1
|
Teponno RB, Noumeur SR, Stadler M. Semisynthetic derivatives of massarilactone D with cytotoxic and nematicidal activities. Beilstein J Org Chem 2025; 21:607-615. [PMID: 40130181 PMCID: PMC11931645 DOI: 10.3762/bjoc.21.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Massarilactones constitute a rare class of polyketides produced mainly by endophytic fungi. Given that semisynthetic derivatives often exhibit biological activities greater than those of the substrates, seven previously unreported derivatives of massarilactone D, compounds 2-8, were synthetized by acylation with methacryloyl chloride, cinnamoyl chloride, 4-bromobenzoyl chloride, trans-2-methyl-2-butenoyl chloride, and crotonyl chloride. These compounds were evaluated for their cytotoxic activity against the murine fibroblasts L929, human cervix carcinoma KB-3-1, human lung carcinoma A549, human prostate cancer PC-3, epidermoid carcinoma A431, ovarian carcinoma SKOV-3, and breast cancer MCF-7 cell lines. Compounds 2 and 3 exhibited significant cytotoxicity against all the tested cells. Some of the semisynthetic derivatives were also tested for their nematicidal activity and compound 4 displayed significant and selective nematicidal activity with LD90 and LD50 of 100 and 12.5 µg/mL, respectively. Since the parent compound was not active, the present study supports the fact that the acylation reaction can improve bioactivities of some natural products.
Collapse
Affiliation(s)
- Rémy B Teponno
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany and Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Sara R Noumeur
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany and Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
- Laboratoire de biotechnologie des molécules bioactives et de la physiopathologie cellulaire (LBMBPC), Faculté des sciences de la nature et de la vie, Université de Batna 2, Batna 05078, Algeria
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany and Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
3
|
Dimitrova D, Dimitrova S, Kehayova G, Dragomanova S. Meroterpenoids from Terrestrial and Marine Fungi: Promising Agents for Neurodegenerative Disorders-An Updated Review. Curr Issues Mol Biol 2025; 47:96. [PMID: 39996817 PMCID: PMC11854780 DOI: 10.3390/cimb47020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Meroterpenoids represent a remarkably diverse class of natural secondary metabolites, some of which are synthesized via terpenoid biosynthetic pathways. Over the past ten years, these compounds have gained interest because of their wide range of biological activities, such as anti-cholinesterase, COX-2 inhibitory, antibacterial, antiviral, antidiabetic, antioxidant, anti-inflammatory, antineoplastic, and cardioprotective properties. This review aims to consolidate the recognized neuroprotective effects of meroterpenoids from marine and terrestrial fungi. METHODS Data compiled from several databases, including PubMed, Science Direct, Scopus, and Google Scholar, include articles published since 2000 using keywords such as "neuroprotective", "fungi", "mushroom", "marine sponge", "neurodegeneration", and "dementia" in connection with "meroterpenoids". RESULTS Meroterpenoids modulate different cell signaling pathways and exhibit different and often combined mechanisms of action to ameliorate neuronal damage and dysfunction. Reported activities include anti-cholinesterase, antioxidant, BACE1 inhibition, and anti-inflammatory activities, all of which have potential in the treatment of dementia associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. CONCLUSIONS Meroterpenoids have the potential to be developed as effective tools for neuropathological diseases. Ongoing research to elucidate the various neuroprotective pathways remains essential and requires further investigation.
Collapse
Affiliation(s)
- Daniela Dimitrova
- Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria;
| | - Simeonka Dimitrova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Gabriela Kehayova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria; (S.D.); (G.K.)
| |
Collapse
|
4
|
Qi J, Wu J, Kang S, Gao J, Hirokazu K, Liu H, Liu C. The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: a review. Chin J Nat Med 2024; 22:676-698. [PMID: 39197960 DOI: 10.1016/s1875-5364(24)60590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 09/01/2024]
Abstract
Fungal phytochemicals derived from higher fungi, particularly those from the culinary-medicinal genus Hericium, have gained significant attention in drug discovery and healthcare. This review aims to provide a comprehensive analysis of the chemical structures, biosynthetic pathways, biological activities, and pharmacological properties of monomeric compounds isolated from Hericium species. Over the past 34 years, 253 metabolites have been identified from various Hericium species, including cyathane diterpenes, alkaloids, benzofurans, chromenes, phenols, pyrones, steroids, and other miscellaneous compounds. Detailed investigations into the biosynthesis of erinacines, a type of cyathane diterpene, have led to the discovery of novel cyathane diterpenes. Extensive research has highlighted the biological activities and pharmacological properties of Hericium-derived compounds, with particular emphasis on their neuroprotective and neurotrophic effects, immunomodulatory capabilities, anti-cancer activity, antioxidant properties, and antimicrobial actions. Erinacine A, in particular, has been extensively studied. Genomic, transcriptomic, and proteomic analyses of Hericium species have facilitated the discovery of new compounds and provided insights into enzymatic reactions through genome mining. The diverse chemical structures and biological activities of Hericium compounds underpin their potential applications in medicine and as dietary supplements. This review not only advances our understanding of Hericium compounds but also encourages further research into Hericium species within the realms of medicine, health, functional foods, and agricultural microbiology. The broad spectrum of compound types and their diverse biological activities present promising opportunities for the development of new pharmaceuticals and edible products.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shijie Kang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jingming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | | | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Kostanda E, Musa S, Pereman I. Unveiling the Chemical Composition and Biofunctionality of Hericium spp. Fungi: A Comprehensive Overview. Int J Mol Sci 2024; 25:5949. [PMID: 38892137 PMCID: PMC11172836 DOI: 10.3390/ijms25115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, research on mushrooms belonging to the Hericium genus has attracted considerable attention due to their unique appearance and well-known medicinal properties. These mushrooms are abundant in bioactive chemicals like polysaccharides, hericenones, erinacines, hericerins, resorcinols, steroids, mono- and diterpenes, and corallocins, alongside essential nutrients. These compounds demonstrate beneficial bioactivities which are related to various physiological systems of the body, including the digestive, immune, and nervous systems. Extensive research has been conducted on the isolation and identification of numerous bioactive chemicals, and both in vitro and in vivo studies have confirmed their antimicrobial, antioxidant, immunomodulatory, antidiabetic, anticholesterolemic, anticancer, and neuroprotective properties. Therefore, this review aims to provide a comprehensive summary of the latest scientific literature on the chemical composition and secondary metabolites profile of Hericium spp. through an introduction to their chemical characteristics, speculated biosynthesis pathways for key chemical families, potential toxicological aspects, and a detailed description of the recent updates regarding the bioactivity of these metabolites.
Collapse
Affiliation(s)
- Elizabeth Kostanda
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| | - Sanaa Musa
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Idan Pereman
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| |
Collapse
|
6
|
Tan YF, Mo JS, Wang YK, Zhang W, Jiang YP, Xu KP, Tan GS, Liu S, Li J, Wang WX. The ethnopharmacology, phytochemistry and pharmacology of the genus Hericium. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117353. [PMID: 37907145 DOI: 10.1016/j.jep.2023.117353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mushrooms in the genus Hericium are used as functional food and traditional medicines for a long history in East Asian countries such as China, India, Japan, and Korea. Some species of Hericium are called as monkey head mushroom (Houtougu) in China and Yamabushitake in Japan, which are traditionally considered as rare and precious health promoting food and medicinal materials for the treatment of dyspepsia, insomnia, chronic gastritis, and digestive tract tumors. THE AIM OF THE REVIEW This review aims to summarize the ethnopharmacology and structural diversity of secondary metabolites from Hericium species, as well as the pharmacological activities of the crude extracts and pure compounds from Hericium species in recent years. MATERIALS AND METHODS All the information was gathered by searching Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar databases and other published materials (books and Ph.D. and M. Sc. Dissertations) using the keywords "Hericium", "Traditional uses", "Chemical composition", "Quality control" and "Pharmacological activity" (1971-May 2023). The species name was checked with https://www.mycobank.org/. RESULTS The traditional uses of Hericium species were summarized, and 230 secondary metabolites from Hericium species were summarized and classified into six classes, mainly focusing on their chemical diversity, biosynthesis, biological activities. The modern pharmacological experiments in vivo or in vitro on their crude and fractionated extracts showed that the chemical components from Hericium species have a broad range of bioactivities, including neuroprotective, antimicrobial, anticancer, α-glucosidase inhibitory, antioxidant, and anti-inflammatory activities. CONCLUSIONS The secondary metabolites discovered from Hericium species are highly structurally diverse, and they have the potential to be rich resources of bioactive fungal natural products. Moreover, the unveiled bioactivities of their crude extracts and pure compounds are closely related to critical human health concerns, and in-depth studies on the potential lead compounds, mechanism of pharmacological effects and pharmaceutical properties are clearly warranted.
Collapse
Affiliation(s)
- Yu-Fen Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Ji-Song Mo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Yi-Kun Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Wei Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yue-Ping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Gui-Shan Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
7
|
Thongkongkaew T, Jariyasopit N, Khoomrung S, Siritutsoontorn S, Jitrapakdee S, Kittakoop P, Ruchirawat S. Anti-Xanthine Oxidase 5'-Hydroxyhericenes A-D from the Edible Mushroom Hericium erinaceus and Structure Revision of 3-[2,3-Dihydroxy-4-(hydroxymethyl)tetrahydrofuran-1-yl]-pyridine-4,5-diol. ACS OMEGA 2023; 8:46284-46291. [PMID: 38075774 PMCID: PMC10701869 DOI: 10.1021/acsomega.3c07792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 04/22/2025]
Abstract
Hericium erinaceus is an edible mushroom with diverse pharmaceutical applications. Although this mushroom is an attractive source of natural products for cancer treatment, little is known about the bioactive compounds from this mushroom, which may possess antibreast cancer activity. Here, we report the isolation and structure elucidation of new compounds, 5'-hydroxyhericenes A-D (1-4) as an inseparable mixture, together with known compounds (5-16) from the fruiting body of H. erinaceus. Based on NMR spectroscopic data and MS fragmentation analysis, the structure of a previously reported natural product, 3-[2,3-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-1-yl]-pyridine-4,5-diol (5), should be revised to adenosine (6). Compounds 1-4 inhibit xanthine oxidase activity, while compounds 6, 9, and 10 scavenge reactive oxygen species generated by xanthine oxidase. Moreover, hericerin (13) exhibits strong growth inhibitory activity against T47D breast cancer cells and, to a lesser extent, against MDA-MB-231 breast cancer and MRC-5 normal embryonic cells. Exposure of T47D and MDA-MB-231 cells slightly increased PARP cleavage, suggesting that the growth inhibitory effect of hericerin may be mediated through nonapoptotic pathways. Our results suggest that the bioactive compounds of mushroom H. erinaceus hold promise as antibreast cancer agents.
Collapse
Affiliation(s)
- Tawatchai Thongkongkaew
- Chemical
Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand
| | - Narumol Jariyasopit
- Siriraj
Center of Research Excellence in Metabolomics and System Biology (SiCORE-MSB),
Faculty of Medicine Siriraj Hospital, Mahidol
University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics
Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Siriraj
Center of Research Excellence in Metabolomics and System Biology (SiCORE-MSB),
Faculty of Medicine Siriraj Hospital, Mahidol
University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics
Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Sarawut Jitrapakdee
- Department
of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasat Kittakoop
- Chemical
Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand
- Chulabhorn
Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center
of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry
of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Somsak Ruchirawat
- Chemical
Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand
- Chulabhorn
Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center
of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry
of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Ki DW, Kim CW, Choi DC, Oh GW, Doan TP, Kim JY, Oh WK, Lee IK, Yun BS. Chemical constituents of the culture broth of Dentipellis fragilis and their anti-inflammatory activities. PHYTOCHEMISTRY 2023; 214:113828. [PMID: 37595773 DOI: 10.1016/j.phytochem.2023.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Seven undescribed compounds, dentipellinones A‒D (1, 2, 5, and 6), dentipellinol (3), methoxyerinaceolactone B (4), and erinaceolactomer A (7), were isolated from the culture broth of Dentipellis fragilis. Chemical structures of these isolated compounds were determined by analyses of 1D and 2D-NMR and MS data in comparison with data reported in the literature. Absolute configurations of 1‒7 were also determined by Electronic Circular Dichroism calculations. The isolated compounds were evaluated for their anti-inflammatory effects on NO production and pro-inflammatory cytokines levels in LPS-stimulated RAW264.7 cells. Compounds 5 and 7 were evaluated for their anti-inflammatory effects on NO production and pro-inflammatory cytokine levels in LPS-stimulated RAW264.7 cells. They exhibited inhibitory effects on LPS-induced NO production in a dose-dependent manner, and significantly reduced the levels of inflammatory-related cytokines such as IL-1β and IL-6. TNF-α was not involved in the anti-inflammatory effects of these compounds. Finally, compounds 5 and 7 showed significant anti-inflammatory effects.
Collapse
Affiliation(s)
- Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea.
| | - Chae-Won Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Dae-Cheol Choi
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Thi-Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea.
| |
Collapse
|
9
|
Guan Y, Shi D, Wang S, Sun Y, Song W, Liu S, Wang C. Hericium coralloides Ameliorates Alzheimer's Disease Pathologies and Cognitive Disorders by Activating Nrf2 Signaling and Regulating Gut Microbiota. Nutrients 2023; 15:3799. [PMID: 37686830 PMCID: PMC10489620 DOI: 10.3390/nu15173799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is prone to onset and progression under oxidative stress conditions. Hericium coralloides (HC) is an edible medicinal fungus that contains various nutrients and possesses antioxidant properties. In the present study, the nutritional composition and neuroprotective effects of HC on APP/PS1 mice were examined. Behavioral experiments showed that HC improved cognitive dysfunction in APP/PS1 mice. Immunohistochemical and Western blotting results showed that HC reduced the levels of p-tau and amyloid-β deposition in the brain. By altering the composition of the gut microbiota, HC promoted the growth of short-chain fatty acid-producing bacteria and suppressed the growth of Helicobacter. Metabolomic results showed that HC decreased D-glutamic acid and oxidized glutathione levels. In addition, HC reduced the levels of reactive oxygen species, enhanced the secretion of superoxide dismutase, catalase, and glutathione peroxidase, inhibited the production of malondialdehyde and 4-hydroxynonenal, and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Collectively, HC demonstrated antioxidant activity by activating Nrf2 signaling and regulating gut microbiota, further exerting neuroprotective effects. This study confirms that HC has the potential to be a clinically effective AD therapeutic agent and offers a theoretical justification for both the development and use of this fungus.
Collapse
Affiliation(s)
- Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Dongyu Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shimiao Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Yueying Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Wanyu Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| |
Collapse
|
10
|
Mitschke N, Chemutai Sum W, Hassan K, Kirchenwitz M, Schrey H, Gerhards L, Kellner H, Stradal TEB, Matasyoh JC, Stadler M. Biologically active drimane derivatives isolated from submerged cultures of the wood-inhabiting basidiomycete Dentipellis fragilis. RSC Adv 2023; 13:25752-25761. [PMID: 37664205 PMCID: PMC10468952 DOI: 10.1039/d3ra04204a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Four previously undescribed drimane sesquiterpenoids were isolated from submerged cultures of the wood-inhabiting basidiomycete Dentipellis fragilis along with two compounds that were previously reported as synthetic or biotransformation compounds but not as natural products. The constitution and relative configuration of these compounds was determined based on high-resolution electrospray ionization mass spectrometry as well as by 1D and 2D nuclear magnetic resonance spectroscopy. The absolute configurations were established based on exemplary calculation of circular dichroism spectra and comparison with measured data as well as on biogenetic considerations. The biological activities of the isolated compounds were assessed in antimicrobial, cytotoxicity and neurotrophic assays. 10-Methoxycarbonyl-10-norisodrimenin (3) exhibited weak activity against the Gram-positive bacterium Staphylococcus aureus and the zygomycete Mucor hiemalis with minimal inhibitory concentrations of 66.7 μg mL-1. In addition, compound 3 showed weak inhibition of the mammalian cell line KB3.1 (human endocervical adenocarcinoma) with a half maximal inhibitory concentration of 21.2 μM. The neurotrophic activities of 15-hydroxyisodrimenin (1) and 10-carboxy-10-norisodrimenin (5) were assed in neurite outgrowth and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays. When supplemented with 5 ng mL-1 nerve growth factor (NGF), the drimanes 1 and 5 induced neurite outgrowth in PC-12 (rat pheochromocytoma) cells compared to cells solely treated with NGF. As evaluated by RT-qPCR, compounds 1 and 5 also increased NGF and brain-derived neurotrophic factor expression levels in 1321N1 astrocytoma cells. Interestingly, the current study only represents the second report on neurotrophic activities of this widespread class of terpenoids. The only other available study deals with Cyathus africanus, another basidiomycete that can produce drimanes and cyathanes, but is only distantly related to Dentipellis and the Hericiaceae.
Collapse
Affiliation(s)
- Nico Mitschke
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Winnie Chemutai Sum
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Khadija Hassan
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Marco Kirchenwitz
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Luca Gerhards
- Department of Physics, Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Str. 9-11 26129 Oldenburg Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, Technische Universität Dresden - International Institute Zittau Markt 23 02763 Zittau Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Josphat C Matasyoh
- Department of Chemistry, Egerton University P.O. Box 536 20115 Njoro Kenya
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| |
Collapse
|
11
|
Sum WC, Ebada SS, Kirchenwitz M, Kellner H, Ibrahim MAA, Stradal TEB, Matasyoh JC, Stadler M. Hericioic Acids A-G and Hericiofuranoic Acid; Neurotrophic Agents from Cultures of the European Mushroom Hericium flagellum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37440475 PMCID: PMC10375585 DOI: 10.1021/acs.jafc.3c02897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Neurodegenerative diseases are currently posing huge social, economic, and healthcare burdens among the aged populations worldwide with few and only palliative treatment alternatives available. Natural products continue to be a source of a vast array of potent neurotrophic molecules that could be considered as drug design starting points. The present study reports eight new isoindolinone and benzofuranone derivatives, for which we propose the trivial names, hericioic acids A-G (1-7) and hericiofuranoic acid (8), which were isolated from a solid culture (using rice as substrate) of the rare European edible mushroom Hericium flagellum. The chemical structures of these compounds were determined based on extensive 1D and 2D NMR spectroscopy along with HRESIMS analyses. The isolated compounds were assessed for their neurotrophic activity in rat pheochromocytoma cells (PC-12) to promote neurite outgrowth on 5 ng NGF supplementation; all the compounds increased neurite outgrowths, with compounds 3, 4, and 8 exhibiting the strongest effects.
Collapse
Affiliation(s)
- Winnie Chemutai Sum
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Sherif S Ebada
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, Technische Universität Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, 61519 Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Martínez‐Mármol R, Chai Y, Conroy JN, Khan Z, Hong S, Kim SB, Gormal RS, Lee DH, Lee JK, Coulson EJ, Lee MK, Kim SY, Meunier FA. Hericerin derivatives activates a pan-neurotrophic pathway in central hippocampal neurons converging to ERK1/2 signaling enhancing spatial memory. J Neurochem 2023; 165:791-808. [PMID: 36660878 PMCID: PMC10952766 DOI: 10.1111/jnc.15767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
The traditional medicinal mushroom Hericium erinaceus is known for enhancing peripheral nerve regeneration through targeting nerve growth factor (NGF) neurotrophic activity. Here, we purified and identified biologically new active compounds from H. erinaceus, based on their ability to promote neurite outgrowth in hippocampal neurons. N-de phenylethyl isohericerin (NDPIH), an isoindoline compound from this mushroom, together with its hydrophobic derivative hericene A, were highly potent in promoting extensive axon outgrowth and neurite branching in cultured hippocampal neurons even in the absence of serum, demonstrating potent neurotrophic activity. Pharmacological inhibition of tropomyosin receptor kinase B (TrkB) by ANA-12 only partly prevented the NDPIH-induced neurotrophic activity, suggesting a potential link with BDNF signaling. However, we found that NDPIH activated ERK1/2 signaling in the absence of TrkB in HEK-293T cells, an effect that was not sensitive to ANA-12 in the presence of TrkB. Our results demonstrate that NDPIH acts via a complementary neurotrophic pathway independent of TrkB with converging downstream ERK1/2 activation. Mice fed with H. erinaceus crude extract and hericene A also exhibited increased neurotrophin expression and downstream signaling, resulting in significantly enhanced hippocampal memory. Hericene A therefore acts through a novel pan-neurotrophic signaling pathway, leading to improved cognitive performance.
Collapse
Affiliation(s)
- Ramón Martínez‐Mármol
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
| | - YeJin Chai
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
| | - Jacinta N. Conroy
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Zahra Khan
- College of PharmacyGachon UniversityIncheonRepublic of Korea
| | - Seong‐Min Hong
- College of PharmacyGachon UniversityIncheonRepublic of Korea
| | - Seon Beom Kim
- College of PharmacyChungbuk National UniversityCheongjuRepublic of Korea
| | - Rachel S. Gormal
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
| | - Dae Hee Lee
- CNGBio corpCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jae Kang Lee
- CNGBio corpCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Elizabeth J. Coulson
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Mi Kyeong Lee
- College of PharmacyChungbuk National UniversityCheongjuRepublic of Korea
| | - Sun Yeou Kim
- College of PharmacyGachon UniversityIncheonRepublic of Korea
- Gachon Institute of Pharmaceutical ScienceGachon UniversityIncheonRepublic of Korea
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
14
|
Liu J, Mallick S, Xie Y, Grassin C, Lucas B, Schölermann B, Pahl A, Scheel R, Strohmann C, Protzel C, Berg T, Merten C, Ziegler S, Waldmann H. Morphological Profiling Identifies the Motor Protein Eg5 as Cellular Target of Spirooxindoles. Angew Chem Int Ed Engl 2023; 62:e202301955. [PMID: 36929571 DOI: 10.1002/anie.202301955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
Oxindoles and iso-oxindoles are natural product-derived scaffolds that provide inspiration for the design and synthesis of novel biologically relevant compound classes. Notably, the spirocyclic connection of oxindoles with iso-oxindoles has not been explored by nature but promises to provide structurally related compounds endowed with novel bioactivity. Therefore, methods for their efficient synthesis and the conclusive discovery of their cellular targets are highly desirable. We describe a selective RhIII -catalyzed scaffold-divergent synthesis of spirooxindole-isooxindoles and spirooxindole-oxindoles from differently protected diazooxindoles and N-pivaloyloxy aryl amides which includes a functional group-controlled Lossen rearrangement as key step. Unbiased morphological profiling of a corresponding compound collection in the Cell Painting assay efficiently identified the mitotic kinesin Eg5 as the cellular target of the spirooxindoles, defining a unique Eg5 inhibitor chemotype.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Shubhadip Mallick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Yusheng Xie
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Corentin Grassin
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Belén Lucas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Compound Management and Screening Center, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Christoph Protzel
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Christian Merten
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| |
Collapse
|
15
|
Van der Merwe B, Herrmann P, Jacobs K. Hericium ophelieae sp. nov., a novel species of Hericium (Basidiomycota: Russulales, Hericiaceae) from the Southern Afrotemperate forests of South Africa. Mycology 2023; 14:133-141. [PMID: 37152849 PMCID: PMC10161958 DOI: 10.1080/21501203.2023.2191636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
A novel species of Hericium was recently collected in the Afrotemperate forests (Knysna - Amatole region) of Southern Africa. The novel species shares many similar, dentate features common to other species in Hericium, and its basidiome first appears stark white and yellows with age. However, the substrate choice and gloeocystidia and basidiospore sizes of the specimens collected were distinct from other Hericium species. This was confirmed by sequencing the ITS and 28S genetic markers, respectively. The novel species is described as Hericium ophelieae sp. nov. and appears unique as it grows on hardwoods indigenous to Southern Africa. The species has larger basidiospores and wider gloeocystidia compared to its closest relative. H. ophelieae sp. nov. is the first endemic species of the medicinal mushroom genus Hericium to be described from Southern Africa, and the second to be described from Africa, after its closest relative, H. bembedjaense, which was isolated in Cameroon. Although this is the first Hericium to be described from the Southern African region, there are likely others to be discovered, and this study highlights the need for further research into the fungal diversity of Afrotemperate environments.
Collapse
|
16
|
Hassan K, Matio Kemkuignou B, Kirchenwitz M, Wittstein K, Rascher-Albaghdadi M, Chepkirui C, Matasyoh JC, Decock C, Köster RW, Stradal TEB, Stadler M. Neurotrophic and Immunomodulatory Lanostane Triterpenoids from Wood-Inhabiting Basidiomycota. Int J Mol Sci 2022; 23:13593. [PMID: 36362380 PMCID: PMC9657622 DOI: 10.3390/ijms232113593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/05/2023] Open
Abstract
Neurotrophins such as nerve growth factor (ngf) and brain-derived neurotrophic factor (bdnf) play important roles in the central nervous system. They are potential therapeutic drugs for the treatment of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neurotrophic properties of triterpenes isolated from fruiting bodies of Laetiporus sulphureus and a mycelial culture of Antrodia sp. MUCL 56049. The structures of the isolated compounds were elucidated based on nuclear magnetic resonance (NMR) spectroscopy in combination with high-resolution electrospray mass spectrometry (HR-ESIMS). The secondary metabolites were tested for neurotrophin (ngf and bdnf) expression levels on human astrocytoma 1321N1 cells. Neurite outgrowth activity using rat pheochromocytoma (PC-12) cells was also determined. Twelve triterpenoids were isolated, of which several potently stimulated the expression of neurotrophic factors, namely, ngf (sulphurenic acid, 15α-dehydroxytrametenolic acid, fomefficinic acid D, and 16α-hydroxyeburicoic acid) and bdnf (sulphurenic acid and 15α-dehydroxytrametenolic acid), respectively. The triterpenes also potentiated ngf-induced neurite outgrowth in PC-12 cells. This is, to the best of our knowledge, the first report on the compound class of lanostanes in direct relation to bdnf and ngf enhancement. These compounds are widespread in medicinal mushrooms; hence, they appear promising as a starting point for the development of drugs and mycopharmaceuticals to combat neurodegenerative diseases. Interestingly, they do not show any pronounced cytotoxicity and may, therefore, be better suited for therapy than many other neurotrophic compounds that were previously reported.
Collapse
Affiliation(s)
- Khadija Hassan
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kathrin Wittstein
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Monique Rascher-Albaghdadi
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Clara Chepkirui
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Josphat C. Matasyoh
- Department of Chemistry, Egerton University, P.O. Box 536, Njoro 20115, Kenya
| | - Cony Decock
- Mycothéque de l’Université Catholique de Louvain (BCCM/MUCL), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium
| | - Reinhard W. Köster
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
17
|
Optimal conditions for mycelial growth of medicinal mushrooms belonging to the genus Hericium. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractHericium is a well-known genus that comprises edible and medicinal mushrooms with fleshy, distinctive white spines that hang from a tough, unbranched clump, and grows on dying or dead wood. In preparation for the artificial cultivation of these mushrooms in Thailand, an optimization of mycelial growth on different agar culture media, for various conditions (including temperature, pH, cereal grains, and agricultural waste, carbon sources, nitrogen sources, and the ratio of media components) was carried out. For this study, three strains of H. erinaceus (MFLUCC 21-0018, MFLUCC 21-0019, and MFLUCC 21-0020) were favorably grown on OMYA medium, at 25 °C and at a pH of 4–4.5, while one strain of H. erinaceus (MFLUCC 21-0021) grew favorably on CDA medium, at 25 °C and pH 5.5. The favorable condition for H. coralloides (MFLUCC 21-0050) growth was MYPA medium, at 30 °C and pH 5.5. All five strains presented higher mycelial growth on wheat grain. Carbon and nitrogen sources promoted higher rates using molasses and yeast extract respectively, and a ratio of these media components of 10:1 resulted in higher growth rates. The data presented provide growth requirements that will be useful in the future development of the cultivation of Hericium mushrooms.
Collapse
|
18
|
Vishwanath M, Chaudhary CL, Park Y, Viji M, Jung C, Lee K, Sim J, Hong SM, Yoon DH, Lee DH, Lee JK, Lee H, Lee MK, Kim SY, Jung JK. Total Synthesis of Isohericerinol A and Its Analogues to Access Their Potential Neurotrophic Effects. J Org Chem 2022; 87:10836-10847. [PMID: 35946352 DOI: 10.1021/acs.joc.2c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The secondary metabolites from Hericium erinaceus are well-known to have neurotrophic and neuroprotective effects. Isohericerinol A (1), isolated by our colleagues from its fruiting parts has a strong ability to increase the nerve growth factor secretion in C6 glioma cells. The current work describes the total synthesis of 1 and its regioisomer 5 in a few steps. We present two different approaches to 1 and a regiodivergent approach for both 1 and 5 by utilizing easily accessible feedstocks. Interestingly, the natural product 1, regioisomer 5, and their intermediates exhibited potent neurotrophic activity in in vitro experimental systems. Thus, these synthetic strategies provide access to a systematic structure-activity relationship study of natural product 1.
Collapse
Affiliation(s)
- Manjunatha Vishwanath
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Yunjeong Park
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Chanhyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Kwanghee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Seong Min Hong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Da Hye Yoon
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | | | | | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| |
Collapse
|
19
|
Zorrilla JG, Evidente A. Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup. Biomolecules 2022; 12:biom12081025. [PMID: 35892335 PMCID: PMC9332295 DOI: 10.3390/biom12081025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alkaloids are a wide family of basic N-containing natural products, whose research has revealed bioactive compounds of pharmacological interest. Studies on these compounds have focused more attention on those produced by plants, although other types of organisms have also been proven to synthesize bioactive alkaloids, such as animals, marine organisms, bacteria, and fungi. This review covers the findings of the last 20 years (2002–2022) related to the isolation, structures, and biological activities of the alkaloids produced by mushrooms, a fungal subgroup, and their potential to develop drugs and agrochemicals. In some cases, the synthesis of the reviewed compounds and structure−activity relationship studies have been described.
Collapse
Affiliation(s)
- Jesús G. Zorrilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, C/Republica Saharaui, s/n, 11510 Puerto Real, Spain
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
- Correspondence:
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
| |
Collapse
|
20
|
Genome Sequencing of Hericium coralloides by a Combination of PacBio RS II and Next-Generation Sequencing Platforms. Int J Genomics 2022; 2022:4017654. [PMID: 35141329 PMCID: PMC8820905 DOI: 10.1155/2022/4017654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
The fruiting bodies or mycelia of Hericium coralloides (H. coralloides) contain many physiologically active compounds that are used to treat various diseases, including cardiovascular disorders and cancers. However, the genome of H. coralloides has not been sequenced, which hinders further investigations into aspects, such as bioactivity or evolutionary events. The present study is aimed at (i) performing de novo sequencing of the assembled genome; (ii) mapping the reads from PE400 DNA into the assembled genome; (iii) identifying the full length of all the repeated sequences; and (iv) annotating protein-coding genes using GO, eggNOG, and KEGG databases. The assembled genome comprised 5,59,05,675 bp, including 307 contigs. The mapping rate of reads obtained from PE400 DNA in the assembled genome was 92.46%. We identified 2,525 repeated sequences of 14,23,274 bp length. We predicted ncRNAs of 48,895 bp and 11,736 genes encoding proteins that were annotated in the GO, eggNOG, and KEGG databases. We are the first to sequence the entire H. coralloides genome (NCBI; Assembly: ASM367540v1), which will serve as a reference for studying the evolutionary diversification of edible and medicinal mushrooms and facilitate the application of bioactivity in H. coralloides.
Collapse
|
21
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
22
|
Mashiko T, Nakazato Y, Katsumura Y, Kasamatsu A, Adachi S, Kamo S, Matsuzawa A, Sugita K. Convergent total synthesis of corallocin A. Org Biomol Chem 2021; 19:5127-5132. [PMID: 34019614 DOI: 10.1039/d1ob00451d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first total synthesis of corallocin A is described herein. The Suzuki coupling reaction as a key step proceeded with high stereoselectivity and in good yield. Robust transformations, including Vilsmeier-Haack formylation and Wittig reaction, allowed for effective access to corallocin A.
Collapse
Affiliation(s)
- Tomoya Mashiko
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Yuta Nakazato
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Yuta Katsumura
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Akihiko Kasamatsu
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Shinya Adachi
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Shogo Kamo
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Akinobu Matsuzawa
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kazuyuki Sugita
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
23
|
Ryu SH, Hong SM, Khan Z, Lee SK, Vishwanath M, Turk A, Yeon SW, Jo YH, Lee DH, Lee JK, Hwang BY, Jung JK, Kim SY, Lee MK. Neurotrophic isoindolinones from the fruiting bodies of Hericium erinaceus. Bioorg Med Chem Lett 2021; 31:127714. [DOI: 10.1016/j.bmcl.2020.127714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
|
24
|
Upadhyay SP, Thapa P, Sharma R, Sharma M. 1-Isoindolinone scaffold-based natural products with a promising diverse bioactivity. Fitoterapia 2020; 146:104722. [PMID: 32920034 DOI: 10.1016/j.fitote.2020.104722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
Isoindolin-1-one or 1-isoindolinone framework is referred to phthalimidines or benzo fused γ-lactams of the corresponding γ-amino carboxylic acids and has been of prime interest for scientists for last several decades. 1-Isoindolinone framework is found in a wide range of naturally occurring compounds with diverse biological activities and therapeutic potential for various chronic diseases. Recent developments in synthetic methods for their procurement have opened a new era of 1-isoindolinone chemistry. This review aims to provide an alphabetical quick reference guide to only 1-isoindolinone based natural products and its variable fused, oxidized and reduced state skeleton with information for advanced chemotaxonomic analyses, cellular targets/pathways and diverse biological activities and future use for medicinal chemistry.
Collapse
Affiliation(s)
- Sunil P Upadhyay
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States.
| | - Pritam Thapa
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Ram Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Mukut Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| |
Collapse
|
25
|
Cao W, Chen P, Tang Y. Total Synthesis of Isohericenone J via a Stille Coupling Reaction. JOURNAL OF NATURAL PRODUCTS 2020; 83:1701-1705. [PMID: 32352292 DOI: 10.1021/acs.jnatprod.9b01251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The first total synthesis of isohericenone J is reported. Key features of this synthetic strategy are a Friedel-Crafts reaction to construct the isobenzofuranone unit and a Pd-catalyzed Stille coupling reaction for the formation of the C5-C1' bond, generating the natural product, as well as one of its isomers, in 6.0% overall yield in eight steps. This strategy provides a foundation for the synthesis of challenging isobenzofuranone and isoindolinone-type derivatives.
Collapse
Affiliation(s)
- Wei Cao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, People's Republic of China
| | - Ping Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, People's Republic of China
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
| |
Collapse
|
26
|
A concise total synthesis and PPAR activation activity of hericerin from Hericium erinaceum. J Antibiot (Tokyo) 2020; 73:646-649. [PMID: 32269298 DOI: 10.1038/s41429-020-0303-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023]
Abstract
Hericerin is an isoindolinone meroterpenoid alkaloid isolated from medicinal mushroom Hericium erinaceum with some bioactivities. Herein, a concise total synthesis of hericerin was described, with four steps and 30% overall yield starting from commercially available methyl 3-hydroxy-5-methoxybenzoate and geranyl bromide. A comprehensive effect of hericerin on HepG2 cell line was observed and confirmed by transcriptomic analysis. Furthermore, hericerin was found to be a new PPARγ agonist.
Collapse
|
27
|
Jumbam B, Haelewaters D, Koch RA, Dentinger BTM, Henkel TW, Aime MC. A new and unusual species of Hericium (Basidiomycota: Russulales, Hericiaceae) from the Dja Biosphere Reserve, Cameroon. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01530-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Narmani A, Teponno RB, Helaly SE, Arzanlou M, Stadler M. Cytotoxic, anti-biofilm and antimicrobial polyketides from the plant associated fungus Chaetosphaeronema achilleae. Fitoterapia 2019; 139:104390. [PMID: 31655088 DOI: 10.1016/j.fitote.2019.104390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/08/2023]
Abstract
From extracts of the plant associated fungus Chaetosphaeronema achilleae collected in Iran, a previously unreported isoindolinone named chaetosisoindolinone (1) and a previously undescribed indanone named chaetosindanone (2) were isolated in addition to five known metabolites, 2-(2-acetyl-3,5-dihydroxyphenyl) acetic acid (3), vulculic acid (4), 2-(2-acetyl-3-hydroxy-5-methoxyphenyl)acetic acid (5), curvulin (6), and curvulol (7). Their structures were elucidated on the basis of extensive spectroscopic analysis and high-resolution mass spectrometry. The isolated compounds were tested for their antimicrobial, anti-biofilm, and nematicidal activities. Compound 2 exhibited cytotoxicity against the human breast adenocarcinoma MCF-7 cells with an IC50 value of 1.5 μg/mL. Furthermore, compounds 4 and 7 almost completely inhibited biofilm formation in Staphylococcus aureus at 256 μg/mL. Weak antimicrobial activities were also observed for some of the isolated compounds against Mucor hiemalis, Rhodoturula glutinis, Chromobacterium violaceum, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Abolfazl Narmani
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Rémy Bertrand Teponno
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
29
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
30
|
|
31
|
Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 2019; 37:107344. [PMID: 30738916 DOI: 10.1016/j.biotechadv.2019.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
Collapse
|
32
|
Kim JY, Woo EE, Lee IK, Yun BS. New antioxidants from the culture broth of Hericium coralloides. J Antibiot (Tokyo) 2018; 71:822-825. [PMID: 29773898 DOI: 10.1038/s41429-018-0067-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 11/09/2022]
Abstract
In our effort to find antioxidants from the higher fungi, we isolated three new compounds (1-3) with a known compound, spirobenzofuran (4), from the culture broth of Hericium coralloides. Bioassay-guided fractionation led to the isolation of these compounds, and we determined the chemical structures through spectroscopic methods. These compounds exhibited antioxidant activity in the range of IC50 values of 29-66 μM in the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging assay.
Collapse
Affiliation(s)
- Ji-Yul Kim
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea
| | - E-Eum Woo
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea.
| |
Collapse
|
33
|
Premnath P, Reck M, Wittstein K, Stadler M, Wagner-Döbler I. Screening for inhibitors of mutacin synthesis in Streptococcus mutans using fluorescent reporter strains. BMC Microbiol 2018; 18:24. [PMID: 29580208 PMCID: PMC5870221 DOI: 10.1186/s12866-018-1170-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background Within the polymicrobial dental plaque biofilm, bacteria kill competitors by excreting mixtures of bacteriocins, resulting in improved fitness and survival. Inhibiting their bacteriocin synthesis might therefore be a useful strategy to eliminate specific pathogens. We used Streptococcus mutans, a highly acidogenic inhabitant of dental plaque, as a model and searched for natural products that reduced mutacin synthesis. To this end we fused the promoter of mutacin VI to the GFP+ gene and integrated the construct into the genome of S. mutans UA159 by single homologous recombination. Results The resulting reporter strain 423p - gfp + was used to screen 297 secondary metabolites from different sources, mainly myxobacteria and fungi, for their ability to reduce the fluorescence of the fully induced reporter strain by > 50% while growth was almost unaffected (> 90% of control). Seven compounds with different chemical structures and different modes of action were identified. Erinacine C was subsequently validated and shown to inhibit transcription of all three mutacins of S. mutans. The areas of the inhibition zones of the sensor strains S. sanguinis and Lactococcus lactis were reduced by 35% to 61% in comparison to controls in the presence of erinacine C, demonstrating that the amount of active mutacins in the culture supernatants of S. mutans was reduced. Erinacines are cyathane diterpenes that were extracted from cultures of the edible mushroom Hericium erinaceus. They have anti-inflammatory, antimicrobial and neuroprotective effects. For erinacine C, a new biological activity was found here. Conclusions We demonstrate the successful development of a whole-cell fluorescent reporter for the screening of natural compounds and report that erinacine C suppresses mutacin synthesis in S. mutans without affecting cell viability. Electronic supplementary material The online version of this article (10.1186/s12866-018-1170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanka Premnath
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Michael Reck
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Kathrin Wittstein
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
34
|
Two New Cyathane Diterpenoids from Mycelial Cultures of the Medicinal Mushroom Hericium erinaceus and the Rare Species, Hericium flagellum. Int J Mol Sci 2018; 19:ijms19030740. [PMID: 29509661 PMCID: PMC5877601 DOI: 10.3390/ijms19030740] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Basidiomycetes of the genus Hericium are among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor (NGF) or (as established more recently) brain-derived neurotrophic factor (BDNF) in cell-based bioassays. The present study reports on the metabolite profiles of a Lion’s Mane mushroom (Hericium erinaceus) strain and a strain of the rare species, Hericium flagellum (synonym H. alpestre). While we observed highly similar metabolite profiles between the two strains that were examined, we isolated two previously undescribed metabolites, given the trivial names erinacines Z1 and Z2. Their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry. Along with six further, previously identified cyathane diterpenes, the novel erinacines were tested for neurotrophin inducing effects. We found that erinacines act on BDNF, which is a neurotrophic factor that has been reported recently by us to be induced by the corallocins, but as well on NGF expression, which is consistent with the literature.
Collapse
|
35
|
Chiu CH, Chyau CC, Chen CC, Lee LY, Chen WP, Liu JL, Lin WH, Mong MC. Erinacine A-Enriched Hericium erinaceus Mycelium Produces Antidepressant-Like Effects through Modulating BDNF/PI3K/Akt/GSK-3β Signaling in Mice. Int J Mol Sci 2018; 19:ijms19020341. [PMID: 29364170 PMCID: PMC5855563 DOI: 10.3390/ijms19020341] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Antidepressant-like effects of ethanolic extract of Hericium erinaceus (HE) mycelium enriched in erinacine A on depressive mice challenged by repeated restraint stress (RS) were examined. HE at 100, 200 or 400 mg/kg body weight/day was orally given to mice for four weeks. After two weeks of HE administration, all mice except the control group went through with 14 days of RS protocol. Stressed mice exhibited various behavioral alterations, such as extending immobility time in the tail suspension test (TST) and forced swimming test (FST), and increasing the number of entries in open arm (POAE) and the time spent in the open arm (PTOA). Moreover, the levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were decreased in the stressed mice, while the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were increased. These changes were significantly inverted by the administration of HE, especially at the dose of 200 or 400 mg/kg body weight/day. Additionally, HE was shown to activate the BDNF/TrkB/PI3K/Akt/GSK-3β pathways and block the NF-κB signals in mice. Taken together, erinacine A-enriched HE mycelium could reverse the depressive-like behavior caused by RS and was accompanied by the modulation of monoamine neurotransmitters as well as pro-inflammatory cytokines, and regulation of BDNF pathways. Therefore, erinacine A-enriched HE mycelium could be an attractive agent for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Chun-Hung Chiu
- Research Institute of Biotechnology, HungKuang University, Taichung 43302, Taiwan.
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, HungKuang University, Taichung 43302, Taiwan.
| | - Chin-Chu Chen
- Bioengineering Center, Grape King Bio Ltd., Taoyuan City 32471, Taiwan.
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
- Institute of Food Science and Technology, National Taiwan University, Taipei City 10617, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan.
- Institute of Biotechnology, National Changhua University of Education, Changhua County 50007, Taiwan.
| | - Li-Ya Lee
- Bioengineering Center, Grape King Bio Ltd., Taoyuan City 32471, Taiwan.
| | - Wan-Ping Chen
- Bioengineering Center, Grape King Bio Ltd., Taoyuan City 32471, Taiwan.
| | - Jia-Ling Liu
- Research Institute of Biotechnology, HungKuang University, Taichung 43302, Taiwan.
| | - Wen-Hsin Lin
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
36
|
Bioactive Molecules in Edible and Medicinal Mushrooms for Human Wellness. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54528-8_83-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Teponno RB, Noumeur SR, Helaly SE, Hüttel S, Harzallah D, Stadler M. Furanones and Anthranilic Acid Derivatives from the Endophytic Fungus Dendrothyrium variisporum. Molecules 2017; 22:molecules22101674. [PMID: 28991218 PMCID: PMC6151570 DOI: 10.3390/molecules22101674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
Extracts from an endophytic fungus isolated from the roots of the Algerian plant Globularia alypum showed prominent antimicrobial activity in a screening for novel antibiotics. The producer organism was identified as Dendrothyrium variisporum by means of morphological studies and molecular phylogenetic methods. Studies on the secondary metabolite production of this strain in various culture media revealed that the major components from shake flasks were massarilactones D (1) and H (2) as well as two new furanone derivatives for which we propose the trivial names (5S)-cis-gregatin B (3) and graminin D (4). Scale-up of the fermentation in a 10 L bioreactor yielded massarilactone D and several further metabolites. Among those were three new anthranilic acid derivatives (5-7), two known anthranilic acid analogues (8 and 9) and three cyclopeptides (10-12). Their structures were elucidated on the basis of extensive spectroscopic analysis (1D- and 2D-NMR), high-resolution mass spectrometry (HRESIMS), and the application of the modified Mosher's method. The isolated metabolites were tested for antimicrobial and cytotoxic activities against various bacteria, fungi, and two mammalian cell lines. The new Metabolite 5 and Compound 9 exhibited antimicrobial activity while Compound 9 showed cytotoxicity activity against KB3.1 cells.
Collapse
Affiliation(s)
- Rémy B Teponno
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Sara R Noumeur
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas, 19000 Sétif, Algeria.
- Department of Microbiology-Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05000 Batna, Algeria.
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
- Department of Chemistry, Faculty of Science, Aswan University, 81528 Aswan, Egypt.
| | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | - Daoud Harzallah
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas, 19000 Sétif, Algeria.
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
38
|
Zhang CC, Cao CY, Kubo M, Harada K, Yan XT, Fukuyama Y, Gao JM. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway. Int J Mol Sci 2017; 18:ijms18081659. [PMID: 28758954 PMCID: PMC5578049 DOI: 10.3390/ijms18081659] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022] Open
Abstract
Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound (6) and one new natural product (2) together with five known compounds (1,3-5,7) were obtained and their structures were elucidated by spectroscopic analysis, including 2D NMR and HRMS. The cell-based screening for bioactivity showed that 4-chloro-3,5-dimethoxybenzoic methyl ester (1) and a cyathane diterpenoid, erincine A (3), not only potentiated NGF-induced neurite outgrowth but also protected neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma cells. Additionally, compound 3 induced neuritogenesis in primary rat cortex neurons. Furthermore, our results revealed that TrkA-mediated and Erk1/2-dependant pathways could be involved in 1 and 3-promoted NGF-induced neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Cheng-Chen Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Chen-Yu Cao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Xi-Tao Yan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Jin-Ming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
39
|
Abstract
Mushrooms are known to produce over 140 natural products bearing an indole heterocycle. In this review, the isolation of these mushroom-derived indole alkaloids is discussed, along with their associated biological activities.
Collapse
Affiliation(s)
- Joshua A Homer
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
40
|
Zhang C, Li C, Ye W, Yang M. The complete mitochondrial genome of Hericium coralloides (Hericiaceae, Basidiomycota). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:385-386. [PMID: 33473835 PMCID: PMC7800198 DOI: 10.1080/23802359.2017.1347898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the complete mitochondrial genome of the medicinal mushroom Hericium coralloides (Hericiaceae, Basidiomycota) was sequenced. This mitochondrial genome is 72,961 bp in length and consisted of 14 protein-coding genes, 21 hypothetical open reading frames, 2 ribosomal RNA subunits and 27 transfer RNAs. The overall nucleotide composition of is 41.33% A, 40.71% T, 9.06% C and 8.90% G, with GC content of 17.96%. A phylogenetic tree with the complete mitochondrial genome sequences of Hericium coralloides together with 9 other affinis mushrooms was constructed. The newly achieved mitochondrial genome sequence seem to be useful for addressing taxonomic issues and studying related evolution events, which would contribute to enrich the fungal mitochondrial genome resource and promote the biological research.
Collapse
Affiliation(s)
- Caixia Zhang
- Tibet Vocational Technical College, Lhasa, Xizang, People's Republic of China
| | - Changshan Li
- Tibet Vocational Technical College, Lhasa, Xizang, People's Republic of China
| | - Weixing Ye
- Shanghai Personal Biotechnology Co., Ltd, Shanghai, People's Republic of China
| | - Manjun Yang
- Tibet Vocational Technical College, Lhasa, Xizang, People's Republic of China.,School of Life Sciences, Sun Yatsen University, University City, Guangzhou, People's Republic of China
| |
Collapse
|
41
|
Noumeur SR, Helaly SE, Jansen R, Gereke M, Stradal TEB, Harzallah D, Stadler M. Preussilides A-F, Bicyclic Polyketides from the Endophytic Fungus Preussia similis with Antiproliferative Activity. JOURNAL OF NATURAL PRODUCTS 2017; 80:1531-1540. [PMID: 28398049 DOI: 10.1021/acs.jnatprod.7b00064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Six novel bioactive bicyclic polyketides (1-6) were isolated from cultures of an endophytic fungus of the medicinal plant Globularia alypum collected in Batna, Algeria. The producer organism was identified as Preussia similis using morphological and molecular phylogenetic methods. The structures of metabolites 1-6, for which the trivial names preussilides A-F are proposed, were elucidated using a combination of spectral methods, including extensive 2D NMR spectroscopy, high-resolution mass spectrometry, and CD spectroscopy. Preussilides were tested for antimicrobial and antiproliferative effects, and, in particular, compounds 1 and 3 showed selective activities against eukaryotes. Subsequent studies on the influence of 1 and 3 on the morphology of human osteosarcoma cells (U2OS) suggest that these two polyketides might target an enzyme involved in coordination of the cell division cycle. Hence, they might, for instance, affect timing or spindle assembly mechanisms, leading to defects in chromosome segregation and/or spindle geometry.
Collapse
Affiliation(s)
- Sara R Noumeur
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas , 19000 Sétif, Algeria
- Department of Microbiology-Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2 , 05000 Batna, Algeria
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Chemistry, Faculty of Science, Aswan University , 81528 Aswan, Egypt
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marcus Gereke
- Department of Cell Biology, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Daoud Harzallah
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas , 19000 Sétif, Algeria
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
42
|
Li W, Bang SH, Lee C, Ma JY, Shim SH, Kim YH. Sterols, aromatic compounds, and cerebrosides from the Hericium erinaceus fruiting body. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Chepkirui C, Richter C, Matasyoh JC, Stadler M. Monochlorinated calocerins A-D and 9-oxostrobilurin derivatives from the basidiomycete Favolaschia calocera. PHYTOCHEMISTRY 2016; 132:95-101. [PMID: 27745908 DOI: 10.1016/j.phytochem.2016.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Eight previously undescribed compounds were isolated and characterised from the supernatant and mycelium of a culture of the basidiomycete Favolaschia calocera originating from Kakamega equatorial rainforest in Kenya. These were: 9- oxostrobilurins A, G, K and I and the four monochlorinated calocerins A, B, C and D. The calocerins extend our knowledge of halogenated compounds obtained from natural sources. Four further known compounds were also identified: strobilurin G, favolon, pterulinic acid and 2,3 -dihydro-1-benzoxepin derivative. The four oxostrobilurins exhibited prominent antifungal and cytotoxic activities while the four calocerins only showed cytotoxic activity.
Collapse
Affiliation(s)
- Clara Chepkirui
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Christian Richter
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Marc Stadler
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|