1
|
Xuan J, Yu J, Huang C. Research Progress of Cyanine-Based Near-Infrared Fluorescent Probes for Biological Application. Chembiochem 2024; 25:e202400467. [PMID: 39039605 DOI: 10.1002/cbic.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Cyanine-based near-infrared (NIR) fluorescent probes have played vital roles in biological application due to their low interference from background fluorescence, deep tissue penetration, high sensitivity, and minimal photodamage to biological samples. They are widely utilized in molecular recognition, medical diagnosis, biomolecular detection, and biological imaging. Herein, we provide a review of recent advancements in cyanine-based NIR fluorescent probes for the detection of pH, cells, tumor as well as their application in photothermal therapy (PTT) and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jigao Xuan
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiajun Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
2
|
Li B, Ayala‐Orozco C, Si T, Zhou L, Wang Z, Martí AA, Tour JM. Divergent Syntheses of Near-Infrared Light-Activated Molecular Jackhammers for Cancer Cell Eradication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405965. [PMID: 39400530 PMCID: PMC11615805 DOI: 10.1002/advs.202405965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Aminocyanines incorporating Cy7 and Cy7.5 moieties function as molecular jackhammers (MJH) through vibronic-driven action (VDA). This mechanism, which couples molecular vibrational and electronic modes, results in picosecond-scale concerted stretching of the entire molecule. When cell-associated and activated by near-infrared light, MJH mechanically disrupts cell membranes, causing rapid necrotic cell death. Unlike photodynamic and photothermal therapies, the ultrafast vibrational action of MJH is unhindered by high concentrations of reactive oxygen species scavengers and induces only a minimal temperature increase. Here, the efficient synthesis of a library of MJH is described using a practical approach to access a key intermediate and facilitating the preparation of various Cy7 and Cy7.5 MJH with diverse side chains in moderate to high yields. Photophysical characterization reveals that structural modifications significantly affect molar extinction coefficients and quantum yields while maintaining desirable absorption and emission wavelengths. The most promising compounds, featuring dimethylaminoethyl and dimethylcarbamoyl substitutions, demonstrate up to sevenfold improvement in phototherapeutic index compared to Cy7.5 amine across multiple cancer cell lines. This synthetic strategy provides a valuable platform for developing potent, light-activated therapeutic agents for cancer treatment, with potentially broad applicability across various cancer types.
Collapse
Affiliation(s)
- Bowen Li
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | - Tengda Si
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Lixin Zhou
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Zicheng Wang
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Angel A. Martí
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of BioengineeringRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Rice Advanced Materials InstituteRice UniversityHoustonTX77005USA
| |
Collapse
|
3
|
Bel'ko N, Mal'tanova A, Bahdanava A, Lugovski A, Fatykhava S, Shabunya P, Smaliakou A, Poznyak S, Kulahava T, Samtsov M. A near-infrared superoxide generator based on a biocompatible indene-bearing heptamethine cyanine dye. J Mater Chem B 2024; 12:11202-11209. [PMID: 39364565 DOI: 10.1039/d4tb01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One of the most significant limitations of photodynamic therapy is its reduced efficacy in hypoxic microenvironments, which are typical of the majority of tumors. This work demonstrates that indolenine heptamethine cyanines with different substituents in the polymethine chain and at the terminal heterocycles are effective superoxide generators that can be activated in the near-infrared range. The introduction of an indene moiety into the polymethine chain results in a significant enhancement in photostability compared to dyes with a cyclohexene moiety or an unsubstituted polymethine chain. A hydrophilic indene-bearing heptamethine cyanine dye is shown to be efficiently internalized by Vero E6 cells and to give bright intracellular fluorescence in the 700-850 nm range. Furthermore, the dye generates superoxide anion radicals and induces severe oxidative stress in cells upon activation in the near-infrared range (∼750 nm), ultimately resulting in cell death. The capacity of heptamethine cyanines to generate a superoxide anion radical may prove advantageous for enhancing the efficacy of photodynamic therapy under hypoxic conditions.
Collapse
Affiliation(s)
- Nikita Bel'ko
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| | - Anna Mal'tanova
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk 220006, Belarus
| | - Anastasiya Bahdanava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Anatol Lugovski
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| | - Sviatlana Fatykhava
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akademika Kuprevicha str. 5-2, Minsk 220141, Belarus
| | - Polina Shabunya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akademika Kuprevicha str. 5-2, Minsk 220141, Belarus
| | - Adam Smaliakou
- Department of Physics, Belarusian State University, Bobruiskaya str. 5, Minsk 220006, Belarus
| | - Sergey Poznyak
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk 220006, Belarus
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Michael Samtsov
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| |
Collapse
|
4
|
Liu Y, Zhang J, Zhou X, Wang Y, Lei S, Feng G, Wang D, Huang P, Lin J. Dissecting Exciton Dynamics in pH-Activatable Long-Wavelength Photosensitizers for Traceable Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202408064. [PMID: 38853147 DOI: 10.1002/anie.202408064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (Φ 1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in Φ 1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.
Collapse
Affiliation(s)
- Yurong Liu
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Zhang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xuan Zhou
- School of Sino-German Intelligent Manufacturing, Shenzhen Institute of Technology, Shenzhen, 518116, China
| | - Yaru Wang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Shan Lei
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Guangle Feng
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Peng Huang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Lin
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Ouyang F, Liu Y, Zhang L, Shuai Q. Hyaluronic acid-targeted dual-bubble/photothermal-driven nanomissile for enhanced "four-in-one" anti-tumor strategy. Int J Biol Macromol 2024; 277:133997. [PMID: 39084417 DOI: 10.1016/j.ijbiomac.2024.133997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
The dense extracellular matrix and high interstitial pressure affect the diffusion of nanodrug in tumor tissue, resulting in a small range of action of the active components in nanodrug, thereby affecting its anticancer efficacy. In order to enhance the diffusion ability of nanodrug, a dual-bubble/photothermal-driven nanomissile (HA@MnO2@TA/Fe/ICG/TPZ, HMTAFIT) was designed through "four in one" anti-tumor strategy. Harnessing the capabilities of hyaluronic acid, a biomacromolecule, the nanomotor transforms into a nanomissile, targeting cancer cells with precision. The oxygen generated by the reaction of manganese dioxide with hydrogen peroxide and the local temperature rise of indocyanine green under near-infrared light endow HMTAFIT with the ability of bubble/photothermal dual-driven, and the outermost layer of modified hyaluronic acid incubates the targeting properties of HMTAFIT which could avoid damage to normal cells. The bubble/photothermal-dual-driven increases motion speed of HMTAFIT by 13.8 μm/s, and the enhanced "four in one" anti-tumor strategy effectively improved the anticancer efficacy. The precision-guided nanomissile boasts the capability to eliminate deep-seated cancer cells and overcome multidrug resistance via optimized diffusion and a cutting-edge "four-in-one" approach.
Collapse
Affiliation(s)
- Feng Ouyang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Li Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
6
|
Obloy LM, Jockusch S, Tarnovsky AN. Shortwave infrared polymethine dyes for bioimaging: ultrafast relaxation dynamics and excited-state decay pathways. Phys Chem Chem Phys 2024; 26:24261-24278. [PMID: 38895857 DOI: 10.1039/d4cp01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Excited-state relaxation in two prototypical shortwave infrared (SWIR) polymethine dyes developed for bioimaging, heptamethine chromenylium Chrom7 and flavylium Flav7, is studied by means of femtosecond transient absorption with broadband ultraviolet-to-SWIR probing complemented by steady-state and time-resolved fluorescence and phosphorescence measurements. The relaxation processes of the dyes in dichloromethane are resolved with sub-100 fs temporal resolution using SWIR, near-IR, and visible photoexcitation. Different population members of the ground-state inhomogeneous ensemble are found to equilibrate via skeletal deformation changes with time constants of 90 fs and either 230 fs (Chrom7) and 350 fs (Flav7) followed by slower evolution matching the 1-ps timescale of diffusive solvation dynamics. Molecules excited into high-lying singlet electronic states (Sn) by visible excitation repopulate with time constants of 400 fs (Chrom7) and 450 fs (Flav7) the corresponding first excited singlet S1 states, which decay within several hundreds of picoseconds in dichloromethane and chloroform solvents. Vibrational relaxation in S1 for both Chrom7 and Flav7 in dichloromethane occurs with time constants of 350 and 800 fs for excess of vibrational energy of ∼1000 and 10 000 cm-1 deposited by near-IR and visible excitation, respectively. Two competing non-radiative processes are present in S1: temperature-independent internal conversion, and thermally-activated twisting about a carbon-carbon bond of the conjugated chain, which is substantial at room temperature but essentially nonreactive, producing traces of isomer product. Intersystem crossing in S1, and thus the triplet quantum yield, is minor. The importance of absorption bands from the excited S1 state in applications requiring high-intensity excitation conditions is discussed.
Collapse
Affiliation(s)
- Laura M Obloy
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Steffen Jockusch
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
7
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
8
|
Sanders HS, Atkinson KM, Smith BD. Fluorescent cyclopropyl ester probes are efficiently cleaved by endogenous carboxylesterase in mouse blood: implications for preclinical fluorescence imaging. Supramol Chem 2024; 34:484-490. [PMID: 40046405 PMCID: PMC11882149 DOI: 10.1080/10610278.2024.2388731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 03/09/2025]
Abstract
Prior studies have shown that fluorescent molecular probes based on cyclopropyl esters are good substrates for butyrylcholinesterase (BChE) which is a biomarker of several human diseases. We tested two fluorescent cyclopropyl ester derivatives as BChE-activated fluorogenic probes. One was a known fluorescein probe, and the other was a newly designed near-infrared probe based on a heptamethine cyanine dye. As expected, both probes were good substrates for BChE, but they were also good substrates for carboxylesterase (CE). The probes were efficiently cleaved in mouse blood and serum which contains high levels of CE, but they were not cleaved in human serum which contains negligible CE. There are two major implications of these results. One is a cautionary note that esterase levels in different organisms can vary substantially. Researchers developing fluorescent cyclopropyl ester probes for BChE imaging should anticipate high levels of background signal in preclinical mouse models due to ester cleavage by the abundant CE in mouse blood. However, there is very little cleavage of fluorescent cyclopropyl ester probes in human blood, which contains low levels of CE. Therefore, fluorescent cyclopropyl ester probes should be viable in humans as imaging agents that identify disease sites with overexpressed levels of CE or BChE.
Collapse
Affiliation(s)
- Hailey S. Sanders
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Kirk M. Atkinson
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| |
Collapse
|
9
|
Okoročenkova J, Filgas J, Khan NM, Slavíček P, Klán P. Thermal Truncation of Heptamethine Cyanine Dyes. J Am Chem Soc 2024; 146:19768-19781. [PMID: 38995720 PMCID: PMC11273355 DOI: 10.1021/jacs.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Cyanine dyes are a class of organic, usually cationic molecules containing two nitrogen centers linked through conjugated polymethine chains. The synthesis and reactivity of cyanine derivatives have been extensively investigated for decades. Unlike the recently described phototruncation process, the thermal truncation (chain shortening) reaction is a phenomenon that has rarely been reported for these important fluorophores. Here, we present a systematic investigation of the truncation of heptamethine cyanines (Cy7) to pentamethine (Cy5) and trimethine (Cy3) cyanines via homogeneous, acid-base-catalyzed nucleophilic exchange reactions. We demonstrate how different substituents at the C3' and C4' positions of the chain and different heterocyclic end groups, the presence of bases, nucleophiles, and oxygen, solvent properties, and temperature affect the truncation process. The mechanism of chain shortening, studied by various analytical and spectroscopic techniques, was verified by extensive ab initio calculation, implying the necessity to model catalytic reactions by highly correlated wave function-based methods. In this study, we provide critical insight into the reactivity of cyanine polyene chains and elucidate the truncation mechanism and methods to mitigate side processes that can occur during the synthesis of cyanine derivatives. In addition, we offer alternative routes to the preparation of symmetrical and unsymmetrical meso-substituted Cy5 derivatives.
Collapse
Affiliation(s)
- Jana Okoročenkova
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Josef Filgas
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Nasrulla Majid Khan
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| |
Collapse
|
10
|
Vahdani A, Moemeni M, Holmes D, Lunt RR, Jackson JE, Borhan B. Mechanistic Insight into the Thermal "Blueing" of Cyanine Dyes. J Am Chem Soc 2024; 146:19756-19767. [PMID: 38989979 PMCID: PMC11273608 DOI: 10.1021/jacs.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
In recent work to develop cyanine dyes with especially large Stokes shifts, we encountered a "blueing" reaction, in which the heptamethine cyanine dye Cy7 (IUPAC: 1,3,3-trimethyl-2-((1E,3E,5E)-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium) undergoes shortening in two-carbon steps to form the pentamethine (Cy5) and trimethine (Cy3) analogs. Each step blue-shifts the resulting absorbance wavelength by ca. 100 nm. Though photochemical and oxidative chain-shortening reactions had been noted previously, it is simple heating alone or with amine bases that effects this unexpected net C2H2 excision. Explicit acetylene loss would be too endothermic to merit consideration. Our mechanistic studies using 2H labeling, mass spectrometric and NMR spectroscopic analyses, and quantum chemical modeling point instead to electrocyclic closure and aromatization of the heptamethine chain in Cy7 forming Fischer's base FB (1,3,3-trimethyl-2-methyleneindoline), a reactive carbon nucleophile that initiates chain shortening of the cyanine dyes by attack on their polymethine backbones. The byproduct is the cationic indolium species TMP (IUPAC: 1,3,3 trimethyl-2-phenyl indolium).
Collapse
Affiliation(s)
- Aria Vahdani
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Mehdi Moemeni
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Daniel Holmes
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Richard R. Lunt
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - James E. Jackson
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Hanc K, Janeková H, Štacko P. Concurrent Subcellular Delivery of Hydrogen Sulfide and a Payload with Near-Infrared Light. JACS AU 2024; 4:2687-2694. [PMID: 39055161 PMCID: PMC11267537 DOI: 10.1021/jacsau.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule, exerting crucial regulatory functions in organelles and cellular environments. H2S exhibits high therapeutic potential and synergistic effects with other drugs, and its potency is notably enhanced through organelle-specific targeting. Yet, the navigation of light-activated H2S donors to specific organelles remains absent. Here, we report the first organelle-specific photocage that simultaneously delivers H2S and a payload with subcellular precision to mitochondria of live human cells using tissue-penetrating near-infrared light as a trigger. The fluorogenic payload enables real-time monitoring of the process, and we demonstrate the concurrent uncaging in mitochondria through a combination of fluorescence microscopy and mitochondria-specific fluorescent probes. We anticipate that these photocages will permit the precise delivery of H2S-drug combinations with exceptional spatiotemporal control, thereby driving the harnessing of known synergistic effects and the discovery of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katarzyna Hanc
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hana Janeková
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Štacko
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
12
|
Dunlop D, Horváth P, Klán P, Slanina T, Šebej P. Central Ring Puckering Enhances the Stokes Shift of Xanthene Dyes. Chemistry 2024; 30:e202400024. [PMID: 38197554 DOI: 10.1002/chem.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Small-molecule dyes are generally designed based on well-understood electronic effects. However, steric hindrance can promote excited-state geometric relaxation, increasing the difference between the positions of absorption and emission bands (the Stokes shift). Accordingly, we hypothesized that sterically induced central ring puckering in xanthene dyes could be used to systematically increase their Stokes shift. Through a combined experimental/quantum-chemical approach, we screened a group of (9-acylimino)-pyronin dyes with a perturbed central ring geometry. Our results showed that an atom with sp3 hybridization in position 10 of (9-acylimino)-pyronins induces central ring puckering and facilitates excited-state geometric relaxation, thereby markedly enhancing their Stokes shifts (by up to ~2000 cm-1). Thus, we prepared fluorescent (9-acylimino)-pyronin pH sensors, which showed a Stokes shift disparity between acid and base forms of up to ~8700 cm-1. Moreover, the concept of ring puckering-enhanced Stokes shift can be applied to a wide range of xanthene analogues found in the literature. Therefore, central ring puckering may be reliably used as a strategy for enhancing Stokes shifts in the rational design of dyes.
Collapse
Affiliation(s)
- David Dunlop
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Peter Horváth
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
| | - Peter Šebej
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
13
|
Russo M, Janeková H, Meier D, Generali M, Štacko P. Light in a Heartbeat: Bond Scission by a Single Photon above 800 nm. J Am Chem Soc 2024; 146:8417-8424. [PMID: 38499198 PMCID: PMC10979397 DOI: 10.1021/jacs.3c14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Photocages enable scientists to take full control over the activity of molecules using light as a biocompatible stimulus. Their emerging applications in photoactivated therapies call for efficient uncaging in the near-infrared (NIR) window, which represents a fundamental challenge. Here, we report synthetically accessible cyanine photocages that liberate alcohol, phenol, amine, and thiol payloads upon irradiation with NIR light up to 820 nm in aqueous media. The photocages display a unique chameleon-like behavior and operate via two distinct uncaging mechanisms: photooxidation and heterolytic bond cleavage. The latter process constitutes the first example of a direct bond scission by a single photon ever observed in cyanine dyes or at wavelengths exceeding 800 nm. Modulation of the beating rates of human cardiomyocytes that we achieved by light-actuated release of adrenergic agonist etilefrine at submicromolar concentrations and low NIR light doses (∼12 J cm-2) highlights the potential of these photocages in biology and medicine.
Collapse
Affiliation(s)
- Marina Russo
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Hana Janeková
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Debora Meier
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Melanie Generali
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Peter Štacko
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
14
|
Ayala-Orozco C, Galvez-Aranda D, Corona A, Seminario JM, Rangel R, Myers JN, Tour JM. Molecular jackhammers eradicate cancer cells by vibronic-driven action. Nat Chem 2024; 16:456-465. [PMID: 38114816 DOI: 10.1038/s41557-023-01383-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/24/2023] [Indexed: 12/21/2023]
Abstract
Through the actuation of vibronic modes in cell-membrane-associated aminocyanines, using near-infrared light, a distinct type of molecular mechanical action can be exploited to rapidly kill cells by necrosis. Vibronic-driven action (VDA) is distinct from both photodynamic therapy and photothermal therapy as its mechanical effect on the cell membrane is not abrogated by inhibitors of reactive oxygen species and it does not induce thermal killing. Subpicosecond concerted whole-molecule vibrations of VDA-induced mechanical disruption can be achieved using very low concentrations (500 nM) of aminocyanines or low doses of light (12 J cm-2, 80 mW cm-2 for 2.5 min), resulting in complete eradication of human melanoma cells in vitro. Also, 50% tumour-free efficacy in mouse models for melanoma was achieved. The molecules that destroy cell membranes through VDA have been termed molecular jackhammers because they undergo concerted whole-molecule vibrations. Given that a cell is unlikely to develop resistance to such molecular mechanical forces, molecular jackhammers present an alternative modality for inducing cancer cell death.
Collapse
Affiliation(s)
| | - Diego Galvez-Aranda
- Department of Chemical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Arnoldo Corona
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge M Seminario
- Department of Chemical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
| | - Roberto Rangel
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, NanoCarbon Center, Smalley-Curl Institute and The Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
15
|
Janeková H, Friedman HC, Russo M, Zyberaj M, Ahmed T, Hua AS, Sica AV, Caram JR, Štacko P. Deuteration of heptamethine cyanine dyes enhances their emission efficacy. Chem Commun (Camb) 2024; 60:1000-1003. [PMID: 38167671 PMCID: PMC10805072 DOI: 10.1039/d3cc05153f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
The design of bright short-wave infrared fluorophores remains a grand challenge. Here we investigate the impact of deuteration on the properties in a series of heptamethine dyes, the absorption of which spans near-infrared and SWIR regions. We demonstrate that it is a generally applicable strategy that leads to enhanced quantum yields of fluorescence, longer-lived singlet excited states and suppressed rates of non-radiative deactivation processes.
Collapse
Affiliation(s)
- Hana Janeková
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| | - Hannah C Friedman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Marina Russo
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| | - Mergime Zyberaj
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| | - Tasnim Ahmed
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Peter Štacko
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
16
|
Yasui M, Fujihara T, Ohtsu H, Wada Y, Shimada T, Zhu Y, Kawano M, Hanaya K, Sugai T, Higashibayashi S. Synthesis and luminescence properties of substituted benzils. Commun Chem 2023; 6:245. [PMID: 37945657 PMCID: PMC10636033 DOI: 10.1038/s42004-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Photophysical properties of benzil (1,2-diphenylethane-1,2-dione) and its derivatives in the crystal state have recently attracted much attention. However, the study of substituted benzils has mostly been limited to para-substituted derivatives, which did not induce a significant effect on the emission wavelength compared to pristine benzil. The effects of ortho- and meta-substituents on the photophysical properties in the crystal state have not been investigated so far. Our recently developed organocatalytic pinacol coupling of substituted benzaldehydes allowed us to prepare various ortho-, meta-, and para-substituted benzil derivatives and to investigate their luminescence properties. Ortho- and meta-substituents affected the electronic states of benzils in the crystal state, resulting in differences in their luminescence properties. The luminescence wavelength and type, i.e., phosphorescence or fluorescence, were altered by these substituents. Fast self-recovering phosphorescence-to-phosphorescence mechanochromism by the para-CF3 substituent at room temperature was also discovered.
Collapse
Affiliation(s)
- Masamichi Yasui
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Takashi Fujihara
- Comprehensive Analysis Center for Science, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Terumasa Shimada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yiying Zhu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
17
|
Ma Y, Liu L, Ye Z, Xu L, Li Y, Liu S, Song G, Zhang XB. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice. Sci Bull (Beijing) 2023; 68:2382-2390. [PMID: 37679256 DOI: 10.1016/j.scib.2023.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
High-quality second near-infrared (NIR-II) nanoprobes are of great significance for real-time bioimaging and medical diagnosis. Cyanine is an important class of fluorophores to construct activatable probes; however, there are still significant challenges hindering their biological applications, including weak fluorescence in aqueous solution, instability, and insufficient specificity. Herein, an integrated engineering strategy is conducted to develop the cyanine-based activatable NIR-II nanoplatforms with bright, stable emission and high specificity. Specifically, poly(styrene-co-maleic anhydride) (PSMA) is employed to encapsulate NIR-II fluorescent molecules (IR1048) to render the stable and bright NIR-II nanoparticles (PSMA@IR1048 NPs). By charge-modulated strategy, a series of cyanine-fluorophores are loaded on the surface of PSMA@IR1048 NPs and exhibit tunable response toward reactive species. Combing those two strategies, NIR-II ratiometric fluorescent nanoprobes (RNPs, including RNP1, RNP2, and RNP3) are constructed; among them, RNP2 displays hypochlorous acid (HClO) responsive performance and generates a higher NIR-II fluorescent ratio (FL2/FL1) signal. Such nanoprobe can reliably report the pathological HClO level in models of diabetic liver injury and lower limb ischemia-reperfusion (I/R) injury mice. Our study paves an engineering strategy to construct cyanine-based stable, bright, and specific NIR-II probes for bioimaging.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
18
|
Marker S, Espinoza AF, King AP, Woodfield SE, Patel RH, Baidoo K, Nix MN, Ciaramicoli LM, Chang YT, Escorcia FE, Vasudevan SA, Schnermann MJ. Development of Iodinated Indocyanine Green Analogs as a Strategy for Targeted Therapy of Liver Cancer. ACS Med Chem Lett 2023; 14:1208-1215. [PMID: 37736195 PMCID: PMC10510512 DOI: 10.1021/acsmedchemlett.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Liver cancer is one of the leading causes of cancer-related deaths, with a significant increase in incidence worldwide. Novel therapies are needed to address this unmet clinical need. Indocyanine green (ICG) is a broadly used fluorescence-guided surgery (FGS) agent for liver tumor resection and has significant potential for conversion to a targeted therapy. Here, we report the design, synthesis, and investigation of a series of iodinated ICG analogs (I-ICG), which can be used to develop ICG-based targeted radiopharmaceutical therapy. We applied a CRISPR-based screen to identify the solute carrier transporter, OATP1B3, as a likely mechanism for ICG uptake. Our lead I-ICG compound specifically localizes to tumors in mice bearing liver cancer xenografts. This study introduces the chemistry needed to incorporate iodine onto the ICG scaffold and defines the impact of these modifications on key properties, including targeting liver cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Sierra
C. Marker
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Andres F. Espinoza
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - A. Paden King
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Sarah E. Woodfield
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Roma H. Patel
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kwamena Baidoo
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Meredith N. Nix
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Larissa Miasiro Ciaramicoli
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Young-Tae Chang
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Freddy E. Escorcia
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Sanjeev A. Vasudevan
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
19
|
Usama SM, Marker SC, Li DH, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J Am Chem Soc 2023. [PMID: 37367935 DOI: 10.1021/jacs.3c01765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dong-Hao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marcus Stroet
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Martin Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
20
|
Tovtik R, Muchová E, Štacková L, Slavíček P, Klán P. Spin-Vibronic Control of Intersystem Crossing in Iodine-Substituted Heptamethine Cyanines. J Org Chem 2023. [PMID: 37146036 DOI: 10.1021/acs.joc.3c00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spin-orbit coupling between electronic states of different multiplicity can be strongly coupled to molecular vibrations, and this interaction is becoming recognized as an important mechanism for controlling the course of photochemical reactions. Here, we show that the involvement of spin-vibronic coupling is essential for understanding the photophysics and photochemistry of heptamethine cyanines (Cy7), bearing iodine as a heavy atom in the C3' position of the chain and/or a 3H-indolium core, as potential triplet sensitizers and singlet oxygen producers in methanol and aqueous solutions. The sensitization efficiency was found to be an order of magnitude higher for the chain-substituted than the 3H-indolium core-substituted derivatives. Our ab initio calculations demonstrate that while all optimal structures of Cy7 are characterized by negligible spin-orbit coupling (tenths of cm-1) with no dependence on the position of the substituent, molecular vibrations lead to its significant increase (tens of cm-1 for the chain-substituted cyanines), which allowed us to interpret the observed position dependence.
Collapse
Affiliation(s)
- Radek Tovtik
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technické 5, 166 28 Prague 6, Czech Republic
| | - Lenka Štacková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technické 5, 166 28 Prague 6, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
21
|
Hao Z, Hu L, Wang X, Liu Y, Mo S. Synthesis of Heptamethine Cyanines from Furfural Derivatives. Org Lett 2023; 25:1078-1082. [PMID: 36786486 DOI: 10.1021/acs.orglett.2c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Despite the widespread theranostic utilization of cyanine dyes (Cy7), their synthetic method is still limited with pyridine or cyclohexanone derivatives as starting materials. Herein, we report the synthesis of Cy7 from furfural derivatives. First, a one-pot reaction strategy is developed to solve the unstable problem of the Stenhouse salts. Second, a stepwise condensation strategy is exploited to regioselectively synthesize asymmetrical Cy7. The methodology possesses advantages, such as easy handling, high yield, wide substrate scopes, and good functional group tolerance.
Collapse
Affiliation(s)
- Zhenming Hao
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Liming Hu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiaonan Wang
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Shanyan Mo
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
22
|
Effect of Solubilizing Group on the Antibacterial Activity of Heptamethine Cyanine Photosensitizers. Pharmaceutics 2023; 15:pharmaceutics15010247. [PMID: 36678875 PMCID: PMC9864305 DOI: 10.3390/pharmaceutics15010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance of pathogenic bacteria dictates the development of novel treatment modalities such as antimicrobial photodynamic therapy (APDT) utilizing organic dyes termed photosensitizers that exhibit a high cytotoxicity upon light irradiation. Most of the clinically approved photosensitizers are porphyrins that are poorly excitable in the therapeutic near-IR spectral range. In contrast, cyanine dyes function well in the near-IR region, but their phototoxicity, in general, is very low. The introduction of iodine atoms in the cyanine molecules was recently demonstrated to greatly increase their phototoxicity. Herein, we synthesized a series of the new iodinated heptamethine cyanine dyes (ICy7) containing various solubilizing moieties, i.e., negatively charged carboxylic (ICy7COOH) and sulfonic (ICy7SO3H) groups, positively charged triphenylphosphonium (ICy7PPh3), triethylammonium (ICy7NEt3) and amino (ICy7NH2) groups, and neutral amide (ICy7CONHPr) group. The effect of these substituents on the photodynamic eradication of Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) pathogens was studied. Cyanine dyes containing the amide and triphenylphosphonium groups were found to be the most efficient for eradication of the investigated bacteria. These dyes are effective at low concentrations of 0.05 µM (33 J/cm2) for S. aureus, 50 µM (200 J/cm2) for E. coli, and 5 µM (100 J/cm2) for P. aeruginosa and considered, therefore, promising photosensitizers for APDT applications. The innovation of the new photosensitizers consisted of a combination of the heavy-atom effect that increases singlet oxygen generation with the solubilizing group's effect improving cell uptake, and with effective near-IR excitation. Such a combination helped to noticeably increase the APDT efficacy and should pave the way for the development of more advanced photosensitizers for clinical use.
Collapse
|
23
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
24
|
Kommidi SSR, Smith BD. Cucurbit[7]uril Complexation of Near-Infrared Fluorescent Azobenzene-Cyanine Conjugates. Molecules 2022; 27:5440. [PMID: 36080213 PMCID: PMC9457616 DOI: 10.3390/molecules27175440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/21/2023] Open
Abstract
Two new azobenzene heptamethine cyanine conjugates exist as dispersed monomeric molecules in methanol solution and exhibit near-infrared (NIR) cyanine absorption and fluorescence. Both conjugates form non-emissive cyanine H-aggregates in water, but the addition of cucurbit[7]uril (CB7) induces dye deaggregation and a large increase in cyanine NIR fluorescence emission intensity. CB7 encapsulates the protonated azonium tautomer of the 4-(N,N-dimethylamino)azobenzene component of each azobenzene-cyanine conjugate and produces a distinctive new absorption band at 534 nm. The complex is quite hydrophilic, which suggests that CB7 can be used as a supramolecular additive to solubilize this new family of NIR azobenzene-cyanine conjugates for future biomedical applications. Since many azobenzene compounds are themselves potential drug candidates or theranostic agents, it should be possible to formulate many of them as CB7 inclusion complexes with improved solubility, stability, and pharmaceutical profile.
Collapse
Affiliation(s)
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
25
|
Janeková H, Russo M, Ziegler U, Štacko P. Photouncaging of Carboxylic Acids from Cyanine Dyes with Near-Infrared Light. Angew Chem Int Ed Engl 2022; 61:e202204391. [PMID: 35578980 PMCID: PMC9542589 DOI: 10.1002/anie.202204391] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/13/2022]
Abstract
Near-infrared light (NIR; 650-900 nm) offers unparalleled advantages as a biocompatible stimulus. The development of photocages that operate in this region represents a fundamental challenge due to the low energy of the excitation light. Herein, we repurpose cyanine dyes into photocages that are available on a multigram scale in three steps and efficiently release carboxylic acids in aqueous media upon irradiation with NIR light up to 820 nm. The photouncaging process is examined using several techniques, providing evidence that it proceeds via photooxidative pathway. We demonstrate the practical utility in live HeLa cells by delivery and release of the carboxylic acid cargo, that was otherwise not uptaken by cells in its free form. In combination with modularity of the cyanine scaffold, the realization of these accessible photocages will fully unleash the potential of the emerging field of NIR-photoactivation and facilitate its widespread adoption outside the photochemistry community.
Collapse
Affiliation(s)
- Hana Janeková
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Marina Russo
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Urs Ziegler
- Center for Microscopy and Image AnalysisUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Peter Štacko
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
26
|
Fukushima H, Matikonda SS, Usama SM, Furusawa A, Kato T, Štacková L, Klán P, Kobayashi H, Schnermann MJ. Cyanine Phototruncation Enables Spatiotemporal Cell Labeling. J Am Chem Soc 2022; 144:11075-11080. [PMID: 35696546 PMCID: PMC10523398 DOI: 10.1021/jacs.2c02962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoconvertible tracking strategies assess the dynamic migration of cell populations. Here we develop phototruncation-assisted cell tracking (PACT) and apply it to evaluate the migration of immune cells into tumor-draining lymphatics. This method is enabled by a recently discovered cyanine photoconversion reaction that leads to the two-carbon truncation and consequent blue-shift of these commonly used probes. By examining substituent effects on the heptamethine cyanine chromophore, we find that introduction of a single methoxy group increases the yield of the phototruncation reaction in neutral buffer by almost 8-fold. When converted to a membrane-bound cell-tracking variant, this probe can be applied in a series of in vitro and in vivo experiments. These include quantitative, time-dependent measurements of the migration of immune cells from tumors to tumor-draining lymph nodes. Unlike previously reported cellular photoconversion approaches, this method does not require genetic engineering and uses near-infrared (NIR) wavelengths. Overall, PACT provides a straightforward approach to label cell populations with spatiotemporal control.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lenka Štacková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
27
|
Morsby JJ, Atkinson KM, Shradha Reddy Kommidi S, Freel T, Janeková H, Štacko P, Smith BD. Structure-Activity Studies of Nitroreductase-Responsive Near-Infrared Heptamethine Cyanine Fluorescent Probes. European J Org Chem 2022; 2022:e202200270. [PMID: 38322783 PMCID: PMC10846533 DOI: 10.1002/ejoc.202200270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Two new classes of near-infrared molecular probes were prepared and shown to exhibit "turn on" fluorescence when cleaved by the nitroreductase enzyme, a well-known biomarker of cell hypoxia. The fluorescent probes are heptamethine cyanine dyes with a central 4'-carboxylic ester group on the heptamethine chain that is converted by a self-immolative fragmentation mechanism to a 4'-caboxylate group that greatly enhances the fluorescence brightness. Each compound was prepared by ring opening of a Zincke salt. The chemical structures have either terminal benzoindolinenes or propargyloxy auxochromes, which provide favorable red-shifted absorption/emission wavelengths and a hyperchromic effect that enhances the photon output when excited by 808 nm light. A fluorescent probe with terminal propargyloxy-indolenines exhibited less self-aggregation and was rapidly activated by nitroreductase with large "turn on" fluorescence; thus, it is the preferred choice for translation towards in vivo applications.
Collapse
Affiliation(s)
- Janeala J. Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Kirk M. Atkinson
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Sai Shradha Reddy Kommidi
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Tristan Freel
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Hana Janeková
- Department of Chemistry, University of Zurich, Winterthurestrasse 190, CH-8057, Zurich, Switzerland
| | - Peter Štacko
- Department of Chemistry, University of Zurich, Winterthurestrasse 190, CH-8057, Zurich, Switzerland
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
28
|
Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, Zhang F. Counterion-Paired Bright Heptamethine Fluorophores with NIR-II Excitation and Emission Enable Multiplexed Biomedical Imaging. Angew Chem Int Ed Engl 2022; 61:e202117436. [PMID: 35294084 DOI: 10.1002/anie.202117436] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Photon excitation and emission at the NIR-II spectral window enable high-contrast deep-tissue bioimaging. However, multiplexed imaging with NIR-II excitation and emission has been hampered by the limited chemical strategies to develop bright fluorophores with tunable absorption in this spectral regime. Herein, we developed a series of heptamethine cyanines (HCs) with varied absorption/emission maxima spanning from 1100 to 1600 nm through a physical organic approach. A bulky counterion paired to HCs was found to elicit substantial improvements in absorptivity (7-fold), brightness (14-fold), and spectral profiles in water, addressing a notorious quenching problem of NIR-II cyanines due to aggregation and polarization. We demonstrated the utilities of HC1222 and HC1342 for high-contrast dual-color imaging of circulatory system, lymphatic structures, tumor, and organ function in living mice under 1120 nm and 1319 nm excitation, showing HCs as a promising platform for non-invasive bioimaging.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| |
Collapse
|
29
|
Janeková H, Russo M, Ziegler U, Štacko P. Photouncaging of Carboxylic Acids from Cyanine Dyes with Near‐Infrared Light**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hana Janeková
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Marina Russo
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Peter Štacko
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
30
|
Liu D, Wang X, Zhou Y, Hu C, Su P, Yan J, Zhang N. A Study of the Functionalisation of BOPYIN dyes: Synthesis and Photophysical Properties. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debao Liu
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| | - Xuan Wang
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| | - Yongzhu Zhou
- Tianjin Chengjian University School of Chemical Engineering and Technology CHINA
| | - Cong Hu
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| | - Peng Su
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| | - Jiaying Yan
- China Three Gorges University College of Materials and Chemical Engineering Daxue road 443002 Yichang CHINA
| | - Nuonuo Zhang
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| |
Collapse
|
31
|
Yang Q, Váňa J, Klán P. The complex photochemistry of coumarin-3-carboxylic acid in acetonitrile and methanol. Photochem Photobiol Sci 2022; 21:1481-1495. [PMID: 35578152 DOI: 10.1007/s43630-022-00238-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Irradiation of coumarin-3-carboxylic acid in acetonitrile and methanol solutions at 355 nm results in complex multistep photochemical transformations, strongly dependent on the solvent properties and oxygen content. A number of reaction intermediates, which themselves undergo further (photo)chemical reactions, were identified by steady-state and transient absorption spectroscopy, mass spectrometry, and NMR and product analyses. The triplet excited compound in acetonitrile undergoes decarboxylation to give a 3-coumarinyl radical that traps molecular oxygen to form 3-hydroxycoumarin as the major but chemically reactive intermediate. This compound is oxygenated by singlet oxygen, produced by coumarin-3-carboxylic acid sensitization, followed by a pyrone ring-opening reaction to give an oxalic acid derivative. The subsequent steps lead to the production of salicylaldehyde, carbon monoxide, and carbon dioxide as the final products. When 3-coumarinyl radical is not trapped by oxygen in degassed acetonitrile, it abstracts hydrogen from the solvent and undergoes triplet-sensitized [2 + 2] cycloaddition. The reaction of 3-coumarinyl radical with oxygen is largely suppressed in aerated methanol as a better H-atom donor, and coumarin is obtained as the primary product in good yields. Because coumarin derivatives are used in many photophysical and photochemical applications, this work provides detailed and sometimes surprising insights into their complex phototransformations.
Collapse
Affiliation(s)
- Qiuyun Yang
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic.
| |
Collapse
|
32
|
Abstract
Currently, there is a substantial research effort to develop near-infrared fluorescent polymethine cyanine dyes for biological imaging and sensing. In water, cyanine dyes with extended conjugation are known to cross over the "cyanine limit" and undergo a symmetry breaking Peierls transition that favors an unsymmetric distribution of π-electron density and produces a broad absorption profile and low fluorescence brightness. This study shows how supramolecular encapsulation of a newly designed series of cationic, cyanine dyes by cucurbit[7]uril (CB7) can be used to alter the π-electron distribution within the cyanine chromophore. For two sets of dyes, supramolecular location of the surrounding CB7 over the center of the dye favors a nonpolar ground state, with a symmetric π-electron distribution that produces a sharpened absorption band with enhanced fluorescence brightness. The opposite supramolecular effect (i.e., broadened absorption and partially quenched fluorescence) is observed with a third set of dyes because the surrounding CB7 is located at one end of the encapsulated cyanine chromophore. From the perspective of enhanced near-infrared bioimaging and sensing in water, the results show how that the principles of host/guest chemistry can be employed to mitigate the "cyanine limit" problem.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
33
|
Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, Zhang F. Counterion‐Paired Bright Heptamethine Fluorophores with NIR‐II Excitation and Emission Enable Multiplexed Biomedical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| |
Collapse
|
34
|
Medeiros NG, Braga CA, Câmara VS, Duarte RC, Rodembusch FS. Near‐infrared fluorophores based on heptamethine cyanine dyes: from their synthesis and photophysical properties to recent optical sensing and bioimaging applications. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natália G Medeiros
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Cláudia A. Braga
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Viktor S Câmara
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Rodrigo C Duarte
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Fabiano Severo Rodembusch
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Gonçalves 9500Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| |
Collapse
|
35
|
Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat Methods 2022; 19:353-358. [PMID: 35228725 DOI: 10.1038/s41592-022-01394-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging.
Collapse
|
36
|
Dereje DM, Pontremoli C, Moran Plata MJ, Visentin S, Barbero N. Polymethine dyes for PDT: recent advances and perspectives to drive future applications. Photochem Photobiol Sci 2022; 21:397-419. [PMID: 35103979 DOI: 10.1007/s43630-022-00175-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
It has been proved that the effectiveness of photodynamic therapy (PDT) is closely related to the intrinsic features of the photosensitizer (PS). Over the recent years, several efforts have been devoted to the discovery of novel and more efficient photosensitizers showing higher efficacy and lower side effects. In this context, squaraine and cyanine dyes have been reported to potentially overcome the drawbacks related to the traditional PSs. In fact, squaraines and cyanines are characterized by sharp and intense absorption bands and narrow emission bands with high extinction coefficients typically in the red and near-infrared region, good photo and thermal stability and a strong fluorescent emission in organic solvents. In addition, biocompatibility and low toxicity make them suitable for biological applications. Despite these interesting intrinsic features, their chemical instability and self-aggregation properties in biological media still limit their use in PDT. To overcome these drawbacks, the self-assembly and incorporation into smart nanoparticle systems are forwarded promising approaches that can control their physicochemical properties, providing rational solutions for the limitation of free dye administration in the PDT application. The present review summarizes the latest advances in squaraine and cyanine dyes for PDT application, analyzing the different strategies, i.e.the self-assembly and the incorporation into nanoparticles, to further enhance their photochemical properties and therapeutic potential. The in vivo assessments are still limited, thus further delaying their effective application in PDT.
Collapse
Affiliation(s)
- Degnet Melese Dereje
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.,Department of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Polypeda 01, 0026, Bahir Dar, Ethiopia
| | - Carlotta Pontremoli
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Maria Jesus Moran Plata
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Quarello 15/A, 10135, Turin, Italy
| | - Nadia Barbero
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| |
Collapse
|
37
|
Lu P, Li H, Wang Z, Wang Z, Wang Y. Preparation and photoluminescent properties of amino 2,1,3-benzoxadiazoles (Am-BODs) with D-A-D and D-A-A conjugation systems. Chem Asian J 2022; 17:e202101357. [PMID: 35129880 DOI: 10.1002/asia.202101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Indexed: 11/07/2022]
Abstract
A series of D-A-D and D-A-A conjugated compounds composed of a benzoxadiazole core and corresponding amino were synthesized. Their photoluminescent properties in different states were investigated as well. In the solution state, some compounds were observed the usual anti-Kasha's emission in toluene and the solvatofluorochromic phenomenon. Meanwhile, compound 1a could be utilized as fluorescent chemosensors for the environmental acidity, and 2c could be developed for detecting fluoride anion. Moreover, they were emissive in powders and films, and 2d could be applied to the emissive layer in red OLEDs.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang University, Chemistry Department, 20 Yugu Road, 310027, Hangzhou, CHINA
| | - Hanjie Li
- Zhejiang University, Department of Chemistry, CHINA
| | - Zhichao Wang
- Zhejiang University, Department of Chemistry, CHINA
| | - Zaibin Wang
- Zhejiang University, Department of Chemistry, CHINA
| | | |
Collapse
|
38
|
Xie L, Zheng R, Hu H, Li L. Determination of hypochlorite and bisulfite in water by bifunctional colorimetric sensor based on octupolar conjugated merocyanine dyes. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Friedman HC, Cosco ED, Atallah TL, Jia S, Sletten EM, Caram JR. Establishing design principles for emissive organic SWIR chromophores from energy gap laws. Chem 2021; 7:3359-3376. [PMID: 34901520 PMCID: PMC8664240 DOI: 10.1016/j.chempr.2021.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rational design of bright near and shortwave infrared (NIR: 700-1000 SWIR: 1000- 2000 nm) emitters remains an open question with applications spanning imaging and photonics. Combining experiment and theory, we derive an energy gap quantum yield master equation (EQME), describing the fundamental limits in SWIR quantum yields (ϕ F ) for organic chromophores. Evaluating the photophysics of 21 polymethine NIR/SWIR chromophores to parameterize the EQME, we explain the precipitous decline of ϕ F past 900 nm through decreasing radiative rates and increasing nonradiative losses via high frequency vibrations relating to the energy gap. Using the EQME we develop an energy gap independent ϕ F NIR/SWIR chromophore comparison metric. We show electron donating character on polymethine heterocycles results in relative increases in radiative efficiency obscured by a simultaneous redshift. Finally, the EQME yields rational chromophore design insights shown by how deuteration (backed by our experimental results) or molecular aggregation increases SWIR ϕ F .
Collapse
Affiliation(s)
- Hannah C Friedman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Emily D Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305 USA
| | - Timothy L Atallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Department of Chemistry and Biochemistry, Denison University, 500 West Loop, Granville, Ohio 43023
| | - Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| |
Collapse
|
40
|
Zhang M, Wang M, Guo Y, Shi Y, Wang J, Chen Y, Zhao C, Zhou Y, Xiao Y, Zhang H, Zhao G. Unveiling the nonadiabatic photoisomerization mechanism of hemicyanines for UV photoprotection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119949. [PMID: 34023551 DOI: 10.1016/j.saa.2021.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, the nonadiabatic energy relaxation mechanism of hemicyanines for UV photoprotection were investigated by using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) method for the first time. The absorption spectra and potential energy surfaces (PESs) of four hemicyanines with different positions of substituents were presented. The maximum absorption peaks of the four hemicyanines are located in the UVA region. In addition, all these hemicyanine molecules also have light absorption in both the UVB and UVC regions. At the same time, we found that the trans-cis photoisomerization PESs of all these hemicyanines have a significant conical intersection (CI) point between the first excited state and the ground state. Herein, it was first demonstrated that the UV energy absorbed by the hemicyanines could be dissipated nonadiabatically through the CI point by using the trans-cis photoisomerization dynamics mechanism. This work proves that hemicyanines have the possibility to be applied for UV photoabsorbers, and provides important basis for designing new type of hemicyanines for UV photoprotection.
Collapse
Affiliation(s)
- Mingshui Zhang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Shi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Jun Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China.
| | - Yibing Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Chenyang Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yi Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yongze Xiao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Haoyue Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
41
|
Štacko P, Šolomek T. Photoremovable Protecting Groups: Across the Light Spectrum to Near- Infrared Absorbing Photocages. Chimia (Aarau) 2021; 75:873-881. [PMID: 34728015 DOI: 10.2533/chimia.2021.873] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We discuss the past decade of progress in the field of photoremovable protecting groups that allowed the development of photocages activatable by near-IR light and highlight the individual conceptual advancements that lead to general guidelines to design new such photoremovable protecting groups. We emphasize the importance of understanding the individual photochemical reaction mechanisms that was necessary to achieve this progress and provide an outlook of the subsequent steps to facilitate a swift translation of this research into clinical praxis. Since this issue of CHIMIA is dedicated to the late Prof. Thomas Bally, we decided to provide a personal perspective on the field to which he contributed himself. We tried to write this review with the general readership of CHIMIA in mind in a hope to pay a tribute to the extraordinary dedication and clarity with which Thomas Bally used to explain abstract chemical concepts to his students or colleagues. We are uncertain whether we matched such challenge but we believe that he would have liked such approach very much.
Collapse
Affiliation(s)
- Peter Štacko
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich; Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia;,
| | - Tomáš Šolomek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia;,
| |
Collapse
|
42
|
Li D, Smith BD. Deuterated Indocyanine Green (ICG) with Extended Aqueous Storage Shelf-Life: Chemical and Clinical Implications. Chemistry 2021; 27:14535-14542. [PMID: 34403531 PMCID: PMC8530945 DOI: 10.1002/chem.202102816] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Indocyanine Green (ICG) is a clinically approved near-infrared fluorescent dye that is used extensively for various imaging and diagnostic procedures. One drawback with ICG is its instability in water, which means that reconstituted clinical doses have to be used very shortly after preparation. Two deuterated versions of ICG were prepared with deuterium atoms on the heptamethine chain, and the spectral, physiochemical, and photostability properties were quantified. A notable mechanistic finding is that self-aggregation of ICG in water strongly favors dye degradation by a photochemical oxidative dimerization reaction that gives a nonfluorescent product. Storage stability studies showed that replacement of C-H with C-D decreased the dimerization rate constant by a factor of 3.1, and it is likely that many medical and preclinical procedures will benefit from the longer shelf-lives of these two deuterated ICG dyes. The discovery that ICG self-aggregation promotes photoinduced electron transfer can be exploited as a new paradigm for next-generation photodynamic therapies.
Collapse
Affiliation(s)
- Dong‐Hao Li
- Department of Chemistry & BiochemistryUniversity of Notre Dame251 Nieuwland Science HallNotre DameIN, 46545USA
| | - Bradley D. Smith
- Department of Chemistry & BiochemistryUniversity of Notre Dame251 Nieuwland Science HallNotre DameIN, 46545USA
| |
Collapse
|
43
|
Atkinson KM, Morsby JJ, Kommidi SSR, Smith BD. Generalizable synthesis of bioresponsive near-infrared fluorescent probes: sulfonated heptamethine cyanine prototype for imaging cell hypoxia. Org Biomol Chem 2021; 19:4100-4106. [PMID: 33978049 PMCID: PMC8121178 DOI: 10.1039/d1ob00426c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continued advancement in bioresponsive fluorescence imaging requires new classes of activatable fluorescent probes that emit near-infrared fluorescence with wavelengths above 740 nm. Heptamethine cyanine dyes (Cy7) have suitable fluorescence properties but it is challenging to create activatable probes because Cy7 dyes have a propensity for self-aggregation and fluorescence quenching. A new synthetic strategy is employed to create a generalizable class of hydrophilic bioresponsive near-infrared fluorescent probes with appended sulfonates that provide excellent physiochemical properties. A prototype version is triggered by nitroreductase enzyme to undergo self-immolative cleavage with a large enhancement in fluorescence signal at 780 nm and the probe enables microscopic imaging of cell hypoxia with "turn on" fluorescence. Near-infrared fluorescence imaging of hypoxia is potentially useful in many different areas of biomedical research and clinical treatment.
Collapse
Affiliation(s)
- Kirk M Atkinson
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| | - Janeala J Morsby
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| | - Sai Shradha Reddy Kommidi
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
44
|
Cosco ED, Arús BA, Spearman AL, Atallah TL, Lim I, Leland OS, Caram JR, Bischof TS, Bruns OT, Sletten EM. Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color In Vivo Imaging with Shortwave Infrared Detection. J Am Chem Soc 2021; 143:6836-6846. [PMID: 33939921 DOI: 10.1021/jacs.0c11599] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optical imaging within the shortwave infrared (SWIR, 1000-2000 nm) region of the electromagnetic spectrum has enabled high-resolution and high-contrast imaging in mice, non-invasively. Polymethine dyes, with their narrow absorption spectra and high absorption coefficients, are optimal probes for fast and multiplexed SWIR imaging. Here, we expand upon the multiplexing capabilities in SWIR imaging by obtaining brighter polymethine dyes with varied excitation wavelengths spaced throughout the near-infrared (700-1000 nm) region. Building on the flavylium polymethine dye scaffold, we explored derivatives with functional group substitution at the 2-position, deemed chromenylium polymethine dyes. The reported dyes have reduced nonradiative rates and enhanced emissive properties, enabling non-invasive imaging in mice in a single color at 300 fps and in three colors at 100 fps. Combined with polymethine dyes containing a red-shifted julolidine flavylium heterocycle and indocyanine green, distinct channels with well-separated excitation wavelengths provide non-invasive video-rate in vivo imaging in four colors.
Collapse
Affiliation(s)
- Emily D Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Anthony L Spearman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy L Atallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Olivia S Leland
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas S Bischof
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,School of Medicine, Technical University Munich, D-80333 München, Germany
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Shoji T, Yamazaki A, Ariga Y, Uda M, Ando D, Sasahara N, Kai N, Ito S. Azulene-Substituted Donor-Acceptor Polymethines and 1,6'-Bi-, 1,6';3,6''-Ter-, and Quinqueazulenes via Zincke Salts: Synthesis, and Structural, Optical, and Electrochemical Properties. Chempluschem 2021; 86:946-966. [PMID: 33973729 DOI: 10.1002/cplu.202100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes composed of the 1,6'-biazulene unit have been successfully prepared from corresponding Zincke salts. The synthesis of polymethines through the reaction of Zincke salts with several amines, followed by a Knoevenagel reaction with malononitrile, was accomplished in moderate to high yields (40-92 %). Meanwhile, the reaction of Zincke salts with secondary amines and the subsequent sequential condensation-cyclization with cyclopentadienide ions, so-called Ziegler-Hafner method, produced the corresponding 1,6'-biazulenes, 1,6';3,6''-terazulenes, and quinqueazulene, respectively. The structural, optical, and electrochemical properties of the azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes were revealed by single-crystal X-ray structure analysis, UV/vis spectroscopy, voltammetry analysis, spectroelectrochemistry, and theoretical calculations. These results suggested that the substituents on the azulene ring and their substitution positions directly affect their reactivities, optical and electrochemical properties.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Akari Yamazaki
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Yukino Ariga
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Mayumi Uda
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Daichi Ando
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Nichika Sasahara
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Naohito Kai
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Aomori, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Aomori, Japan
| |
Collapse
|
46
|
Colas K, Doloczki S, Posada Urrutia M, Dyrager C. Prevalent Bioimaging Scaffolds: Synthesis, Photophysical Properties and Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kilian Colas
- Department of Chemistry – BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Susanne Doloczki
- Department of Chemistry – BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Christine Dyrager
- Department of Chemistry – BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
47
|
Sun P, Zhang H, Sun Y, Liu J. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118919. [PMID: 32977107 DOI: 10.1016/j.saa.2020.118919] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) participate in numerous metabolic processes in living cells as electron carriers. The levels of NADH and NADPH in a cell are closely related to its metabolic and pathological state. It is important to monitor the levels of NADH and NADPH in living cells and in vivo in real-time. This review mainly focuses on fluorescent probes developed for monitoring NADH and NADPH in living cells and in vivo, and classifies them according to the recognition units. These fluorescence probes can rapidly respond to changes in NADH and NADPH levels without interference from other biomolecules, both in cell culture and in vivo. These probes have been employed to monitor NADH and NADPH levels in living cells, tumor spheroids, and in vivo; moreover, some of them can be used to discriminate normal cells from cancer cells, and detect cancer cell death due to reductive stress induced by natural antioxidants. This review is expected to inspire the generation of novel fluorescent probes for the detection of NADH and NADPH, and stimulate more attention in the development of fluorescent probes based on carbon dots and nanoparticles, as well as metal complex-based, time-gated luminescent probes for monitoring NADH and NADPH in both living cells and in vivo.
Collapse
Affiliation(s)
- Pengjuan Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
48
|
Pascal S, David S, Andraud C, Maury O. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chem Soc Rev 2021; 50:6613-6658. [DOI: 10.1039/d0cs01221a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent advances in the field of two-photon absorbing chromophores in the short-wavelength infrared spectral range (SWIR 1100–2500 nm) are summarized, highlighting the development of optical power limiting devices in this spectral range.
Collapse
Affiliation(s)
- Simon Pascal
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Sylvain David
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Chantal Andraud
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Olivier Maury
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| |
Collapse
|
49
|
Štacková L, Russo M, Muchová L, Orel V, Vítek L, Štacko P, Klán P. Cyanine-Flavonol Hybrids for Near-Infrared Light-Activated Delivery of Carbon Monoxide. Chemistry 2020; 26:13184-13190. [PMID: 32885885 PMCID: PMC7693251 DOI: 10.1002/chem.202003272] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule that controls a number of physiological processes. To circumvent the inherent toxicity of CO, light-activated CO-releasing molecules (photoCORMs) have emerged as an alternative for its administration. However, their wider application requires photoactivation using biologically benign visible and near-infrared (NIR) light. In this work, a strategy to access such photoCORMs by fusing two CO-releasing flavonol moieties with a NIR-absorbing cyanine dye is presented. These hybrids liberate two molecules of CO in high chemical yields upon activation with NIR light up to 820 nm and exhibit excellent uncaging cross-sections, which surpass the state-of-the-art by two orders of magnitude. Furthermore, the biocompatibility and applicability of the system in vitro and in vivo are demonstrated, and a mechanism of CO release is proposed. It is hoped that this strategy will stimulate the discovery of new classes of photoCORMs and accelerate the translation of CO-based phototherapy into practice.
Collapse
Affiliation(s)
- Lenka Štacková
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marina Russo
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 12108, Praha 2, Czech Republic
| | - Vojtěch Orel
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 12108, Praha 2, Czech Republic
| | - Peter Štacko
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
50
|
Feng L, Chen W, Ma X, Liu SH, Yin J. Near-infrared heptamethine cyanines (Cy7): from structure, property to application. Org Biomol Chem 2020; 18:9385-9397. [DOI: 10.1039/d0ob01962c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heptamethine cyanine dyes (Cy7) have attracted much attention in the field of biological application due to their unique structure and attractive near infrared (NIR) photophysical properties.
Collapse
Affiliation(s)
- Lan Feng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Xiaoxie Ma
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|