1
|
Le TT, Tran SH, Lee S, Kang SW, Kim JH, Park K, Kim CS, Kim M, Kang K, Jung SH. Furan Acids from Nutmeg and Their Neuroprotective and Anti-neuroinflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40278862 DOI: 10.1021/acs.jafc.5c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Nutmeg (Myristica fragrans) has been traditionally valued for its culinary and medicinal properties. In our ongoing efforts to discover pharmacologically active compounds from this spice, five new furan acids (2-6, jusahos B-F), one new neolignan (7, jusaho G), and six known compounds (1 and 8-12) were isolated from its nutmegs. The chemical structures of the compounds were elucidated using NMR spectroscopy and HRESIMS. Among them, compound 3 (jusaho C) demonstrated promising antineuroinflammatory and neuroprotective effects in BV2 and HT22 cells by modulating the MAPK/NF-κB signaling pathway, which was explored through network pharmacology, molecular docking, and experimental verification. Compound 3 also showed the improvement of locomotor activity in Caenorhabditis elegans model infected with Pseudomonas aeruginosa. These findings expand the phytochemical profile of M. fragrans, where only one furan acid was previously reported, and highlight nutmeg-derived compounds, particularly jusaho C, as potential functional food ingredients or nutraceuticals for managing neuroinflammatory conditions.
Collapse
Affiliation(s)
- Tam Thi Le
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Son Hung Tran
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Sohyun Lee
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Suk Woo Kang
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Ji Hoon Kim
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Keunwan Park
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myungsuk Kim
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Kyungsu Kang
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Sang Hoon Jung
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 PMCID: PMC11927922 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
4
|
Frazier HN, Braun DJ, Bailey CS, Coleman MJ, Davis VA, Dundon SR, McLouth CJ, Muzyk HC, Powell DK, Rogers CB, Roy SM, Van Eldik LJ. A small molecule p38α MAPK inhibitor, MW150, attenuates behavioral deficits and neuronal dysfunction in a mouse model of mixed amyloid and vascular pathologies. Brain Behav Immun Health 2024; 40:100826. [PMID: 39161874 PMCID: PMC11331815 DOI: 10.1016/j.bbih.2024.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024] Open
Abstract
Background Inhibition of p38 alpha mitogen activated protein kinase (p38α) has shown great promise as a treatment for Alzheimer's disease (AD) in preclinical tests. However, previous preclinical studies were performed in "pure" models of AD pathology. A vast majority of AD patients have comorbid dementia-contributing pathologies, particularly some form of vascular damage. The present study therefore aimed to test the potential of p38α inhibition to address dysfunction in the context of comorbid amyloid and vascular pathologies. Methods An amyloid overexpressing mouse strain (5xFAD) was placed on an 8-week long diet to induce the hyperhomocysteinemia (HHcy) model of small vessel disease. Mice were treated with the brain-penetrant small molecule p38α inhibitor MW150 for the duration of the HHcy diet, and subsequently underwent behavioral, neuroimaging, electrophysiological, or biochemical/immunohistochemical analyses. Results MW150 successfully reduced behavioral impairment in the Morris Water Maze, corresponding with attenuation of synaptic loss, reduction in tau phosphorylation, and a partial normalization of electrophysiological parameters. No effect of MW150 was observed on the amyloid, vascular, or neuroinflammatory endpoints measured. Conclusions This study provides proof-of-principle that the inhibition of p38α is able to provide benefit even in the context of mixed pathological contributions to cognitive impairment. Interestingly, the benefit was mediated primarily via rescue of neuronal function without any direct effects on the primary pathologies. These data suggest a potential use for p38 inhibitors in the preservation of cognition across contexts, and in particular AD, either alone or as an adjunct to other AD therapies (i.e. anti-amyloid approaches). Future studies to delineate the precise neuronal pathways implicated in the benefit may help define other specific comorbid conditions amenable to this type of approach or suggest future refinement in pharmacological targeting.
Collapse
Affiliation(s)
- Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Caleb S. Bailey
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Stephen R. Dundon
- Magnetic Resonance Imaging & Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Hana C. Muzyk
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - David K. Powell
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Magnetic Resonance Imaging & Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Saktimayee M. Roy
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
5
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
6
|
Detka J, Płachtij N, Strzelec M, Manik A, Sałat K. p38α Mitogen-Activated Protein Kinase-An Emerging Drug Target for the Treatment of Alzheimer's Disease. Molecules 2024; 29:4354. [PMID: 39339348 PMCID: PMC11433989 DOI: 10.3390/molecules29184354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by the formation of amyloid β and tau protein aggregates in the brain, neuroinflammation, impaired cholinergic neurotransmission, and oxidative stress, resulting in the gradual loss of neurons and neuronal function, which leads to cognitive and memory deficits in AD patients. Chronic neuroinflammation plays a particularly important role in the progression of AD since the excessive release of proinflammatory cytokines from glial cells (microglia and astrocytes) induces neuronal damage, which subsequently causes microglial activation, thus facilitating further neurodegenerative changes. Mitogen-activated protein kinase (MAPK) p38α is one of the key enzymes involved in the control of innate immune response. The increased activation of the p38α MAPK pathway, observed in AD, has been for a long time associated not only with the maintenance of excessive inflammatory process but is also linked with pathophysiological hallmarks of this disease, and therefore is currently considered an attractive drug target for novel AD therapeutics. This review aims to summarize the current state of knowledge about the involvement of p38α MAPK in different aspects of AD pathophysiology and also provides insight into the possible therapeutic effects of novel p38α MAPK inhibitors, which are currently studied as potential drug candidates for AD treatment.
Collapse
Affiliation(s)
- Jan Detka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Natalia Płachtij
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Martyna Strzelec
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka St., 30-663 Krakow, Poland;
| | - Aleksandra Manik
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| |
Collapse
|
7
|
Dong D, Zhang Z, Li Y, Latallo MJ, Wang S, Nelson B, Wu R, Krishnan G, Gao FB, Wu B, Sun S. Poly-GR repeats associated with ALS/FTD gene C9ORF72 impair translation elongation and induce a ribotoxic stress response in neurons. Sci Signal 2024; 17:eadl1030. [PMID: 39106320 PMCID: PMC11466505 DOI: 10.1126/scisignal.adl1030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/05/2024] [Indexed: 08/09/2024]
Abstract
Hexanucleotide repeat expansion in the C9ORF72 gene is the most frequent inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion results in multiple dipeptide repeat proteins, among which arginine-rich poly-GR proteins are highly toxic to neurons and decrease the rate of protein synthesis. We investigated whether the effect on protein synthesis contributes to neuronal dysfunction and degeneration. We found that the expression of poly-GR proteins inhibited global translation by perturbing translation elongation. In iPSC-differentiated neurons, the translation of transcripts with relatively slow elongation rates was further slowed, and stalled, by poly-GR. Elongation stalling increased ribosome collisions and induced a ribotoxic stress response (RSR) mediated by ZAKα that increased the phosphorylation of the kinase p38 and promoted cell death. Knockdown of ZAKα or pharmacological inhibition of p38 ameliorated poly-GR-induced toxicity and improved the survival of iPSC-derived neurons from patients with C9ORF72-ALS/FTD. Our findings suggest that targeting the RSR may be neuroprotective in patients with ALS/FTD caused by repeat expansion in C9ORF72.
Collapse
Affiliation(s)
- Daoyuan Dong
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Malgorzata J. Latallo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Shaopeng Wang
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Blake Nelson
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Gopinath Krishnan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Valipour M, Mohammadi M, Valipour H. CNS-Active p38α MAPK Inhibitors for the Management of Neuroinflammatory Diseases: Medicinal Chemical Properties and Therapeutic Capabilities. Mol Neurobiol 2024; 61:3911-3933. [PMID: 38041716 DOI: 10.1007/s12035-023-03829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
During the last two decades, many p38α mitogen-activated protein kinase (p38α MAPK) inhibitors have been developed and tested in preclinical/clinical studies for the treatment of various disorders, especially problems with the origin of inflammation. Previous studies strongly suggest the involvement of the p38α MAPK pathway in the pathogenesis of neurodegenerative disorders. Despite the significant progress made in this field, so far no studies have focused on p38α MAPK inhibitors that have the capability to be used for the treatment of neurodegenerative disorders. In the present review, we evaluated a wide range of well-known p38α MAPK inhibitors (more than 140 small molecules) by measuring key physicochemical parameters to identify those capable of successfully crossing the blood-brain barrier (BBB). As a result, we identify about 50 naturally occurring and synthetic p38α MAPK inhibitors with high potential to cross the BBB, which can be further explored in the future for the treatment of neurodegenerative disorders. In addition, a detailed analysis of the previously released X-ray crystal structure of the inhibitors in the active site of the p38α MAPK enzyme revealed that some residues such as Met109 play a critical role in the occurrence of effective interactions by constructing strong H-bonds. This study can encourage scientists to focus more on the design, production, and biological evaluation of new central nervous system (CNS)-active p38α MAPK inhibitors in the future.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Mohammadi
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Valipour
- Department of Neuroscience, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
10
|
Zhang T, Sun S, Wang R, Li T, Gan B, Zhang Y. BioisoIdentifier: an online free tool to investigate local structural replacements from PDB. J Cheminform 2024; 16:7. [PMID: 38218937 PMCID: PMC10788035 DOI: 10.1186/s13321-024-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024] Open
Abstract
Within the realm of contemporary medicinal chemistry, bioisosteres are empirically used to enhance potency and selectivity, improve adsorption, distribution, metabolism, excretion and toxicity profiles of drug candidates. It is believed that bioisosteric know-how may help bypass granted patents or generate novel intellectual property for commercialization. Beside the synthetic expertise, the drug discovery process also depends on efficient in silico tools. We hereby present BioisoIdentifier (BII), a web server aiming to uncover bioisosteric information for specific fragment. Using the Protein Data Bank as source, and specific substructures that the user attempt to surrogate as input, BII tries to find suitable fragments that fit well within the local protein active site. BII is a powerful computational tool that offers the ligand design ideas for bioisosteric replacing. For the validation of BII, catechol is conceived as model fragment attempted to be replaced, and many ideas are successfully offered. These outputs are hierarchically grouped according to structural similarity, and clustered based on unsupervised machine learning algorithms. In summary, we constructed a user-friendly interface to enable the viewing of top-ranking molecules for further experimental exploration. This makes BII a highly valuable tool for drug discovery. The BII web server is freely available to researchers and can be accessed at http://www.aifordrugs.cn/index/ . Scientific Contribution: By designing a more optimal computational process for mining bioisosteric replacements from the publicly accessible PDB database, then deployed on a web server for throughly free access for researchers. Additionally, machine learning methods are applied to cluster the bioisosteric replacements searched by the platform, making a scientific contribution to facilitate chemists' selection of appropriate bioisosteric replacements. The number of bioisosteric replacements obtained using BII is significantly larger than the currently available platforms, which expanding the search space for effective local structural replacements.
Collapse
Affiliation(s)
- Tinghao Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Runzhou Wang
- School of Management, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ting Li
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Bicheng Gan
- College of Petroleum Engineering, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
11
|
Gajeswski-Kurdziel PA, Walsh AE, Blakely RD. Functional and pathological consequences of being fast on the uptake: Protein kinase G and p38α MAPK regulation of serotonin transporters. Curr Res Physiol 2024; 7:100117. [PMID: 38298474 PMCID: PMC10825370 DOI: 10.1016/j.crphys.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) signaling plays an important role in dynamic control of peripheral and central nervous system physiology, with altered 5-HT homeostasis implicated in a significant number of disorders, ranging from pulmonary, bowel, and metabolic disease to depression, obsessive-compulsive disorder, and autism spectrum disorder (ASD). The presynaptic, 5-HT transporter (SERT) has a well-established role in regulating 5-HT signaling and is a target of widely prescribed psychotherapeutics, the 5-HT selective reuptake inhibitors (SSRIs). Although SSRI therapy provides symptom relief for many suffering from mood and anxiety disorders, response to these medications is slow (weeks), and too many receive modest or no benefit. At present, all prescribed SSRIs act as competitive SERT antagonists. Although non-serotonergic therapeutics for mood disorders deserve aggressive investigation, the development of agents that target SERT regulatory pathways have yet to be considered for their possible utility and may possibly offer improved efficacy and more rapid onset. Here, we focus attention on a significant body of evidence that SERT transport activity can be rapidly elevated by protein kinase G (PKG) and p38α mitogen activated protein kinase (MAPK) linked pathways, mechanisms that are impacted by disease-associated genetic variation. Here, we provide a brief overview of kinase-linked, posttranslational regulation of SERT, with a particular focus on evidence from pharmacological and genetic studies that the transporter's regulation by PKG/p38α MAPK associated pathways offers an opportunity to more subtly adjust, rather than eliminate, SERT function as a therapeutic strategy.
Collapse
Affiliation(s)
| | - Allison E. Walsh
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
12
|
Telpoukhovskaia MA, Murdy TJ, Marola OJ, Charland K, MacLean M, Luquez T, Lish AM, Neuner S, Dunn A, Onos KD, Wiley J, Archer D, Huentelman MJ, Arnold M, Menon V, Goate A, Van Eldik LJ, Territo PR, Howell GR, Carter GW, O'Connell KMS, Kaczorowski CC. New directions for Alzheimer's disease research from the Jackson Laboratory Center for Alzheimer's and Dementia Research 2022 workshop. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12458. [PMID: 38469553 PMCID: PMC10925728 DOI: 10.1002/trc2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION In September 2022, The Jackson Laboratory Center for Alzheimer's and Dementia Research (JAX CADR) hosted a workshop with leading researchers in the Alzheimer's disease and related dementias (ADRD) field. METHODS During the workshop, the participants brainstormed new directions to overcome current barriers to providing patients with effective ADRD therapeutics. The participants outlined specific areas of focus. Following the workshop, each group used standard literature search methods to provide background for each topic. RESULTS The team of invited experts identified four key areas that can be collectively addressed to make a significant impact in the field: (1) Prioritize the diversification of disease targets, (2) enhance factors promoting resilience, (3) de-risk clinical pipeline, and (4) centralize data management. DISCUSSION In this report, we review these four objectives and propose innovations to expedite ADRD therapeutic pipelines.
Collapse
Affiliation(s)
| | - Thomas J. Murdy
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | | | - Kevin Charland
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | - Michael MacLean
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | - Tain Luquez
- Center for Translational and Computational NeuroimmunologyDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Alexandra M. Lish
- Ann Romney Center for Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sarah Neuner
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Amy Dunn
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | - Kristen D. Onos
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | | | - Derek Archer
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Matthew J. Huentelman
- Neurogenomics DivisionTranslational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Matthias Arnold
- Institute of Computational BiologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Vilas Menon
- Center for Translational and Computational NeuroimmunologyDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Alison Goate
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Paul R. Territo
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gareth R. Howell
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaineUSA
- Neuroscience Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
- Genetics Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
| | - Gregory W. Carter
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaineUSA
- Neuroscience Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
- Genetics Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
| | - Kristen M. S. O'Connell
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaineUSA
- Neuroscience Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
- Genetics Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
| | - Catherine C. Kaczorowski
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
13
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
14
|
Acquarone E, Argyrousi EK, Arancio O, Watterson DM, Roy SM. The 5HT2b Receptor in Alzheimer's Disease: Increased Levels in Patient Brains and Antagonist Attenuation of Amyloid and Tau Induced Dysfunction. J Alzheimers Dis 2024; 98:1349-1360. [PMID: 38578894 DOI: 10.3233/jad-240063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Background: Neurodegenerative diseases manifest behavioral dysfunction with disease progression. Intervention with neuropsychiatric drugs is part of most multi-drug treatment paradigms. However, only a fraction of patients responds to the treatments and those responding must deal with drug-drug interactions and tolerance issues generally attributed to off-target activities. Recent efforts have focused on the identification of underexplored targets and exploration of improved outcomes by treatment with selective molecular probes. Objective As part of ongoing efforts to identify and validate additional targets amenable to therapeutic intervention, we examined levels of the serotonin 5-HT2b receptor (5-HT2bR) in Alzheimer's disease (AD) brains and the potential of a selective 5-HT2bR antagonist to counteract synaptic plasticity and memory damage induced by AD-related proteins, amyloid-β, and tau. Methods This work used a combination of biochemical, chemical biology, electrophysiological, and behavioral techniques. Biochemical methods included analysis of protein levels. Chemical biology methods included the use of an in vivo molecular probe MW071, a selective antagonist for the 5HT2bR. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated spatial memory and associative memory. Results 5HT2bR levels are increased in brain specimens of AD patients compared to controls. 5HT2bR antagonist treatment rescued amyloid-β and tau oligomer-induced impairment of synaptic plasticity and memory. Conclusions The increased levels of 5HT-2bR in AD patient brains and the attenuation of disease-related synaptic and behavioral dysfunctions by MW071 treatment suggest that the 5HT-2bR is a molecular target worth pursuing as a potential therapeutic target.
Collapse
Affiliation(s)
- Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
- Department of Internal Medicine, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - D Martin Watterson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Saktimayee M Roy
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
15
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023; 20:165. [PMID: 37452321 PMCID: PMC10349496 DOI: 10.1186/s12974-023-02853-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Collapse
Affiliation(s)
- Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Abstract
An analysis of 156 published clinical candidates from the Journal of Medicinal Chemistry between 2018 and 2021 was conducted to identify lead generation strategies most frequently employed leading to drug candidates. As in a previous publication, the most frequent lead generation strategies resulting in clinical candidates were from known compounds (59%) followed by random screening approaches (21%). The remainder of the approaches included directed screening, fragment screening, DNA-encoded library screening (DEL), and virtual screening. An analysis of similarity was also conducted based on Tanimoto-MCS and revealed most clinical candidates were distant from their original hits; however, most shared a key pharmacophore that translated from hit-to-clinical candidate. An examination of frequency of oxygen, nitrogen, fluorine, chlorine, and sulfur incorporation in clinical candidates was also conducted. The three most similar and least similar hit-to-clinical pairs from random screening were examined to provide perspective on changes that occur that lead to successful clinical candidates.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, One Design Center Pl Suite 19-400, Boston, Massachusetts 02210, United States
| |
Collapse
|
18
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
19
|
Braun DJ, Frazier HN, Davis VA, Coleman MJ, Rogers CB, Van Eldik LJ. Early chronic suppression of microglial p38α in a model of Alzheimer's disease does not significantly alter amyloid-associated neuropathology. PLoS One 2023; 18:e0286495. [PMID: 37256881 PMCID: PMC10231773 DOI: 10.1371/journal.pone.0286495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
The p38 alpha mitogen-activated protein kinase (p38α) is linked to both innate and adaptive immune responses and is under investigation as a target for drug development in the context of Alzheimer's disease (AD) and other conditions with neuroinflammatory dysfunction. While preclinical data has shown that p38α inhibition can protect against AD-associated neuropathology, the underlying mechanisms are not fully elucidated. Inhibitors of p38α may provide benefit via modulation of microglial-associated neuroinflammatory responses that contribute to AD pathology. The present study tests this hypothesis by knocking out microglial p38α and assessing early-stage pathological changes. Conditional knockout of microglial p38α was accomplished in 5-month-old C57BL/6J wild-type and amyloidogenic AD model (APPswe/PS1dE9) mice using a tamoxifen-inducible Cre/loxP system under control of the Cx3cr1 promoter. Beginning at 7.5 months of age, animals underwent behavioral assessment on the open field, followed by a later radial arm water maze test and collection of cortical and hippocampal tissues at 11 months. Additional endpoint measures included quantification of proinflammatory cytokines, assessment of amyloid burden and plaque deposition, and characterization of microglia-plaque dynamics. Loss of microglial p38α did not alter behavioral outcomes, proinflammatory cytokine levels, or overall amyloid plaque burden. However, this manipulation did significantly increase hippocampal levels of soluble Aβ42 and reduce colocalization of Iba1 and 6E10 in a subset of microglia in close proximity to plaques. The data presented here suggest that rather than reducing inflammation per se, the net effect of microglial p38α inhibition in the context of early AD-type amyloid pathology is a subtle alteration of microglia-plaque interactions. Encouragingly from a therapeutic standpoint, these data suggest no detrimental effect of even substantial decreases in microglial p38α in this context. Additionally, these results support future investigations of microglial p38α signaling at different stages of disease, as well as its relationship to phagocytic processes in this particular cell-type.
Collapse
Affiliation(s)
- David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
20
|
Chassé M, Vasdev N. Synthesis and Preclinical Positron Emission Tomography Imaging of the p38 MAPK Inhibitor [ 11C]Talmapimod: Effects of Drug Efflux and Sex Differences. ACS Chem Neurosci 2023. [PMID: 37186961 DOI: 10.1021/acschemneuro.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Stress-activated kinases are targets of interest in neurodegenerative disease due to their involvement in inflammatory signaling and synaptic dysfunction. The p38α kinase has shown clinical and preclinical promise as a druggable target in several neurodegenerative conditions. We report the radiosynthesis and evaluation of the first positron emission tomography (PET) radiotracer for imaging MAPK p38α/β through radiolabeling of the inhibitor talmapimod (SCIO-469) with carbon-11. [11C]Talmapimod was reliably synthesized by carbon-11 methylation with non-decay corrected radiochemical yields of 3.1 ± 0.7%, molar activities of 38.9 ± 13 GBq/μmol, and >95% radiochemical purity (n = 20). Preclinical PET imaging in rodents revealed a low baseline brain uptake and retention with standardized uptake values (SUV) of ∼0.2 over 90 min; however, pretreatment with the P-glycoprotein (P-gp) drug efflux transporter inhibitor elacridar enabled [11C]talmapimod to pass the blood-brain barrier (>1.0 SUV) with distinct sex differences in washout kinetics. Blocking studies with a structurally dissimilar p38α/β inhibitor, neflamapimod (VX-745), and displacement imaging studies with talmapimod were attempted in elacridar-pretreated rodents, but neither compound displaced radiotracer uptake in the brain of either sex. Ex vivo radiometabolite analysis revealed substantial differences in the composition of radioactive species present in blood plasma but not in brain homogenates at 40 min post radiotracer injection. Digital autoradiography in fresh-frozen rodent brain tissue confirmed that the radiotracer signal was largely non-displaceable in vitro, where self-blocking and blocking with neflamapimod marginally decreased the total signal by 12.9 ± 8.8% and 2.66 ± 2.1% in C57bl/6 healthy controls and 29.3 ± 2.7% and 26.7 ± 12% in Tg2576 rodent brains, respectively. An MDCK-MDR1 assay suggests that talmapimod is likely to suffer from drug efflux in humans as well as rodents. Future efforts should focus on radiolabeling p38 inhibitors from other structural classes to avoid P-gp efflux and non-displaceable binding.
Collapse
Affiliation(s)
- Melissa Chassé
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
| | - Neil Vasdev
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
21
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
22
|
Sakakibara Y, Yamashiro R, Chikamatsu S, Hirota Y, Tsubokawa Y, Nishijima R, Takei K, Sekiya M, Iijima KM. Drosophila Toll-9 is induced by aging and neurodegeneration to modulate stress signaling and its deficiency exacerbates tau-mediated neurodegeneration. iScience 2023; 26:105968. [PMID: 36718365 PMCID: PMC9883205 DOI: 10.1016/j.isci.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Drosophila Toll-9 is most closely related to mammalian Toll-like receptors; however, physiological functions of Toll-9 remain elusive. We examined the roles of Toll-9 in fly brains in aging and neurodegeneration. Toll-9 mRNA levels were increased in aged fly heads accompanied by activation of nuclear factor-kappa B (NF-kB) and stress-activated protein kinase (SAPK) signaling, and many of these changes were modulated by Toll-9 in glial cells. The loss of Toll-9 did not affect lifespan or brain integrity, whereas it exacerbated hydrogen peroxide-induced lethality. Toll-9 expression was also induced by nerve injury but did not affect acute stress response or glial engulfment activity, suggesting Toll-9 may modulate subsequent neurodegeneration. In a fly tauopathy model, Toll-9 deficiency enhanced neurodegeneration and disease-related tau phosphorylation with reduced SAPK activity, and blocking SAPK enhanced tau phosphorylation and neurodegeneration. In sum, Toll-9 is induced upon aging and nerve injury and affects neurodegeneration by modulating stress kinase signaling.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Yamashiro
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Reseach Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| | - Koichi M. Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| |
Collapse
|
23
|
Brown DG, Wobst HJ. A survey of the clinical pipeline in neuroscience. Bioorg Med Chem Lett 2022; 56:128482. [PMID: 34864194 DOI: 10.1016/j.bmcl.2021.128482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Many new first-in-class drugs for neuroscience indications have been introduced in the past decade including new treatments for migraine, amyotrophic lateral sclerosis, depression, and multiple sclerosis. However, significant unmet patient needs remain in areas such as chronic pain, neurodegeneration, psychiatric diseases, and epilepsy. This review summarizes some of the advanced clinical compounds for these indications. Additionally, current opportunities and challenges that remain with respect to genetic validation, biomarkers, and translational models are discussed.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, 6 Tide St, MA 02210, United States.
| | - Heike J Wobst
- Jnana Therapeutics, 6 Tide St, MA 02210, United States
| |
Collapse
|
24
|
Hensley K, Danekas A, Farrell W, Garcia T, Mehboob W, White M. At the intersection of sulfur redox chemistry, cellular signal transduction and proteostasis: A useful perspective from which to understand and treat neurodegeneration. Free Radic Biol Med 2022; 178:161-173. [PMID: 34863876 DOI: 10.1016/j.freeradbiomed.2021.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Although we can thoroughly describe individual neurodegenerative diseases from the molecular level through cell biology to histology and clinical presentation, our understanding of them and hence treatment gains have been depressingly limited, partly due to difficulty conceptualizing different diseases as variations within the same overarching pathological rubric. This review endeavors to create such rubric by knitting together the seemingly disparate phenomena of oxidative stress, dysregulated proteostasis, and neuroinflammation into a cohesive triad that highlights mechanistic connectivities. We begin by considering that brain metabolic demands necessitate careful control of oxidative homeostasis, largely through sulfur redox chemistry and glutathione (GSH). GSH is essential for brain antioxidant defense, but also for redox signaling and thus neuroinflammation. Delicate regulation of neuroinflammatory pathways (NFκB, MAPK-p38, and NLRP3 particularly) occurs through S-glutathionylation of protein phosphatases but also through redox-sensing elements like ASK1; the 26S proteasome and cysteine deubiquitinases (DUBs). The relationship amongst triad elements is underscored by our discovery that LanCL1 (lanthionine synthetase-like protein-1) protects against oxidant toxicity; mediates GSH-dependent reactivation of oxidized DUBs; and antagonizes the pro-inflammatory cytokine, tumor necrosis factor-α (TNFα). We highlight currently promising pharmacological efforts to modulate key triad elements and suggest nexus points that might be exploited to further clinical advantage.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA.
| | - Alexis Danekas
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - William Farrell
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Tiera Garcia
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Wafa Mehboob
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Matthew White
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| |
Collapse
|
25
|
Jones JH, Xin Z, Himmelbauer M, Dechantsreiter M, Enyedy I, Hedde J, Fang T, Coomaraswamy J, King KW, Murugan P, Santoro JC, Hesson T, Walther DM, Wei R, Zheng F, Marcotte DJ, Spilker K, Kumar PR, Liu Y, Gilfillan R, Gonzalez-Lopez de Turiso F. Discovery of Potent, Selective, and Brain-Penetrant Apoptosis Signal-Regulating Kinase 1 (ASK1) Inhibitors that Modulate Brain Inflammation In Vivo. J Med Chem 2021; 64:15402-15419. [PMID: 34653340 DOI: 10.1021/acs.jmedchem.1c01458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is one of the key mediators of the cellular stress response that regulates inflammation and apoptosis. To probe the therapeutic value of modulating this pathway in preclinical models of neurological disease, we further optimized the profile of our previously reported inhibitor 3. This effort led to the discovery of 32, a potent (cell IC50 = 25 nM) and selective ASK1 inhibitor with suitable pharmacokinetic and brain penetration (rat Cl/Clu = 1.6/56 L/h/kg and Kp,uu = 0.46) for proof-of-pharmacology studies. Specifically, the ability of 32 to inhibit ASK1 in the central nervous system (CNS) was evaluated in a human tau transgenic (Tg4510) mouse model exhibiting elevated brain inflammation. In this study, transgenic animals treated with 32 (at 3, 10, and 30 mg/kg, BID/PO for 4 days) showed a robust reduction of inflammatory markers (e.g., IL-1β) in the cortex, thus confirming inhibition of ASK1 in the CNS.
Collapse
Affiliation(s)
- J Howard Jones
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zhili Xin
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin Himmelbauer
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Dechantsreiter
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Istvan Enyedy
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph Hedde
- Acute Neurology Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Terry Fang
- Acute Neurology Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Janaky Coomaraswamy
- Movement Disorders Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristopher W King
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph C Santoro
- Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Thomas Hesson
- Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dirk M Walther
- Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ru Wei
- Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fengmei Zheng
- Technical Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas J Marcotte
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kerri Spilker
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - P Rajesh Kumar
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ying Liu
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Rab Gilfillan
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
26
|
Siano G, Falcicchia C, Origlia N, Cattaneo A, Di Primio C. Non-Canonical Roles of Tau and Their Contribution to Synaptic Dysfunction. Int J Mol Sci 2021; 22:ijms221810145. [PMID: 34576308 PMCID: PMC8466023 DOI: 10.3390/ijms221810145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
| | - Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Roma, Italy
- Correspondence: (A.C.); (C.D.P.)
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
- Correspondence: (A.C.); (C.D.P.)
| |
Collapse
|
27
|
Miller S, Blanco MJ. Small molecule therapeutics for neuroinflammation-mediated neurodegenerative disorders. RSC Med Chem 2021; 12:871-886. [PMID: 34223157 PMCID: PMC8221257 DOI: 10.1039/d1md00036e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Chronically activated microglia and the resulting cascade of neuroinflammatory mechanisms have been postulated to play a critical role in neurodegenerative disorders. Microglia are the main component of the brain's innate immune system and become activated by infection, injury, misfolded proteins or a multitude of other stimuli. Activated microglia release pro-inflammatory and cytotoxic factors that can damage neurons and transform astrocytes to become toxic to neurons as well. Therapeutic approaches aiming to modulate microglia activation may be beneficial to mitigate the progression of inflammatory-mediated neurodegenerative diseases. In this literature review, we provide an overview of recent progress on key microglia targets and discovery of small molecule compounds advancing in clinical trials to minimize neuroinflammation.
Collapse
Affiliation(s)
- Silke Miller
- Sage Therapeutics, Inc. 215 First Street Cambridge Massachusetts 02142 USA
| | - Maria-Jesus Blanco
- Sage Therapeutics, Inc. 215 First Street Cambridge Massachusetts 02142 USA
| |
Collapse
|
28
|
Stilley SE, Blakely RD. Rare Opportunities for Insights Into Serotonergic Contributions to Brain and Bowel Disorders: Studies of the SERT Ala56 Mouse. Front Cell Neurosci 2021; 15:677563. [PMID: 34149362 PMCID: PMC8210832 DOI: 10.3389/fncel.2021.677563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Altered structure, expression, and regulation of the presynaptic serotonin (5-HT) transporter (SERT) have been associated with multiple neurobehavioral disorders, including mood disorders, obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). Opportunities to investigate mechanistic links supporting these associations were spurred with the identification of multiple, rare human SERT coding variants in a study that established a male-specific linkage of ASD to a linkage marker on chromosome 17 which encompassed the location of the SERT gene (SLC6A4). We have explored the most common of these variants, SERT Ala56, in vitro and in vivo. Results support a tonic elevation of 5-HT transport activity in transfected cells and human lymphoblasts by the variant in vitro that leads to an increased 5-HT clearance rate in vivo when studied in the SERT Ala56 mouse model, along with altered sensitivity to SERT regulatory signaling pathways. Importantly, hyperserotonemia, or an elevated whole blood 5-HT, level, was found in SERT Ala56 mice, reproducing a well-replicated trait observed in a significant fraction of ASD subjects. Additionally, we found multiple biochemical, physiological, and behavioral alterations in the SERT Ala56 mice that can be analogized to those observed in ASD and its medical comorbidities. The similarity of the functional impact of the SERT Ala56 variant to the consequences of p38α MAPK activation, ascribed to the induction of a biased conformation of the transporter toward an outward-facing conformation, has resulted in successful efforts to restore normal behavioral and bowel function via pharmacological and genetic p38α MAPK targeting. Moreover, the ability of the inflammatory cytokine IL-1β to enhance SERT activity via a p38α MAPK-dependent pathway suggests that the SERT Ala56 conformation mimics that of a chronic inflammatory state, supporting findings in ASD of elevated inflammatory cytokine levels. In this report, we review studies of the SERT Ala56 variant, discussing opportunities for continued insight into how chronically altered synaptic 5-HT homeostasis can drive reversible, functional perturbations in 5-HT sensitive pathways in the brain and periphery, and how targeting the SERT regulome, particularly through activating pathways such as those involving IL-1β/p38α MAPK, may be of benefit for neurobehavioral disorders, including ASD.
Collapse
Affiliation(s)
- Samantha E. Stilley
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
29
|
Tormählen NM, Martorelli M, Kuhn A, Maier F, Guezguez J, Burnet M, Albrecht W, Laufer SA, Koch P. Design and Synthesis of Highly Selective Brain Penetrant p38α Mitogen-Activated Protein Kinase Inhibitors. J Med Chem 2021; 65:1225-1242. [PMID: 33974419 DOI: 10.1021/acs.jmedchem.0c01773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stress-induced p38α mitogen-activated protein (MAP) kinase activation modulates cytokine overproduction and is associated with neuroinflammation and neurodegeneration. As a potential therapeutic approach, novel Skepinone-based p38α MAP kinase inhibitors were optimized to cross the blood-brain barrier via either amino acid transporters or hydrophobic diffusion. To enhance absorption from the oral route, we used methyl ester prodrugs of the active carboxy analogs. Of these, 3-(8-((2,4-difluorophenyl)amino)-5-oxo-10,11-dihydro-5H-dibenzo[a,d][7]annulene-3-carboxamido)propanoic acid (43; p38α, IC50 = 5.5 nM) and 4-(8-((2,4-difluorophenyl)amino)-5-oxo-10,11-dihydro-5H-dibenzo[a,d][7]annulene-3-carboxamido)butanoic acid (44; p38α, IC50 = 12 nM) had brain-to-plasma ratios of 1.4 and 4.4, respectively. Compound 70, 3-(8-((2-aminophenyl)amino)-5-oxo-10,11-dihydro-5H-dibenzo[a,d][7]annulene-3-carboxamido)propanoic acid (p38α, IC50 = 1.0 nM), the Skepinone-N counterpart of 43, was most present in the mouse brain (brain-to-plasma ratio of 4.7; 0.4 mg/kg p.o., 2 h, 580 nmol/kg). Compounds 43, 44, and 70 were p38α-MAP-kinase-selective, metabolically stable, hERG nonbinding, and able to modulate IL-6 and TNF-α production in cell-based assays.
Collapse
Affiliation(s)
- Niklas M Tormählen
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | - Annette Kuhn
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Florian Maier
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | - Jamil Guezguez
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | - Michael Burnet
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
30
|
Low-Dose Copper Exposure Exacerbates Depression-Like Behavior in ApoE4 Transgenic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634181. [PMID: 33833851 PMCID: PMC8018851 DOI: 10.1155/2021/6634181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 11/18/2022]
Abstract
Depression is one of the most common neuropsychiatric disorders. Although the pathogenesis of depression is still unknown, environmental risk factors and genetics are implicated. Copper (Cu), a cofactor of multiple enzymes, is involved in regulating depression-related processes. Depressed patients carrying the apolipoprotein ε4 allele display more severe depressive symptoms, indicating that ApoE4 is closely associated with an increased risk of depression. The study explored the effect of low-dose Cu exposure and ApoE4 on depression-like behavior of mice and further investigates the possible mechanisms. The ApoE4 mice and wild-type (WT) mice were treated with 0.13 ppm CuCl2 for 4 months. After the treatment, ApoE4 mice displayed obvious depression-like behavior compared with the WT mice, and Cu exposure further exacerbated the depression-like behavior of ApoE4 mice. There was no significant difference in anxiety behavior and memory behavior. Proteomic analysis revealed that the differentially expressed proteins between Cu-exposed and nonexposed ApoE4 mice were mainly involved in the Ras signaling pathway, protein export, axon guidance, serotonergic synapse, GABAergic synapse, and dopaminergic synapse. Among these differentially expressed proteins, immune response and synaptic function are highly correlated. Representative protein expression changes are quantified by western blot, showing consistent results as determined by proteomic analysis. Hippocampal astrocytes and microglia were increased in Cu-exposed ApoE4 mice, suggesting that neuroglial cells played an important role in the pathogenesis of depression. Taken together, our study demonstrated that Cu exposure exacerbates depression-like behavior of ApoE4 mice and the mechanisms may involve the dysregulation of synaptic function and immune response and overactivation of neuroinflammation.
Collapse
|
31
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
32
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
33
|
Huang T, Hosseinibarkooie S, Borne AL, Granade ME, Brulet JW, Harris TE, Ferris HA, Hsu KL. Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Chem Sci 2021; 12:3295-3307. [PMID: 34164099 PMCID: PMC8179411 DOI: 10.1039/d0sc06623k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Sulfonyl-triazoles are a new class of electrophiles that mediate covalent reaction with tyrosine residues on proteins through sulfur-triazole exchange (SuTEx) chemistry. Recent studies demonstrate the broad utility and tunability of SuTEx chemistry for chemical proteomics and protein ligand discovery. Here, we present a strategy for mapping protein interaction networks of structurally complex binding elements using functionalized SuTEx probes. We show that the triazole leaving group (LG) can serve as a releasable linker for embedding hydrophobic fragments to direct molecular recognition while permitting efficient proteome-wide identification of binding sites in live cells. We synthesized a series of SuTEx probes functionalized with a lipid kinase fragment binder for discovery of ligandable tyrosines residing in catalytic and regulatory domains of protein and metabolic kinases in live cells. We performed competition studies with kinase inhibitors and substrates to demonstrate that probe binding is occurring in an activity-dependent manner. Our functional studies led to discovery of probe-modified sites within the C2 domain that were important for downregulation of protein kinase C-alpha in response to phorbol ester activation. Our proof of concept studies highlight the triazole LG of SuTEx probes as a traceless linker for locating protein binding sites targeted by complex recognition elements in live cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
| | | | - Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Mitchell E Granade
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Jeffrey W Brulet
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Heather A Ferris
- Department of Medicine, University of Virginia School of Medicine Charlottesville Virginia 22903 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
| |
Collapse
|
34
|
Ab Ghani NS, Emrizal R, Makmur H, Firdaus-Raih M. Side chain similarity comparisons for integrated drug repositioning and potential toxicity assessments in epidemic response scenarios: The case for COVID-19. Comput Struct Biotechnol J 2020; 18:2931-2944. [PMID: 33101604 PMCID: PMC7575501 DOI: 10.1016/j.csbj.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Structures of protein-drug-complexes provide an atomic level profile of drug-target interactions. In this work, the three-dimensional arrangements of amino acid side chains in known drug binding sites (substructures) were used to search for similarly arranged sites in SARS-CoV-2 protein structures in the Protein Data Bank for the potential repositioning of approved compounds. We were able to identify 22 target sites for the repositioning of 16 approved drug compounds as potential therapeutics for COVID-19. Using the same approach, we were also able to investigate the potentially promiscuous binding of the 16 compounds to off-target sites that could be implicated in toxicity and side effects that had not been provided by any previous studies. The investigations of binding properties in disease-related proteins derived from the comparison of amino acid substructure arrangements allows for effective mechanism driven decision making to rank and select only the compounds with the highest potential for success and safety to be prioritized for clinical trials or treatments. The intention of this work is not to explicitly identify candidate compounds but to present how an integrated drug repositioning and potential toxicity pipeline using side chain similarity searching algorithms are of great utility in epidemic scenarios involving novel pathogens. In the case of the COVID-19 pandemic caused by the SARS-CoV-2 virus, we demonstrate that the pipeline can identify candidate compounds quickly and sustainably in combination with associated risk factors derived from the analysis of potential off-target site binding by the compounds to be repurposed.
Collapse
Affiliation(s)
- Nur Syatila Ab Ghani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Haslina Makmur
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
35
|
Simon CM, Van Alstyne M, Lotti F, Bianchetti E, Tisdale S, Watterson DM, Mentis GZ, Pellizzoni L. Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. Cell Rep 2020; 29:3885-3901.e5. [PMID: 31851921 PMCID: PMC6956708 DOI: 10.1016/j.celrep.2019.11.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Reduced expression of the survival motor neuron (SMN) protein causes the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that adeno-associated virus serotype 9 (AAV9)-mediated delivery of Stasimon—a gene encoding an endoplasmic reticulum (ER)-resident transmembrane protein regulated by SMN—improves motor function in a mouse model of SMA through multiple mechanisms. In proprioceptive neurons, Stasimon overexpression prevents the loss of afferent synapses on motor neurons and enhances sensory-motor neurotransmission. In motor neurons, Stasimon suppresses neurodegeneration by reducing phosphorylation of the tumor suppressor p53. Moreover, Stasimon deficiency converges on SMA-related mechanisms of p53 upregulation to induce phosphorylation of p53 through activation of p38 mitogen-activated protein kinase (MAPK), and pharmacological inhibition of this kinase prevents motor neuron death in SMA mice. These findings identify Stasimon dysfunction induced by SMN deficiency as an upstream driver of distinct cellular cascades that lead to synaptic loss and motor neuron degeneration, revealing a dual contribution of Stasimon to motor circuit pathology in SMA. SMN deficiency causes motor circuit dysfunction in SMA. Simon et al. show that Stasimon—an ER-resident protein regulated by SMN—contributes to sensory synaptic loss and motor neuron death in SMA mice through distinct mechanisms. In motor neurons, Stasimon dysfunction induces p38 MAPK-mediated phosphorylation of p53 whose inhibition prevents neurodegeneration.
Collapse
Affiliation(s)
- Christian M Simon
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Elena Bianchetti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in Synaptic Function and Dysfunction. Int J Mol Sci 2020; 21:ijms21165624. [PMID: 32781522 PMCID: PMC7460549 DOI: 10.3390/ijms21165624] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Many studies have revealed a central role of p38 MAPK in neuronal plasticity and the regulation of long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). However, p38 MAPK is classically known as a responsive element to stress stimuli, including neuroinflammation. Specific to the pathophysiology of Alzheimer’s disease (AD), several studies have shown that the p38 MAPK cascade is activated either in response to the Aβ peptide or in the presence of tauopathies. Here, we describe the role of p38 MAPK in the regulation of synaptic plasticity and its implication in an animal model of neurodegeneration. In particular, recent evidence suggests the p38 MAPK α isoform as a potential neurotherapeutic target, and specific inhibitors have been developed and have proven to be effective in ameliorating synaptic and memory deficits in AD mouse models.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy;
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| | | | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-3153193
| |
Collapse
|
37
|
Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5485. [PMID: 32751991 PMCID: PMC7432772 DOI: 10.3390/ijms21155485] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Multifactorial pathologies, involving one or more aggregated protein(s) and neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer's disease and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer's disease. Since the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity. In this review, we provide a brief summary of the role of Rab5 in the cell and its association with neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases for p38α kinase inhibitors.
Collapse
|
38
|
Van Eldik LJ, Sawaki L, Bowen K, Laskowitz DT, Noveck RJ, Hauser B, Jordan L, Spears TG, Wu H, Watt K, Raja S, Roy SM, Watterson DM, Guptill JT. First-in-Human Studies of MW01-6-189WH, a Brain-Penetrant, Antineuroinflammatory Small-Molecule Drug Candidate: Phase 1 Safety, Tolerability, Pharmacokinetic, and Pharmacodynamic Studies in Healthy Adult Volunteers. Clin Pharmacol Drug Dev 2020; 10:131-143. [PMID: 32255549 PMCID: PMC7541708 DOI: 10.1002/cpdd.795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
MW01‐6‐189WH (MW189) is a novel central nervous system–penetrant small‐molecule drug candidate that selectively attenuates stressor‐induced proinflammatory cytokine overproduction and is efficacious in intracerebral hemorrhage and traumatic brain injury animal models. We report first‐in‐human, randomized, double‐blind, placebo‐controlled phase 1 studies to evaluate the safety, tolerability, and pharmacokinetics (PK) of single and multiple ascending intravenous doses of MW189 in healthy adult volunteers. MW189 was safe and well tolerated in single and multiple doses up to 0.25 mg/kg, with no clinically significant concerns. The most common drug‐related treatment‐emergent adverse event was infusion‐site reactions, likely related to drug solution acidity. No clinically concerning changes were seen in vital signs, electrocardiograms, physical or neurological examinations, or safety laboratory results. PK analysis showed dose‐proportional increases in plasma concentrations of MW189 after single or multiple doses, with approximately linear kinetics and no significant drug accumulation. Steady state was achieved by dose 3 for all dosing cohorts. A pilot pharmacodynamic study administering low‐dose endotoxin to induce a systemic inflammatory response was done to evaluate the effects of a single intravenous dose of MW189 on plasma cytokine levels. MW189 treatment resulted in lower levels of the proinflammatory cytokine TNF‐α and higher levels of the anti‐inflammatory cytokine IL‐10 compared with placebo treatment. The outcomes are consistent with the pharmacological mechanism of MW189. Overall, the safety profile, PK properties, and pharmacodynamic effect support further development of MW189 for patients with acute brain injury.
Collapse
Affiliation(s)
- Linda J. Van Eldik
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Lumy Sawaki
- Department of Physical Medicine & RehabilitationUniversity of KentuckyLexingtonKentuckyUSA
| | - Karen Bowen
- Bluegrass Research Consultants, Inc.VersaillesKentuckyUSA
| | - Daniel T. Laskowitz
- Department of NeurologyDuke UniversityDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | | | - Byron Hauser
- Duke Early Phase Clinical Research UnitDurhamNorth CarolinaUSA
| | - Lynn Jordan
- Duke Early Phase Clinical Research UnitDurhamNorth CarolinaUSA
| | | | - Huali Wu
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Kevin Watt
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Shruti Raja
- Department of NeurologyDuke UniversityDurhamNorth CarolinaUSA
- Duke Early Phase Clinical Research UnitDurhamNorth CarolinaUSA
| | | | | | - Jeffrey T. Guptill
- Department of NeurologyDuke UniversityDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Duke Early Phase Clinical Research UnitDurhamNorth CarolinaUSA
| |
Collapse
|