Liu Z, Zhang N, Sun B, Wang Z, Jia D, Liu M, Wang Q. Development of Clioquinol Platinum(IV) Conjugates as Autophagy-Targeted Antimetastatic Agents. J Med Chem 2023; 66:3393-3410. [PMID: 36891739 DOI: 10.1021/acs.jmedchem.2c01895] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A series of autophagy-targeted antimetastatic clioquinol (CLQ) platinum(IV) conjugates were designed and prepared by incorporating an autophagy activator CLQ into the platinum(IV) system. Complex 5 with the cisplatin core bearing dual CLQ ligands with potent antitumor properties was screened out as a candidate. More importantly, it displayed potent antimetastatic properties both in vitro and in vivo as expected. Mechanism investigation manifested that complex 5 induced serious DNA damage to increase γ-H2AX and P53 expression and caused mitochondria-mediated apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it promoted prodeath autophagy by suppressing PI3K/AKT/mTOR signaling and activating the HIF-1α/Beclin1 pathway. The T-cell immunity was elevated by restraining the PD-L1 expression and subsequently increasing CD3+ and CD8+ T cells. Ultimately, metastasis of tumor cells was suppressed by the synergistic effects of DNA damage, autophagy promotion, and immune activation aroused by CLQ platinum(IV) complexes. Key proteins VEGFA, MMP-9, and CD34 tightly associated with angiogenesis and metastasis were downregulated.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Bin Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.,Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, P. R. China
| | - Dianlong Jia
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
20
|
Zhang L, Montesdeoca N, Karges J, Xiao H. Immunogenic Cell Death Inducing Metal Complexes for Cancer Therapy. Angew Chem Int Ed Engl 2023; 62:e202300662. [PMID: 36807420 DOI: 10.1002/anie.202300662] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Cancer is one of the deadliest diseases worldwide. Recent statistics have shown that metastases and tumor relapse are the leading causes of cancer-associated deaths. While traditional treatments are able to efficiently remove the primary tumor, secondary tumors remain poorly accessible. Capitalizing on this there is an urgent need for novel treatment modalities. Among the most promising approaches, increasing research interest has been devoted to immunogenic cell death inducing agents that are able to trigger localized cell death of the cancer cells as well as induce an immune response inside the whole organism. Preliminary studies have shown that immunogenic cell death inducing compounds could be able to overcome metastatic and relapsing tumors. Herein, the application of metal complexes as immunogenic cell death inducing compounds is systematically reviewed.
Collapse
Affiliation(s)
- Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
21
|
Su X, Liu B, Wang WJ, Peng K, Liang BB, Zheng Y, Cao Q, Mao ZW. Disruption of Zinc Homeostasis by a Novel Platinum(IV)-Terthiophene Complex for Antitumor Immunity. Angew Chem Int Ed Engl 2023; 62:e202216917. [PMID: 36546893 DOI: 10.1002/anie.202216917] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Zinc homeostatic medicine is of great potential for cancer chemo-immunotherapy; however, there are few reports on antitumor compounds that can trigger Zn2+ -mediated immune responses. In this work, we developed a novel cyclometalated PtIV -terthiophene complex, Pt3, that not only induces DNA damage and cellular metabolism dysregulation, but also disrupts zinc homeostasis as indicated by the abnormal transcriptional level of zinc regulatory proteins, excess accumulation of Zn2+ in cytoplasm, and down-regulation of metallothioneins (MTs), which further caused redox imbalance. The simultaneous disruption of zinc and redox homeostasis in response to Pt3 treatment activated gasdermin-D mediated pyroptosis accompanied by cytoskeleton remodeling, thus releasing pro-inflammatory cytokines to promote dendritic cell (DC) maturation and T cell tumor-infiltration, eventually eliminating both primary and distant tumors in vivo. As far as we know, this is the first metal complex that can regulate zinc homeostasis to activate antitumor immunity.
Collapse
Affiliation(s)
- Xuxian Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kun Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bing-Bing Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
22
|
Chang X, Bian M, Liu L, Yang J, Yang Z, Wang Z, Lu Y, Liu W. Induction of immunogenic cell death by novel platinum-based anticancer agents. Pharmacol Res 2023; 187:106556. [PMID: 36403722 DOI: 10.1016/j.phrs.2022.106556] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Traditional platinum-based anticancer drugs, led by cisplatin, play an important role in chemotherapy. However, the development of platinum compounds is limited due to serious toxicity and side effects. In recent years, studies have showed that immunogenic cell death (ICD) may be one of the potential action mechanisms of classical platinum drugs, such as oxaliplatin. This strategy combining chemotherapy and immunotherapy can effectively utilize the body's immune system to help platinum compounds to fight against tumors, and the dose can be appropriately reduced to limit toxic side effects. The induction of ICD by platinum compounds has become a research hotspot and one of the future development directions of metal drugs. Here, the progress of platinum compounds were collected and comprehensively summarized, their capacity of ICD induction and mechanism of action are exposed, providing reference for the design and synthesis of new anticancer platinum ICD inducers.
Collapse
Affiliation(s)
- Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiaqi Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhaoran Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
23
|
Liu F, Yang C, Li S, Wu X, Xue K, Zhou Y, Liang X, Cheng X, Shi Q, Su W. Design and biological features of platinum (II) complexes with 3-hydroxy-3-(Trifluoromethyl)cyclobutane-1,1-Dicarboxylate as a leaving ligand. Eur J Med Chem 2022; 242:114673. [PMID: 36049275 DOI: 10.1016/j.ejmech.2022.114673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022]
Abstract
A series of platinum compounds 2a-5a and 2b-5b with fluoro-functional groups are designed and synthesized. Among them, complex 2b is the most effective agent with 3-hydroxy-3-(trifluoromethyl)cyclobutane-1,1-dicarboxylate as a leaving ligand, which showed better cytotoxic activity than compounds containing only CF3 or OH group at 3-position of cyclobutane-1,1-dicarboxylate. The water solubility of 2a is better than that of carboplatin (32 mg/mL vs. 16 mg/mL), and its antitumor activity on A549 is 4.6-fold higher than that of carboplatin. The IC50 value of 2b on A549 cells is 4.73 ± 0.64 μM, which is comparable to that of oxaliplatin and higher than that of carboplatin. Meanwhile, 2a and 2b are less toxic than oxaliplatin and cisplatin toward BEAS-2B cells. Moreover, 2a and 2b induce cell apoptosis in vitro by the Bax-Bcl-2-caspase-3 pathway and ferroptosis through inhibiting GPx-4 and elevating COX2. Results from in vivo experiment show that the inhibition rate of A549 xenograft tumor is cisplatin > 2b > oxaliplatin > 2a > carboplatin.
Collapse
Affiliation(s)
- Fengfan Liu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chen Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaoguang Li
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoqi Wu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Keming Xue
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yibo Zhou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaobing Liang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiang Cheng
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiwen Shi
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
24
|
Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method? Molecules 2022; 27:molecules27134249. [PMID: 35807493 PMCID: PMC9267986 DOI: 10.3390/molecules27134249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microwave-assisted synthesis is considered environmental-friendly and, therefore, in agreement with the principles of green chemistry. This form of energy has been employed extensively and successfully in organic synthesis also in the case of metal-catalyzed synthetic procedures. However, it has been less widely exploited in the synthesis of metal complexes. As microwave irradiation has been proving its utility as both a time-saving procedure and an alternative way to carry on tricky transformations, its use can help inorganic chemists, too. This review focuses on the use of microwave irradiation in the preparation of transition metal complexes and organometallic compounds and also includes new, unpublished results. The syntheses of the compounds are described following the group of the periodic table to which the contained metal belongs. A general overview of the results from over 150 papers points out that microwaves can be a useful synthetic tool for inorganic chemists, reducing dramatically the reaction times with respect to traditional heating. This is often accompanied by a more limited risk of decomposition of reagents or products by an increase in yield, purity, and (sometimes) selectivity. In any case, thermal control is operative, whereas nonthermal or specific microwave effects seem to be absent.
Collapse
|
25
|
Xiong X, Huang KB, Wang Y, Cao B, Luo Y, Chen H, Yang Y, Long Y, Liu M, Chan ASC, Liang H, Zou T. Target Profiling of an Iridium(III)-Based Immunogenic Cell Death Inducer Unveils the Engagement of Unfolded Protein Response Regulator BiP. J Am Chem Soc 2022; 144:10407-10416. [PMID: 35658433 DOI: 10.1021/jacs.2c02435] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical chemotherapeutic drugs have occasionally been observed to induce antitumor immune responses beyond the direct cytotoxicity. Such effects are coined as immunogenic cell death (ICD), representing a "second hit" from the host immune system to tumor cells. Although chemo-immunotherapy is highly promising, ICD inducers remain sparse with vague drug-target mechanisms. Here, we report an endoplasmic reticulum stress-inducing cyclometalated Ir(III)-bisNHC complex (1a) as a new ICD inducer, and based on this compound, a clickable photoaffinity probe was designed for target identification, which unveiled the engagement of the master regulator protein BiP (binding immunoglobulin protein)/GRP78 of the unfolded protein response pathway. This has been confirmed by a series of cellular and biochemical studies including fluorescence microscopy, cellular thermal shift assay, enzymatic assays, and so forth, showing the capability of 1a for BiP destabilization. Notably, besides 1a, the previously reported ICD inducers including KP1339, mitoxantrone, and oxaliplatin were also found to engage BiP interaction, suggesting the important role of BiP in eliciting anticancer immunity. We believe that the ICD-related target information in this work will help to understand the mode of action of ICD that is beneficial to designing new ICD agents with high specificity and improved efficacy.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Yunli Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huowen Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Long
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Moyi Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Albert S C Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
26
|
Li ZY, Shen QH, Mao ZW, Tan CP. A Rising Interest in the Development of Metal Complexes in Cancer Immunotherapy. Chem Asian J 2022; 17:e202200270. [PMID: 35419865 DOI: 10.1002/asia.202200270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Metal complexes have shown great potential in cancer immunotherapy. This review briefly introduces the basic concepts and strategies of cancer immunotherapy and summarizes the recent discoveries on the immune effects of traditional platinum-based anticancer compounds. In addition, we also outline the latest research progresses on metal complexes for cancer immunotherapy focusing on platinum, ruthenium, iridium, rhenium and copper complexes. Finally, the research perspectives and unsolved problems on the applications of metallo-anticancer agents in cancer immunotherapy are purposed.
Collapse
Affiliation(s)
- Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
An 8-hydroxyquinoline-N-oxide manganese(II) complex induces apoptosis of A549/DDP cells by disrupting the mitochondrial pathway. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Sen S, Won M, Levine MS, Noh Y, Sedgwick AC, Kim JS, Sessler JL, Arambula JF. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem Soc Rev 2022; 51:1212-1233. [PMID: 35099487 PMCID: PMC9398513 DOI: 10.1039/d1cs00417d] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is the deadliest disease in the world behind heart disease. Sadly, this remains true even as we suffer the ravages of the Covid-19 pandemic. Whilst current chemo- and radiotherapeutic treatment strategies have significantly improved the patient survival rate, disease reoccurrence continues to pose a deadly risk for all too many patients. Incomplete removal of tumour cells from the body increases the chances of metastasis and developing resistance against current treatments. Immunotherapy represents a therapeutic modality that has helped to overcome these limitations in recent decades. However, further progress is needed. So-called immunogenic cell death (ICD) is a recently discovered and unique mode of cell death that could trigger this necessary further progress. ICD involves stimulation of a tumour-specific immune response as a downstream effect. Facilitated by certain treatment modalities, cells undergoing ICD can trigger the IFN-γ mediated immune response involving cytotoxic T cells (CTLs) and γδ T cells that eradicate residual tumour cells. In recent years, there has been a significant increase in the number of small-molecules being tested as potential ICD inducers. A large number of these ICD inducers are metal-based complexes. In fact, anticancer metal drugs based on Pt, Ru, Ir, Cu, and Au are now known to give rise to an immune response against tumour cells as the result of ICD. Advances have also been made in terms of exploiting combinatorial and delivery strategies. In favourable cases, these approaches have been shown to increase the efficacy of otherwise ICD "silent" metal complexes. Taken in concert, rationally designed novel anticancer metal complexes that can act as ICD inducers show promise as potential new immunotherapies for neoplastic disease. This Tutorial Review will allow the readers to assess the progress in this fast-evolving field thus setting the stage for future advances.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Matthew S Levine
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Yuvin Noh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
- OncoTEX, Inc. 3800 North Lamar Blvd., Austin, Texas 78756, USA
| |
Collapse
|
29
|
Bian M, Fan R, Yang Z, Chen Y, Xu Z, Lu Y, Liu W. Pt(II)-NHC Complex Induces ROS-ERS-Related DAMP Balance to Harness Immunogenic Cell Death in Hepatocellular Carcinoma. J Med Chem 2022; 65:1848-1866. [PMID: 35025488 DOI: 10.1021/acs.jmedchem.1c01248] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunogenic cell death (ICD) can engage a specific immune response and establish a long-term immunity in hepatocellular carcinoma (HCC). Herein, we design and synthesize a series of Pt(II)-N-heterocyclic carbene (Pt(II)-NHC) complexes derived from 4,5-diarylimidazole, which show strong anticancer activities in vitro. Among them, 2c displays much higher anticancer activities than cisplatin and other Pt(II)-NHC complexes, especially in HCC cancer cells. In addition, we find that 2c is a type II ICD inducer, which can successfully induce endoplasmic reticulum stress (ERS) accompanied by reactive oxygen species (ROS) generation and finally lead to the release of damage-associated molecular patterns (DAMPs) in HCC cells. Importantly, 2c shows a great anti-HCC potential in a vaccination mouse model and leads to the in vivo immune cell activation in the CCl4-induced liver injury model.
Collapse
Affiliation(s)
- Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rong Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yanan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
30
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. Pt(IV) antitumor prodrugs: dogmas, paradigms, and realities. Dalton Trans 2022; 51:2121-2134. [PMID: 35015025 DOI: 10.1039/d1dt03886a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platinum(II)-based drugs are widely used for the treatment of solid tumors, especially in combination protocols. Severe side effects and occurrence of resistance are the major limitations to their clinical use. To overcome these drawbacks, a plethora of Pt(IV) derivatives, acting as anticancer prodrugs, have been designed, synthesized and preclinically (often only in vitro) tested. Here, we summarize the recent progress in the development and understanding of the chemical properties and biochemical features of these Pt(IV) prodrugs, especially those containing bioactive molecules as axial ligands, acting as multi-functional agents. Even though no such prodrugs have been yet approved for clinical use, many show encouraging pharmacological profiles. Thus, a better understanding of their features is a promising approach towards improving the available Pt-based anticancer agents.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| | | | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| |
Collapse
|
31
|
Mule RD, Kumar A, Sancheti SP, Senthilkumar B, Kumar H, Patil NT. BQ-AurIPr: a redox-active anticancer Au( i) complex that induces immunogenic cell death. Chem Sci 2022; 13:10779-10785. [PMID: 36320699 PMCID: PMC9491088 DOI: 10.1039/d2sc03756d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
Immunogenic Cell Death (ICD) is a unique cell death mechanism that kills cancer cells while rejuvenating the anticancer immunosurveillance, thereby benefiting the clinical outcomes of various immuno-chemotherapeutic regimens. Herein, we report development of a library of benzo[a]quinolizinium-based Au(i) complexes through an intramolecular amino-auration reaction of pyridino-alkynes. We tested 40 candidates and successfully identified BQ-AurIPr as a novel redox-active Au(i) complex with potent anticancer properties. BQ-AurIPr efficiently triggered generation of DAMPs – the hallmarks of ICD – and was superior in terms of efficiency compared to FDA-approved drugs known to induce ICD. BQ-AurIPr significantly increased immunogenicity of cancer cells enhancing their phagocytosis when co-cultured with immune cells. Our investigation reveals that BQ-AurIPr induces oxidative stress inside mitochondria leading to mitophagy, as the mechanism for immunogenic cell death in A549 cells. A redox-active anticancer Au(i) complex that induces immunogenic cell death in non-small cell lung cancer cells has been identified. Mitochondrial oxidative stress leading to mitophagy-dependent secretion of various DAMPs is implicated as the main mechanism inducing ICD.![]()
Collapse
Affiliation(s)
- Ravindra D. Mule
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune – 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad – 201 002, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Diseases, Department of Biological Sciences, IISER Bhopal, Bhopal – 462 066, India
| | - Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal – 462 066, India
| | - B. Senthilkumar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune – 411008, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Diseases, Department of Biological Sciences, IISER Bhopal, Bhopal – 462 066, India
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka – 565-0871, Japan
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal – 462 066, India
| |
Collapse
|
32
|
Zhou M, Yuan M, Zhang M, Lei C, Aras O, Zhang X, An F. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem 2021; 226:113825. [PMID: 34562854 DOI: 10.1016/j.ejmech.2021.113825] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating the expression of genes involved in tumorigenesis and tumor maintenance, and hence they have been considered as key targets in cancer therapy. As a novel category of antitumor agents, histone deacetylase inhibitors (HDACis) can induce cell cycle arrest, apoptosis, and differentiation in cancer cells, ultimately combating cancer. Although in the United States, the use of HDACis for the treatment of certain cancers has been approved, the therapeutic efficacy of HDACis as a single therapeutic agent in solid tumorshas been unsatisfactory and drug resistance may yet occur. To enhance therapeutic efficacy and limit drug resistance, numerous combination therapies involving HDACis in synergy with other antitumor therapies have been studied. In this review, we describe the classification of HDACs. Moreover, we summarize the antitumor mechanism of the HDACis for targeting key cellular processes of cancers (cell cycle, apoptosis, angiogenesis, DNA repair, and immune response). In addition, we outline the major developments of other antitumor therapies in combination with HDACis, including chemotherapy, radiotherapy, phototherapy, targeted therapy, and immunotherapy. Finally, we discuss the current state and challenges of HDACis-drugs combinations in future clinical studies, with the aim of optimizing the antitumor effect of such combinations.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Minjian Yuan
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Meng Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chenyi Lei
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| |
Collapse
|
33
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Fan Z, Xie J, Sadhukhan T, Liang C, Huang C, Li W, Li T, Zhang P, Banerjee S, Raghavachari K, Huang H. Highly Efficient Ir(III)-Coumarin Photo-Redox Catalyst for Synergetic Multi-Mode Cancer Photo-Therapy. Chemistry 2021; 28:e202103346. [PMID: 34755401 DOI: 10.1002/chem.202103346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Four photo-catalysts of the general formula [Ir(CO6/ppy)2 (L)]Cl where CO6=coumarin 6 (Ir1-Ir3), ppy=2-phenylpyridine (Ir4), L=4'-(3,5-di-tert-butylphenyl)-2,2' : 6',2''-terpyridine (Ir1), 4'-(3,5-bis(trifluoromethyl)phenyl)-2,2' : 6',2''-terpyridine (Ir2 and Ir4), and 4-([2,2' : 6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline (Ir3) were synthesized and characterized. These photostable photo-catalysts (Ir1-Ir3) showed strong visible light absorption between 400-550 nm. Upon light irradiation (465 and 525 nm), Ir1-Ir3 generated singlet oxygen and induced rapidly photo-catalytic oxidation of cellular coenzymes NAD(P)H. Ir1-Ir3 showed time-dependent cellular uptake with excellent intracellular retention efficiency. Upon green light irradiation (525 nm), Ir2 provided a much higher photo-index (PI=793) than the clinically used photosensitizer, 5-aminolevulinicacid (5-ALA, PI>30) against HeLa cancer cells. The observed necro-apoptotic anticancer activity of Ir2 was due to the Ir2 triggered photo-induced intracellular redox imbalance (by NAD(P)H oxidation and ROS generation) and change in the mitochondrial membrane potential. Remarkably, Ir2 showed in vivo photo-induced catalytic anticancer activity in mouse models.
Collapse
Affiliation(s)
- Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiaen Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Can Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenqing Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Tingxuan Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | | | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
35
|
Chen F, Xu G, Tian W, Gou S. Breakdown of chemo-immune resistance by a TDO2-targeted Pt(IV) prodrug via attenuating endogenous Kyn-AhR-AQP4 metabolic circuity and TLS-promoted genomic instability. Biochem Pharmacol 2021; 193:114785. [PMID: 34562469 DOI: 10.1016/j.bcp.2021.114785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
A tryptophan-2,3-dioxygenase 2 (TDO2)-targeted Pt(IV) prodrug, DN604-TDOi, was designed to prove that the multi-action compound could overcome drug resistance and relieve immunosuppression via introducing a TDO2 inhibitor to the axial position of a six-coordinate Pt(IV) hybrid. Several in vitro biological studies on cisplatin-resistant NSCLC cancer cells suggested that TDO2-targeted Pt(IV) prodrug could combat cisplatin resistance via influencing TDO2-kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-Aquaporin-4 (AQP4) metabolic circuity and AhR-human DNA polymerase (hpol) κ-induced translesion DNA synthesis (TLS) genomic instability, which are positive in drug-resistant human tumors associated with malignant progression and poor survival. Remarkably, we observed that DN604-TDOi could inhibit TDO2-mediated constitutive Kyn-AhR-AQP4 signaling pathway and suppress hpol κ expression, leading to potential decrease of cell motility and genomic instability in A549/cDDP cells. It was confirmed that TDO2-targeted Pt(IV) prodrug could harness Kyn-AhR-AQP4 metabolic circuitry and TLS genomic instability, exerting antitumor effects in C57BL6 but not TDO2-/- mice. Moreover, the Pt(IV) prodrug improved the intratumoral infiltration of Teff cells and reduced the recruitment of Treg cells. The results provided compelling preclinical evidence that TDO2-targeted Pt(IV) prodrug could abrogate immune chemotherapeutic resistance via decaying TDO2-mediated Kyn-AhR-AQP4 immunosuppression and AhR-hpol κ-induced TLS genomic instability, underscoring the development of a novel Pt(IV)-based candidate as a potent immunotherapeutic agent for chemo-immune resistance prevention.
Collapse
Affiliation(s)
- Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenyuan Tian
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
36
|
Bakhonsky VV, Pashenko AA, Becker J, Hausmann H, De Groot HJM, Overkleeft HS, Fokin AA, Schreiner PR. Synthesis and antiproliferative activity of hindered, chiral 1,2-diaminodiamantane platinum(II) complexes. Dalton Trans 2021; 49:14009-14016. [PMID: 33078783 DOI: 10.1039/d0dt02391d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platinum-based antineoplastic agents play a major role in the treatment of numerous types of cancer. A new bulky, lipophilic, and chiral ligand based on 1,2-diaminodiamantane in both of its enantiomeric forms was employed for the preparation of new platinum(ii) complexes with chloride and oxalate ligands. The dichloride complexes have a higher solubility and were evaluated as anti-proliferation agents for human ovarian cancer cell lines A2780 and cisplatin-resistant A2780cis. Its R,R-enantiomer showed increased efficacy compared to cisplatin for both cancer cell lines. A chromatographic approach was used to estimate the solvent partition coefficient of the dichloride complex. The binding of diamondoid-based platinum complexes to nucleotides was tested for both enantiomers with guanosine monophosphate (GMP) and deoxyguanosine monophosphate (dGMP) and occurs at a similar or faster rate for both isomers compared to cisplatin despite greatly increased steric demand. These findings highlight the potential in 1,2-diaminodiamantane as a viable pharmacophore.
Collapse
Affiliation(s)
- Vladyslav V Bakhonsky
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany. and Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine.
| | - Aleksander A Pashenko
- Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine. and Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Huub J M De Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Andrey A Fokin
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany. and Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine.
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| |
Collapse
|
37
|
Gabano E, Rangone B, Perin E, Caron G, Ermondi G, Vallaro M, Gandin V, Marzano C, Barbanente A, Margiotta N, Ravera M. Pt(iv) complexes based on cyclohexanediamines and the histone deacetylase inhibitor 2-(2-propynyl)octanoic acid: synthesis, characterization, cell penetration properties and antitumor activity. Dalton Trans 2021; 50:4663-4672. [PMID: 33725031 DOI: 10.1039/d0dt04135a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Pt(iv) complexes based on (SP-4-2)-dichlorido(cyclohexane-1,4-diamine)platinum(ii) (kiteplatin) and the histone deacetylase inhibitor 2-(2-propynyl)octanoic acid (POA) were investigated. Since POA contains a chiral carbon, all the possible Pt(iv) isomers were prepared and characterized, and their antiproliferative activity on six cancer cell lines was compared with that of the corresponding Pt(iv) complexes containing the cyclohexane-1R,2R-diamine equatorial ligand. To justify the very good antiproliferative activity (nanomolar IC50), the polarity, lipophilicity, permeability, and cell accumulation of the complexes were studied. Overall, the two series of Pt(iv) complexes showed similar cell penetration properties, being significantly better than that of the Pt(ii) reference compounds. Finally, a representative compound of the whole set of complexes (i.e., that based on cyclohexane-1R,2R-diamine and racemic POA) was tested in vivo on mice bearing Lewis lung carcinoma, showing good tumor growth inhibition with negligible body weight loss.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ferrari B, Roda E, Priori EC, De Luca F, Facoetti A, Ravera M, Brandalise F, Locatelli CA, Rossi P, Bottone MG. A New Platinum-Based Prodrug Candidate for Chemotherapy and Its Synergistic Effect With Hadrontherapy: Novel Strategy to Treat Glioblastoma. Front Neurosci 2021; 15:589906. [PMID: 33828444 PMCID: PMC8019820 DOI: 10.3389/fnins.2021.589906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor of the central nervous system. Current therapies, often associated with severe side effects, are inefficacious to contrast the GBM relapsing forms. In trying to overcome these drawbacks, (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(IV), also called Pt(IV)Ac-POA, has been recently synthesized. This new prodrug bearing as axial ligand (2-propynyl)octanoic acid (POA), a histone deacetylase inhibitor, has a higher activity due to (i) its high cellular accumulation by virtue of its high lipophilicity and (ii) the inhibition of histone deacetylase, which leads to the increased exposure of nuclear DNA, permitting higher platination and promoting cancer cell death. In the present study, we investigated the effects induced by Pt(IV)Ac-POA and its potential antitumor activity in human U251 glioblastoma cell line using a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, TEM, and Western blotting analyses. In addition, the synergistic effect of Pt(IV)Ac-POA associated with the innovative oncological hadrontherapy with carbon ions was investigated, with the aim to identify the most efficient anticancer treatment combination. Our in vitro data demonstrated that Pt(IV)Ac-POA is able to induce cell death, through different pathways, at concentrations lower than those tested for other platinum analogs. In particular, an enduring Pt(IV)Ac-POA antitumor effect, persisting in long-term treatment, was demonstrated. Interestingly, this effect was further amplified by the combined exposure to carbon ion radiation. In conclusion, Pt(IV)Ac-POA represents a promising prodrug to be incorporated into the treatment regimen for GBM. Moreover, the synergistic efficacy of the combined protocol using chemotherapeutic Pt(IV)Ac-POA followed by carbon ion radiation may represent a promising approach, which may overcome some typical limitations of conventional therapeutic protocols for GBM treatment.
Collapse
Affiliation(s)
- Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Federico Brandalise
- Department of Fundamental Neurosciences (NEUFO), University of Geneva, Geneva, Switzerland
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Sun Y, Yin E, Tan Y, Yang T, Song D, Jin S, Guo Z, Wang X. Immunogenicity and cytotoxicity of a platinum(IV) complex derived from capsaicin. Dalton Trans 2021; 50:3516-3522. [PMID: 33433537 DOI: 10.1039/d0dt03470c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Platinum-based anticancer drugs constitute the cornerstone of chemotherapy for various cancers. Although cytotoxic agents are considered to have immunosuppressive effects, increasing evidence suggests that some cytotoxic compounds can effectively stimulate the antitumor immune response by inducing a special type of apoptosis called immunogenic cell death (ICD). A platinum(iv) complex (DCP) modified with the derivative of synthetic capsaicin (nonivamide) was designed to elicit ICD. The complex exhibited high cytotoxicity against a panel of human cancer cell lines including pancreas (PANC-1), breast (MCF-7), and liver (HepG2) cancer cells, and osteosarcoma (MG-63) cells. In addition to causing DNA damage, DCP also triggered the translocation of calreticulin (CRT) as well as the release of ATP and HMGB1 protein in PANC-1 cells, thus manifesting an efficient ICD-inducing effect on cancer cells. Furthermore, the DCP-treated PANC-1 cell-conditioned culture medium promoted the release of IFN-γ and TNF-α to induce the immune response of human peripheral blood mononuclear cells, thereby increasing their cytotoxicity to cancer cells. Concurrently, the phagocytosis of PANC-1 cells by macrophages was also augmented by DCP. The results demonstrate that DCP is an effective inducer of ICD and a potential agent for chemoimmunotherapy of cancers.
Collapse
Affiliation(s)
- Yuewen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Enmao Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Tao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Suxing Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
40
|
Synthesis, structures and anticancer potentials of five platinum(II) complexes with benzothiazole-benzopyran targeting mitochondria. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Monofunctional Platinum(II) Anticancer Agents. Pharmaceuticals (Basel) 2021; 14:ph14020133. [PMID: 33562293 PMCID: PMC7915149 DOI: 10.3390/ph14020133] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Platinum-based anticancer drugs represented by cisplatin play important roles in the treatment of various solid tumors. However, their applications are largely compromised by drug resistance and side effects. Much effort has been made to circumvent the drug resistance and general toxicity of these drugs. Among multifarious designs, monofunctional platinum(II) complexes with a general formula of [Pt(3A)Cl]+ (A: Ammonia or amine) stand out as a class of "non-traditional" anticancer agents hopeful to overcome the defects of current platinum drugs. This review aims to summarize the development of monofunctional platinum(II) complexes in recent years. They are classified into four categories: fluorescent complexes, photoactive complexes, targeted complexes, and miscellaneous complexes. The intention behind the designs is either to visualize the cellular distribution, or to reduce the side effects, or to improve the tumor selectivity, or inhibit the cancer cells through non-DNA targets. The information provided by this review may inspire researchers to conceive more innovative complexes with potent efficacy to shake off the drawbacks of platinum anticancer drugs.
Collapse
|
42
|
Liu Z, Li Z, Du T, Chen Y, Wang Q, Li G, Liu M, Zhang N, Li D, Han J. Design, synthesis and biological evaluation of dihydro-2-quinolone platinum(iv) hybrids as antitumor agents displaying mitochondria injury and DNA damage mechanism. Dalton Trans 2021; 50:362-375. [PMID: 33319888 DOI: 10.1039/d0dt03194a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of novel platinum(iv) complexes with mitochondria injury competence, besides the DNA damage mechanism, is a promising way to develop new platinum drugs. Herein, dihydro-2-quinolone (DHQLO) as a mitocan was incorporated into the platinum(iv) system for the first time to prepare a new series of DHQLO platinum(iv) compounds. Complex 1b could effectively inhibit the proliferation of tumor cells in vitro and in vivo. It accumulated at higher levels in both whole cells and DNA, and easily underwent intercellular reduction to release platinum(ii) and DHQLO moieties. The released platinum(ii) complex caused serious DNA damage by covalent conjunction with the DNA duplex, and remarkably increased the expression of the γ-H2AX protein. Moreover, 1b also caused serious mitochondria injury to induce mitochondrial membrane depolarization and increase ROS generation. Such actions upon DNA and mitochondria activate the p53 apoptotic pathway synergetically in tumor cells by upregulating the protein p53 and apoptotic proteins caspase9 and caspase3, which efficiently promoted the apoptotic death of tumor cells. Compound 1b with such synergic mechanism exhibited great potential in reversing cisplatin resistance and improving antitumor efficacies.
Collapse
Affiliation(s)
- Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang L, Guan R, Xie L, Liao X, Xiong K, Rees TW, Chen Y, Ji L, Chao H. An ER‐Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Non‐Small‐Cell Lung Cancer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013987] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
44
|
Wang L, Guan R, Xie L, Liao X, Xiong K, Rees TW, Chen Y, Ji L, Chao H. An ER-Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Non-Small-Cell Lung Cancer. Angew Chem Int Ed Engl 2021; 60:4657-4665. [PMID: 33217194 DOI: 10.1002/anie.202013987] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 01/01/2023]
Abstract
Immunogenic cell death (ICD) is a vital component of therapeutically induced anti-tumor immunity. An iridium(III) complex (Ir1), containing an N,N-bis(2-chloroethyl)-azane derivate, as an endoplasmic reticulum-localized ICD inducer for non-small cell lung cancer (NSCLC) is reported. The characteristic discharge of damage-associated molecular patterns (DAMPs), that is, cell surface exposure of calreticulin (CRT), extracellular exclusion of high mobility group box 1 (HMGB1), and ATP, were generated by Ir1 in A549 lung cancer cells, accompanied by an increase in endoplasmic reticulum stress and reactive oxygen species (ROS). The vaccination of immunocompetent mice with Ir1-treated dying cells elicited an antitumor CD8+ T cell response and Foxp3+ T cell depletion, which eventually resulted in long-acting anti-tumor immunity by the activation of ICD in lung cancer cells. Ir1 is the first Ir-based complex that is capable of developing an immunomodulatory response by immunogenic cell death.
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
45
|
|
46
|
Sen S, Hufnagel S, Maier EY, Aguilar I, Selvakumar J, DeVore JE, Lynch VM, Arumugam K, Cui Z, Sessler JL, Arambula JF. Rationally Designed Redox-Active Au(I) N-Heterocyclic Carbene: An Immunogenic Cell Death Inducer. J Am Chem Soc 2020; 142:20536-20541. [PMID: 33237764 DOI: 10.1021/jacs.0c09753] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunogenic cell death (ICD) is a way of reengaging the tumor-specific immune system. ICD can be induced by treatment with chemotherapeutics. However, only a limited number of drugs and other treatment modalities have been shown to elicit the biomarker responses characteristic of ICD and to provide an anticancer benefit in vivo. Here, we report a rationally designed redox-active Au(I) bis-N-heterocyclic carbene that induces ICD both in vitro and in vivo. This work benefits from a synthetic pathway that allows for the facile preparation of asymmetric redox-active Au(I) bis-N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Stephanie Hufnagel
- College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Isaiah Aguilar
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jayaraman Selvakumar
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio 45435, United States
| | - Jennie E DeVore
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Kuppuswamy Arumugam
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio 45435, United States
| | - Zhengrong Cui
- College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
47
|
Groer C, Zhang T, Lu R, Cai S, Mull D, Huang A, Forrest M, Berkland C, Aires D, Forrest ML. Intratumoral Cancer Chemotherapy with a Carrier-Based Immunogenic Cell-Death Eliciting Platinum (IV) Agent. Mol Pharm 2020; 17:4334-4345. [PMID: 32975949 DOI: 10.1021/acs.molpharmaceut.0c00781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A carrier-based, immunogenic cell death (ICD)-eliciting platinum(IV) chemotherapeutic agent was synthesized via complexation between an axially derivatized Pt(IV)-tocopherol and hyaluronan (HA)-tocopherol nanocarrier. The resultant HA-Pt(IV) complex demonstrated antiproliferative activity and induced calreticulin translocation, an indicator of ICD, in murine and human head and neck cancer (HNC) cells. The intratumorally administered HA-Pt(IV) treatments were tolerable and efficacious in both immunocompetent and immunodeficient mice with HNC, partially because of the direct cytotoxicity. Superior efficacy and survival were observed in the immunocompetent group, suggesting a possible Pt(IV)-induced immunological response, which would only manifest in animals with an intact immune system. Subsequent imaging of tumor tissues demonstrated increased macrophage infiltration in the HA-Pt(IV)-treated tumors compared to the nontreated controls and the cisplatin-treated tumors, suggesting favorable inflammatory activation. RNA sequencing of HA-Pt(IV)-treated tumors indicated that carbohydrate and vitamin metabolisms were the most important Kyoto Encyclopedia of Genes and Genomes pathways, and molecular function, biological process, and cellular component were highly enriched gene ontology categories.
Collapse
Affiliation(s)
- Chad Groer
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ti Zhang
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Shuang Cai
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Derek Mull
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Melanie Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, Lawrence, Kansas 66045, United States
| | - Daniel Aires
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Division of Dermatology, Department of Internal Medicine, School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160, United States
| | - Marcus Laird Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| |
Collapse
|
48
|
Kaur P, Johnson A, Northcote-Smith J, Lu C, Suntharalingam K. Immunogenic Cell Death of Breast Cancer Stem Cells Induced by an Endoplasmic Reticulum-Targeting Copper(II) Complex. Chembiochem 2020; 21:3618-3624. [PMID: 32776422 PMCID: PMC7757018 DOI: 10.1002/cbic.202000553] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Immunogenic cell death (ICD) offers a method of stimulating the immune system to attack and remove cancer cells. We report a copper(II) complex containing a Schiff base ligand and a polypyridyl ligand, 4, capable of inducing ICD in breast cancer stem cells (CSCs). Complex 4 kills both bulk breast cancer cells and breast CSCs at sub‐micromolar concentrations. Notably, 4 exhibits greater potency (one order of magnitude) towards breast CSCs than salinomycin (an established breast CSC‐potent agent) and cisplatin (a clinically approved anticancer drug). Epithelial spheroid studies show that 4 is able to selectively inhibit breast CSC‐enriched HMLER‐shEcad spheroid formation and viability over non‐tumorigenic breast MCF10 A spheroids. Mechanistic studies show that 4 operates as a Type II ICD inducer. Specifically, 4 readily enters the endoplasmic reticulum (ER) of breast CSCs, elevates intracellular reactive oxygen species (ROS) levels, induces ER stress, evokes damage‐associated molecular patterns (DAMPs), and promotes breast CSC phagocytosis by macrophages. As far as we are aware, 4 is the first metal complex to induce ICD in breast CSCs and promote their engulfment by immune cells.
Collapse
Affiliation(s)
- Pooja Kaur
- Department of Immunology and Inflammation, Imperial College London The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Alice Johnson
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 56 South Yuexiu Road, Jiaxing, 314001 Zhejiang, P. R. China
| | | |
Collapse
|
49
|
Histone deacetylase inhibitor based prodrugs. Eur J Med Chem 2020; 203:112628. [PMID: 32679451 DOI: 10.1016/j.ejmech.2020.112628] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes which play important roles in the development and progression of cancers. Inhibition of HDACs has been widely studied as a therapeutic strategy in the discovery of anticancer drugs. HDAC inhibitors (HDACIs) have exhibited potency against a variety of cancer types, and four of them have been approved by the US FDA for cancer treatment. However, the clinical benefits of current HDACIs is limited by the insufficient physicochemical property, selectivity and potency. To improve the clinical potential of HDACIs, the prodrug strategy had been utilized to improve the in vivo pharmacokinetic and pharmacodynamic performances of HDACIs. Enhancements in the stability, water solubility, lipophilicity, oral bioavailability and tumor cell selectivity were reported by various studies. Herein, the development of different kinds of HDACI-based prodrug is summarized for the further structural modification of HDACIs with high potential to be drug candidates.
Collapse
|
50
|
Theoretical Prediction of Dual-Potency Anti-Tumor Agents: Combination of Oxoplatin with Other FDA-Approved Oncology Drugs. Int J Mol Sci 2020; 21:ijms21134741. [PMID: 32635199 PMCID: PMC7369966 DOI: 10.3390/ijms21134741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 02/01/2023] Open
Abstract
Although Pt(II)-based drugs are widely used to treat cancer, very few molecules have been approved for routine use in chemotherapy due to their side-effects on healthy tissues. A new approach to reducing the toxicity of these drugs is generating a prodrug by increasing the oxidation state of the metallic center to Pt(IV), a less reactive form that is only activated once it enters a cell. We used theoretical tools to combine the parent Pt(IV) prodrug, oxoplatin, with the most recent FDA-approved anti-cancer drug set published by the National Institute of Health (NIH). The only prerequisite imposed for the latter was the presence of one carboxylic group in the structure, a chemical feature that ensures a link to the coordination sphere via a simple esterification procedure. Our calculations led to a series of bifunctional prodrugs ranked according to their relative stabilities and activation profiles. Of all the designed molecules, the combination of oxoplatin with aminolevulinic acid as the bioactive ligand emerged as the most promising strategy by which to design enhanced dual-potency oncology drugs.
Collapse
|