1
|
Saini HP, Meena M, Sahoo A, Mehta T. A review on fungal endophytes of the family Fabaceae, their metabolic diversity and biological applications. Heliyon 2025; 11:e42153. [PMID: 40196783 PMCID: PMC11947704 DOI: 10.1016/j.heliyon.2025.e42153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 04/09/2025] Open
Abstract
Fabaceae is considered the third largest family of the plant kingdom, comprising of a large number of plants, belonging to 650 genera and 20,000 species of plants. Out of the various plant species that are reported in the family Fabaceae, many of the species have been reported to exhibit diverse pharmacological activities and are of economic importance to agriculturists and scientists across the globe. Studies over the last few decades have unraveled a lot of concrete information about different plants, ranging from the mutualistic interdependence of plants and microbes for their survival to the innumerable benefits of plants in the sectors of agriculture, food industry, medicine, and healthcare. The survival and effective maintenance of plant homeostasis is largely regulated by the diverse microbial population that co-exists in symbiotic relationships with plants. This endophytic microbial population can be either categorized as endophytic bacteria or endophytic fungi. The studies over the past decades have highlighted the crucial role of both endophytic bacteria and fungi in the growth and development of plants. This review explores the ameliorative roles of endophytic fungi in alleviating biotic and abiotic stresses in plants. Additionally, it highlights the vast diversity of secondary metabolites produced by these fungi and their potential applications. Secondary metabolites exhibit a wide range of biologically significant activities, including anticancer, antimicrobial, antimalarial, and nematicidal properties, which hold substantial importance in therapeutic and agricultural applications. Furthermore, the role of various endophytic fungi of the Fabaceae family has been shown in phytoremediation.
Collapse
Affiliation(s)
- Hanuman Prasad Saini
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Abhishek Sahoo
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
2
|
Zhou JT, Wu Q, Zhao JX, Wu LL, He XH, Liang LQ, Zhang GH, Li J, Xu WF, Yang RY. Sucurchalasins A and B, Sulfur-Containing Heterodimers of a Cytochalasan and a Macrolide from the Endophytic Fungus Aspergillus spelaeus GDGJ-286. JOURNAL OF NATURAL PRODUCTS 2024; 87:2327-2334. [PMID: 39258410 DOI: 10.1021/acs.jnatprod.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two sulfur-containing heterodimers of a cytochalasan and a macrolide, sucurchalasins A and B (1 and 2), and four known cytochalasan monomers (3-6), as well as four known macrolide derivatives (7-10), were obtained from the endophytic fungus Aspergillus spelaeus GDGJ-286. Sucurchalasins A and B (1 and 2) are the first cytochalasan heterodimers formed via a thioether bridge between cytochalasan and curvularin macrolide units. Their structures were elucidated by detailed analysis of NMR, LC-MS/MS, and X-ray crystallography. In bioassays, 1 and 2 exhibited cytotoxic effects on A2780 cells, with IC50 values of 3.9 and 8.3 μM, respectively. They also showed antibacterial activities against E. faecalis and B. subtilis with MIC values of 3.1 and 6.3 μg/mL, respectively.
Collapse
Affiliation(s)
- Jia-Tong Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Qian Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jing-Xian Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Liu-Lin Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xian-Hua He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Li-Qi Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Guo-Hai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Wei-Feng Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Rui-Yun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
3
|
Feng DH, Cui JL. Progress on metabolites of Astragalus medicinal plants and a new factor affecting their formation: Biotransformation of endophytic fungi. Arch Pharm (Weinheim) 2024; 357:e2400249. [PMID: 38838334 DOI: 10.1002/ardp.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
It is generally believed that the main influencing factors of plant metabolism are genetic and environmental factors. However, the transformation and catalysis of metabolic intermediates by endophytic fungi have become a new factor and resource attracting attention in recent years. There are over 2000 precious plant species in the Astragalus genus. In the past decade, at least 303 high-value metabolites have been isolated from the Astragalus medicinal plants, including 124 saponins, 150 flavonoids, two alkaloids, six sterols, and over 20 other types of compounds. These medicinal plants contain abundant endophytic fungi with unique functions, and nearly 600 endophytic fungi with known identity have been detected, but only about 35 strains belonging to 13 genera have been isolated. Among them, at least four strains affiliated to Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae, and Camarosporium laburnicola have demonstrated the ability to biotransform four saponin compounds from the Astragalus genus, resulting in the production of 66 new compounds, which have significantly enhanced our understanding of the formation of metabolites in plants of the Astragalus genus. They provide a scientific basis for improving the cultivation quality of Astragalus plants through the modification of dominant fungal endophytes or reshaping the endophytic fungal community. Additionally, they open up new avenues for the discovery of specialized, green, efficient, and sustainable biotransformation pathways for complex pharmaceutical intermediates.
Collapse
Affiliation(s)
- Ding-Hui Feng
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| |
Collapse
|
4
|
El-khayat ES, Abouelela ME, Abdelhamid RA, Alorainy MS, Shaaban KA. MACROLACTONES AND MACROLIDES FROM PLANT ENDOPHYTIC FUNGI, CHEMICAL SCAFFOLDS, BIOLOGICAL ACTIVITIES AND SPECTROSCOPY: A COMPREHENSIVE REVIEW. BULLETIN OF PHARMACEUTICAL SCIENCES 2024; 47:151-168. [PMID: 39902252 PMCID: PMC11789693 DOI: 10.21608/bfsa.2023.224497.1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Background The pandemic of COVID-19 has stressed the exaggerated demand for innovative treatments, prompting the search for new sources. Plant endophytic fungi produce a diverse array of biologically active compounds, including macrolides and macrolactones with varying activities. Aim of the Study In this review we give an updated overview of natural macrolides and macrololactones from plant endophytes addressing original studies published up to June 2023. Results Over the preceding ten years, 91 macrolides with 80 novel compounds with cytotoxic, antibacterial, antifungal, and α-glucosidase inhibitory activities. Unfortunately, the number of novel chemicals identified from marine or bacterial endophytes in the same period is substantially lower. Accordingly, further study on plant endophytes, which are critical for drug research and the development of novel medicines, including antitumors, antivirals, antibacterials, and antimalarials, should be conducted. A report of the 13C NMR data of several endophytic macrolides are reported as a supplementary according to ring sizes and based on a united numbering built on literature search.
Collapse
Affiliation(s)
- Ehab Saad El-khayat
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Reda Ahmad Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Mohammad S. Alorainy
- Department of Pharmacology, College of Medicine, Qassim University, 6655 Buraidah 51542, Saudi Arabia
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
5
|
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Krawczyk P. Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules 2023; 28:molecules28114381. [PMID: 37298856 DOI: 10.3390/molecules28114381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the increasing availability of modern treatments, including personalized therapies, there is a strong need to search for new drugs that will be effective in the fight against cancer. The chemotherapeutics currently available to oncologists do not always yield satisfactory outcomes when used in systemic treatments, and patients experience burdensome side effects during their application. In the era of personalized therapies, doctors caring for non-small cell lung cancer (NSCLC) patients have been given a powerful weapon, namely molecularly targeted therapies and immunotherapies. They can be used when genetic variants of the disease qualifying for therapy are diagnosed. These therapies have contributed to the extension of the overall survival time in patients. Nevertheless, effective treatment may be hindered in the case of clonal selection of tumor cells with acquired resistance mutations. The state-of-the-art therapy currently used in NSCLC patients is immunotherapy targeting the immune checkpoints. Although it is effective, some patients have been observed to develop resistance to immunotherapy, but its cause is still unknown. Personalized therapies extend the lifespan and time to cancer progression in patients, but only those with a confirmed marker qualifying for the treatment (gene mutations/rearrangements or PD-L1 expression on tumor cells) can benefit from these therapies. They also cause less burdensome side effects than chemotherapy. The article is focused on compounds that can be used in oncology and produce as few side effects as possible. The search for compounds of natural origin, e.g., plants, bacteria, or fungi, exhibiting anticancer properties seems to be a good solution. This article is a literature review of research on compounds of natural origin that can potentially be used as part of NSCLC therapies.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Street 8, 20-704 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| |
Collapse
|
6
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Chang CH, Lee YC, Hsiao G, Chang LK, Chi WC, Cheng YC, Huang SJ, Wang TC, Lu YS, Lee TH. Anti-Epstein-Barr Viral Agents from the Medicinal Herb-Derived Fungus Alternaria alstroemeriae Km2286. JOURNAL OF NATURAL PRODUCTS 2022; 85:2667-2674. [PMID: 36346918 DOI: 10.1021/acs.jnatprod.2c00783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 μM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 μM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chieh Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chiung Chi
- Department of Food Science, National Quemoy University, Kinmen 89250, Taiwan
| | - Yuan-Chung Cheng
- Department of Chemistry and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Jung Huang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Chou Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Shan Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Witte TE, Villenueve N, Shields SW, Sproule A, Eggertson Q, Kim NE, Boddy CN, Dettman JR, Overy DP. Untargeted metabolomics screening reveals unique secondary metabolite production from Alternaria section Alternaria. Front Mol Biosci 2022; 9:1038299. [PMID: 36504718 PMCID: PMC9731300 DOI: 10.3389/fmolb.2022.1038299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Alternaria section Alternaria is comprised of many species that infect a broad diversity of important crop plants and cause post-harvest spoilage. Alternaria section Alternaria species, such as A. alternata and A. arborescens, are prolific producers of secondary metabolites that act as virulence factors of disease and are mycotoxins that accumulate in infected tissues-metabolites that can vary in their spectrum of production between individuals from the same fungal species. Untargeted metabolomics profiling of secondary metabolite production using mass spectrometry is an effective means to detect phenotypic anomalies in secondary metabolism within a species. Secondary metabolite phenotypes from 36 Alternaria section Alternaria isolates were constructed to observe frequency of production patterns. A clear and unique mass feature pattern was observed for three of the strains that were linked with the production of the dehydrocurvularin family of toxins and associated detoxification products. Examination of corresponding genomes revealed the presence of the dehydrocurvularin biosynthesis gene cluster associated with a sub-telomeric accessory region. A comparison of sequence similarity and occurrences of the dehydrocurvularin biosynthetic gene cluster within Pleosporalean fungi is presented and discussed.
Collapse
Affiliation(s)
- Thomas E. Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Nicolas Villenueve
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Samuel W. Shields
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Quinn Eggertson
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Natalie E. Kim
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy R. Dettman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - David P. Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
9
|
Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:1604. [PMID: 36421247 PMCID: PMC9687038 DOI: 10.3390/antibiotics11111604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Microorganisms are known as important sources of natural compounds that have been studied and applied for different purposes in distinct areas. Specifically, in the pharmaceutical area, fungi have been explored mainly as sources of antibiotics, antiviral, anti-inflammatory, enzyme inhibitors, hypercholesteremic, antineoplastic/antitumor, immunomodulators, and immunosuppressants agents. However, historically, the high demand for new antimicrobial and antitumor agents has not been sufficiently attended by the drug discovery process, highlighting the relevance of intensifying studies to reach sustainable employment of the huge world biodiversity, including the microorganisms. Therefore, this review describes the main approaches and tools applied in the search for bioactive secondary metabolites, as well as presents several examples of compounds produced by different fungi species with proven pharmacological effects and additional examples of fungal cytotoxic and antimicrobial molecules. The review does not cover all fungal secondary metabolites already described; however, it presents some reports that can be useful at any phase of the drug discovery process, mainly for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Ana Olívia De Souza
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
10
|
Geris R, Pinho MA, Boffo EF, Simpson TJ. Naturally Occurring Partially Reduced Perylenequinones from Fungi. JOURNAL OF NATURAL PRODUCTS 2022; 85:2236-2250. [PMID: 36098709 DOI: 10.1021/acs.jnatprod.2c00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Review provides a critical analysis of the literature covering the naturally occurring partially reduced perylenequinones (PQs) from fungi without carbon substituents (which can be named class A perylenequinones) and discusses their structures, stereochemistry, biosynthesis, and biological activities as appropriate. Perylenequinones are natural pigments with a perylene skeleton produced by certain fungi, aphids, some plants, and animal species. These compounds display several biological activities, e.g., antimicrobial, anti-HIV, photosensitizers, cytotoxic, and phytotoxic. It describes 36 fungal PQs and cites 81 references, covering from 1956 to August 2022.
Collapse
Affiliation(s)
- Regina Geris
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, 40170-115 Salvador, Brasil
| | - Matheus A Pinho
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, 40170-115 Salvador, Brasil
| | - Elisangela F Boffo
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, 40170-115 Salvador, Brasil
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
11
|
Zhou ZY, Liu X, Cui JL, Wang JH, Wang ML, Zhang G. Endophytic fungi and their bioactive secondary metabolites in medicinal leguminosae plants: Nearly untapped medical resources. FEMS Microbiol Lett 2022; 369:6615458. [PMID: 35746878 DOI: 10.1093/femsle/fnac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
There are many species of Chinese traditional leguminosae family plants that are well known for their medicinal applications, such as Astragalus membranaceus, Catsia tora, Glycyrrhiza uralensis, Sophora flavescens and Albacia acacia. Their unique bioactive composition and internal phenological environment contribute to the formation of specific and unique endophytic fungal communities, which are important resources for new compounds used in a variety of pharmacological activities. Nonetheless, they have not been systematically studied. In the last decade, nearly 64 genera and thousands of species of endophytic fungi have been discovered from leguminosae plants, as well as 138 secondary metabolites (with 34 new compounds) including flavonoid, alkaloids, phenol, anthraquinone, macrolide, terpenoid, phytohormone and many more. They were shown to have diverse applications and benefits, such as antibacterial, antitumor, antioxidative, immunoregulatory and neuroprotective properties. Here, we provide a summarized overview with the aim of raising awareness of endophytic fungi from medicinal leguminosae plants and providing a comprehensive review of the discoveries of new natural products that may be of medicinal and pharmaceutical importance.
Collapse
Affiliation(s)
- Zhong-Ya Zhou
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.,Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Xi Liu
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.,Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Gang Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang 712046, China
| |
Collapse
|
12
|
Zhou F, Zhou Y, Guo Z, Yu X, Deng Z. Review of 10,11-Dehydrocurvularin: Synthesis, Structural Diversity, Bioactivities and Mechanisms. Mini Rev Med Chem 2021; 22:836-847. [PMID: 33913403 DOI: 10.2174/1389557521666210428132256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
10,11-Dehydrocurvularin is a natural benzenediol lactone (BDL) with a 12-membered macrolide fused to resorcinol ring produced as secondary metabolite by many fungi. In this review, we summarized literatures regarding the biosynthesis, chemical synthesis, biological activities and assumed work mechanisms of 10,11-dehydrocurvularin, which presented potential for agricultural and pharmaceutical uses.
Collapse
Affiliation(s)
- FuGui Zhou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou, Jiangsu, China
| | - ZhiYong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - XianJun Yu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research,Hubei Key Laboratory of Wudang Local Chinese Medicine Research,Hubei University of Medicine, Shiyan, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
13
|
Zhao S, Tian K, Li Y, Ji W, Liu F, Khan B, Yan W, Ye Y. Enantiomeric Dibenzo-α-Pyrone Derivatives from Alternaria alternata ZHJG5 and Their Potential as Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15115-15122. [PMID: 33289556 DOI: 10.1021/acs.jafc.0c04106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three pairs of enantiomeric dibenzo-α-pyrone derivatives (1-3) including two pairs of new racemates (±)-alternaone A (1) and (±)-alternaone B (2) and one new enantiomer (-)-alternatiol (3), together with five known compounds (4-8) were isolated from the fungus Alternaria alternata ZHJG5. Their structures were confirmed by spectroscopic data and single-crystal X-ray diffraction analysis. All enantiomers were separated via chiral high-performance liquid chromatography, with their configurations determined by electronic circular dichroism calculation. Biogenetically, a key epoxy-rearrangement step was proposed for the formation of skeletons in 1-3; (+) 1, (-)-1, and 5 presented moderate antibacterial inhibition on phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. In the antifungal test, compounds 7 and 8 showed a moderate protective effect against Botrytis cinerea in vivo.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yu Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Fang Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| |
Collapse
|
14
|
Xie L, Xiao D, Wang X, Wang C, Bai J, Yue Q, Yue H, Li Y, Molnár I, Xu Y, Zhang L. Combinatorial Biosynthesis of Sulfated Benzenediol Lactones with a Phenolic Sulfotransferase from Fusarium graminearum PH-1. mSphere 2020; 5:e00949-20. [PMID: 33239367 PMCID: PMC7690957 DOI: 10.1128/msphere.00949-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dongliang Xiao
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaojing Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Haitao Yue
- Department of Biology and Biotechnology, Xinjiang University, Urumqi, People's Republic of China
| | - Ye Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- National Engineering Lab for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
de Amorim MR, Wijeratne EMK, Zhou S, Arnold AE, Batista ANL, Batista JM, Dos Santos LC, Gunatilaka AAL. An epigenetic modifier induces production of 3-(4-oxopyrano)-chromen-2-ones in Aspergillus sp. AST0006, an endophytic fungus of Astragalus lentiginosus. Tetrahedron 2020; 76:131525. [PMID: 33716326 PMCID: PMC7945046 DOI: 10.1016/j.tet.2020.131525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of the epigenetic modifier suberoylanilide hydroxamic acid (SAHA) into a potato dextrose broth culture of the endophytic fungus Aspergillus sp. AST0006 affected its polyketide biosynthetic pathway providing two new 3-(4-oxopyrano)-chromen-2-ones, aspyranochromenones A (1) and B (2), and the isocoumarin, (-)-6,7-dihydroxymellein (3). Eight additional metabolites (4-11) and two biotransformation products of SAHA (12-13) were also encountered. The planar structures and relative configurations of the new metabolites 1-2 were elucidated with the help of high-resolution mass, 1D and 2D NMR spectroscopic data and the absolute configurations of 1-3 were determined by comparison of experimental and calculated ECD data. Possible biosynthetic pathways to 1 and 2 are presented.
Collapse
Affiliation(s)
- Marcelo R de Amorim
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
- Institute of Chemistry, São Paulo State University, Araraquara, São Paulo 14800-900, Brazil
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Shengliang Zhou
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, 101 Shanghai Rd, Xuzhou 221116, P. R. China
| | - A Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Andrea N L Batista
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ 24020-141, Brazil
| | - João M Batista
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo 12231-280, Brazil
| | - Lourdes C Dos Santos
- Institute of Chemistry, São Paulo State University, Araraquara, São Paulo 14800-900, Brazil
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
16
|
A New Chromene Derivative from Alternaria sp. ZG22. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Ancheeva E, Daletos G, Proksch P. Bioactive Secondary Metabolites from Endophytic Fungi. Curr Med Chem 2020; 27:1836-1854. [DOI: 10.2174/0929867326666190916144709] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
Background:
Endophytes represent a complex community of microorganisms colonizing
asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance
the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved
in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly
apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally
believed to be produced only by their host plants.
Objective:
The present review provides an overview of secondary metabolites from endophytic fungi
with pronounced biological activities covering the literature between 2010 and 2017. Special focus is
given on studies aiming at exploration of the mode of action of these metabolites towards the discovery
of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic
fungi as alternative sources of bioactive “plant metabolites”.
Results:
Over the past few years, several promising lead structures from endophytic fungi have been
described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities,
primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be
highly selective or to possess novel mechanisms of action, which hold great promises as potential drug
candidates.
Conclusion:
Endophytes represent an inexhaustible reservoir of pharmacologically important compounds.
Moreover, endophytic fungi could be exploited for the sustainable production of bioactive
“plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host
plant interactions and origin of endophytic fungal genes would be of utmost importance.
Collapse
Affiliation(s)
- Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| |
Collapse
|
18
|
Hilario F, Polinário G, de Amorim MR, de Sousa Batista V, do Nascimento Júnior NM, Araújo AR, Bauab TM, Dos Santos LC. Spirocyclic lactams and curvulinic acid derivatives from the endophytic fungus Curvularia lunata and their antibacterial and antifungal activities. Fitoterapia 2019; 141:104466. [PMID: 31870948 DOI: 10.1016/j.fitote.2019.104466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022]
Abstract
Curvularia lunata, isolated from the capitula of Paepalanthus chiquitensis (Eriocaulaceae), was cultured in potato dextrose broth (PDB) medium. The ethyl acetate extract yielded two new spirocyclic γ-lactams (3 and 4), and five known compounds, namely: triticones E (1) and F (2), 5-O-methylcurvulinic acid (5), curvulinic acid (6) and curvulin (7). Their structures were elucidated by spectroscopic analysis and by the comparison with literature data. Besides, a computational study was used to elucidate the absolute configuration of the C - 3' in the compounds (3) and (4). The extract and the compounds (1 and 2), (6) and (7) were assayed against gram-positive and gram-negative bacteria and fluconazole-resistant yeast. The triticones (1) and (2) showed good antibacterial activity for Escherichia coli, with a minimum inhibitory concentration of 62.5 μg/mL.
Collapse
Affiliation(s)
- Felipe Hilario
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Road Araraquara-Jaú km1, Araraquara 14800-903, Brazil
| | - Giulia Polinário
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Road Araraquara-Jaú km1, Araraquara 14800-903, Brazil
| | - Marcelo Rodrigues de Amorim
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni n.55, Araraquara 14800-060, Brazil
| | - Victor de Sousa Batista
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni n.55, Araraquara 14800-060, Brazil
| | | | - Angela Regina Araújo
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni n.55, Araraquara 14800-060, Brazil
| | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Road Araraquara-Jaú km1, Araraquara 14800-903, Brazil
| | - Lourdes Campaner Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni n.55, Araraquara 14800-060, Brazil.
| |
Collapse
|
19
|
Liu P, Zhang D, Shi R, Yang Z, Zhao F, Tian Y. Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech 2019; 9:405. [PMID: 31687317 DOI: 10.1007/s13205-019-1948-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of the present study was to discover antimicrobial endophytic fungi from Astragalus chinensis. Three fungal endophytes with antibacterial activity were isolated and determined as Chaetomium sp. HQ-1, Fusarium sp. HQ-7 and Fusarium sp. HQ-9 based on the neighbor-joining phylogenetic tree. Chaetomium sp. HQ-1 showed the best antibiotic potential and was thus selected for large-scale fermentation. Bioactivity-directed separation of ME fermentation of strain HQ-1 led to the discovery of three compounds, which were identified as differanisole A (1), 2,6-dichloro-4-propylphenol (2) and 4,5-dimethylresorcinol (3), from the HR-ESI-MS and NMR data analysis. All three compounds exhibited moderate antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and methicillin-resistant S. aureus, with MIC values ranging from 16 to 128 μg/mL. Compounds 1 and 3 also displayed promising antifungal activity against Selerotium rolfsii with IC50 values of less than 16 and 32 μg/mL, respectively, which were comparable to that of actidione (8 μg/mL). The findings of the present study suggest that the endophytic fungi from A. chinensis have the potential to be used as bactericides and fungicides.
Collapse
Affiliation(s)
- Peiji Liu
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Dekui Zhang
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Ruirui Shi
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Zhengyou Yang
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Fengchun Zhao
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Yuan Tian
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016 China
| |
Collapse
|
20
|
Macías FA, Mejías FJ, Molinillo JM. Recent advances in allelopathy for weed control: from knowledge to applications. PEST MANAGEMENT SCIENCE 2019; 75:2413-2436. [PMID: 30684299 DOI: 10.1002/ps.5355] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/27/2023]
Abstract
Allelopathy is the biological phenomenon of chemical interactions between living organisms in the ecosystem, and must be taken into account in addressing pest and weed problems in future sustainable agriculture. Allelopathy is a multidisciplinary science, but in some cases, aspects of its chemistry are overlooked, despite the need for a deep knowledge of the chemical structural characteristics of allelochemicals to facilitate the design of new herbicides. This review is focused on the most important advances in allelopathy, paying particular attention to the design and development of phenolic compounds, terpenoids and alkaloids as herbicides. The isolation of allelochemicals is mainly addressed, but other aspects such as the analysis and activities of derivatives or analogs are also covered. Furthermore, the use of allelopathy in the fight against parasitic plants is included. The past 12 years have been a prolific period for publications on allelopathy. This critical review discusses future research areas in this field and the state of the art is analyzed from the chemist's perspective. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - Francisco Jr Mejías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - José Mg Molinillo
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| |
Collapse
|
21
|
Xu Y, Wang L, Zhu G, Zuo M, Gong Q, He W, Li M, Yuan C, Hao X, Zhu W. New phenylpyridone derivatives from the Penicillium sumatrense GZWMJZ-313, a fungal endophyte of Garcinia multiflora. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Padumadasa C, Xu YM, Wijeratne EMK, Espinosa-Artiles P, U'Ren JM, Arnold AE, Gunatilaka AAL. Cytotoxic and Noncytotoxic Metabolites from Teratosphaeria sp. FL2137, a Fungus Associated with Pinus clausa. JOURNAL OF NATURAL PRODUCTS 2018; 81:616-624. [PMID: 29373790 DOI: 10.1021/acs.jnatprod.7b00838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new naphthoquinone, teratosphaerone A (1), four new naphthalenones, namely, teratosphaerone B (2), structurally related to 1, iso-balticol B (3), iso-balticol B-4,9-acetonide (4), and (+)-balticol C (5), a new furanonaphthalenone, (3a S,9 R,9a S)-1(9a),3(3a),9-hexahydromonosporascone (6), and the known metabolite monosporascone (7) were isolated from Teratosphaeria sp. FL2137, a fungal strain inhabiting the internal tissue of recently dead but undecomposed foliage of Pinus clausa. The structures of 1-6 were elucidated on the basis of their spectroscopic data including 2D NMR, and absolute configurations of 2, 3, and 6 were determined by the modified Mosher's ester method. When evaluated in a panel of five tumor cell lines, metabolites 1 and 7 isolated from a cytotoxic fraction of the extract exhibited moderate selectivity for metastatic breast adenocarcinoma cell line MDA-MB-231. Of these, 1 showed cytotoxicity to this cell line with an IC50 of 1.2 ± 0.1 μM.
Collapse
Affiliation(s)
- Chayanika Padumadasa
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
- Department of Chemistry, Faculty of Applied Sciences , University of Sri Jayewardenepura , Gangodawila, Nugegoda , Sri Lanka
| | - Ya-Ming Xu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| | - Patricia Espinosa-Artiles
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| | - Jana M U'Ren
- Department of Agricultural and Biosystems Engineering, College of Agriculture and Life Sciences , University of Arizona , Tucson , Arizona 85721 , United States
| | - A Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences , University of Arizona , Tucson , Arizona 85721 , United States
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| |
Collapse
|
23
|
Wu YH, Zhang ZH, Zhong Y, Huang JJ, Li XX, Jiang JY, Deng YY, Zhang LH, He F. Sumalactones A–D, four new curvularin-type macrolides from a marine deep sea fungus Penicillium Sumatrense. RSC Adv 2017. [DOI: 10.1039/c7ra06933b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Four new curvularin-type macrolides were isolated from a marine fungus Penicillium Sumatrense and their absolute configurations were determined by CD spectra and modified Mosher's methods.
Collapse
Affiliation(s)
- Yue-Hua Wu
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Zhi-Han Zhang
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Yue Zhong
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Jun-Jun Huang
- Pharmaceutical Research Center
- School of Pharmacology
- Guangzhou Medical University
- Guangzhou 510182
- People's Republic of China
| | - Xiao-Xia Li
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Jin-Yan Jiang
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Yin-Yue Deng
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Fei He
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| |
Collapse
|