1
|
Wu J, Tan X, Wu W, Jiang H. Easily Handled NaBAr F4 Catalyzed Selective Electrophilic Deuteration Method for C(sp 2)-H Bond of Aryl Amines. J Org Chem 2025; 90:5161-5170. [PMID: 40178534 DOI: 10.1021/acs.joc.5c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Deuterated aryl amines are increasingly sought after in pharmaceuticals, particularly in the development of deuterated drugs. Traditional methods for their synthesis often involve harsh conditions or preprepared reagents. This study introduces a mild, metal-free method for the selective deuteration of aryl amines, utilizing deuterium oxide (D2O) and a commercially available catalyst, tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (NaBArF4). The reaction is performed under moderate conditions and is compatible with a wide range of substrates, including sensitive functional groups. Mechanistic studies highlight the crucial role of noncoordinated Na+ in catalysis, underscoring the broader potential of NaBArF4 and weakly coordinating anions (WCAs) in synthetic chemistry. This method offers an efficient and sustainable approach to synthesizing deuterated aryl amines.
Collapse
Affiliation(s)
- Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Rivera-Chao E, Corpas J, Lonardi G, Derdau V, Ruffoni A, Leonori D. Excited-State Basicity Diverts the Site-Selectivity of Aromatic Deuteration: Application to the Late-Stage Labeling of Pharmaceuticals. Angew Chem Int Ed Engl 2025:e202500627. [PMID: 40125633 DOI: 10.1002/anie.202500627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Isotope labeling, particularly with deuterium (2H), plays a critical role in drug discovery due to its ease of incorporation and its potential to switch unwanted metabolic transformations. Deuterium incorporation can enhance drug stability, affect pharmacokinetics, and alter metabolism pathways. Current deuterium labeling methods focus on hydrogen isotope exchange (HIE), and typically rely on the use of transition metal catalysis. Herein, we present a metal-free approach for aromatic HIE, utilizing photoexcitation in deuterated hexafluoroisopropanol (HFIP-d1). By exploiting the enhanced basicity of excited-state aromatics, this method achieves selective deuteration at positions often inaccessible by traditional methods. The approach is efficient and was demonstrated across a broad number of complex drug molecules. Transient absorption spectroscopy confirms the formation of deuterated arenium ions.
Collapse
Affiliation(s)
- Eva Rivera-Chao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, 52056, Germany
| | - Javier Corpas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, 52056, Germany
| | - Giovanni Lonardi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, 52056, Germany
| | - Volker Derdau
- Integrated Drug Discovery, R&D, Sanofi, Germany, Industriepark Hoechst, Frankfurth am Main, 65926, Germany
| | - Alessandro Ruffoni
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, 52056, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, 52056, Germany
| |
Collapse
|
3
|
Ni Y, Lebelt J, Barp M, Kreuter F, Buttkus H, Jin J, Kretzschmar M, Tonner-Zech R, Asmis KR, Gulder T. Hexafluorophosphate-Triggered Hydrogen Isotope Exchange (HIE) in Fluorinated Environments: A Platform for the Deuteration of Aromatic Compounds via Strong Bond Activation. Angew Chem Int Ed Engl 2025; 64:e202417889. [PMID: 39564991 DOI: 10.1002/anie.202417889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
There is a perpetual need for efficient and mild methods to integrate deuterium atoms into carbon frameworks through late-stage modifications. We have developed a simple and highly effective synthetic route for hydrogen isotope exchange (HIE) in aromatic compounds under ambient conditions. This method utilizes catalytic amounts of hexafluorophosphate (PF6 -) in deuterated 1,1,1,3,3,3-hexafluoroisopropanol (HFIP-d1) and D2O. Phenols, anilines, anisoles, and heterocyclic compounds were converted with high yields and excellent deuterium incorporations, which allows for the synthesis of a wide range of deuterated aromatic compounds. Spectroscopic and theoretical studies show that an interactive H-bonding network triggered by HFIP-d1 activates the typically inert P-F bond in PF6 - for D2O addition. The thus in situ formed DPO2F2 then triggers HIE, offering a new way to deuterated building blocks, drugs, and natural-product derivatives with high deuterium incorporation via the activation of strong bonds.
Collapse
Affiliation(s)
- Yang Ni
- Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Jonathan Lebelt
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
- Organic Chemistry-, Biomimetic Catalysis, Saarland University, 66123, Saarbruecken, Germany
| | - Milena Barp
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Florian Kreuter
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Hannah Buttkus
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Martin Kretzschmar
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Tanja Gulder
- Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
- Organic Chemistry-, Biomimetic Catalysis, Saarland University, 66123, Saarbruecken, Germany
- Synthesis of Natural-Product Derived Drugs, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123, Saarbruecken, Germany
| |
Collapse
|
4
|
Teja C, Kolb S, Colonna P, Grover J, Garcia-Argote S, Lahiri GK, Pieters G, Werz DB, Maiti D. Deuteration and Tritiation of Pharmaceuticals by Non-Directed Palladium-Catalyzed C-H Activation in Heavy and Super-Heavy Water. Angew Chem Int Ed Engl 2024; 63:e202410162. [PMID: 39109510 DOI: 10.1002/anie.202410162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 10/18/2024]
Abstract
Deuterated and tritiated analogs of drugs are valuable compounds for pharmaceutical and medicinal chemistry. In this work, we present a novel hydrogen isotope exchange reaction of drugs using non-directed homogeneous Pd-catalysis. Aromatic C-H activation is achieved by a commercially available pyridine ligand. Using the most convenient and cheapest deuterium source, D2O, as the only solvent 39 pharmaceuticals were labelled with clean reaction profiles and high deuterium uptakes. Additionally, we describe the first application of non-directed homogeneous Pd-catalysis for H/T exchange on three different pharmaceuticals by using T2O as isotopic source, demonstrating the applicability to the synthesis of radiotracers.
Collapse
Affiliation(s)
- Chitrala Teja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Simon Kolb
- Albert-Ludwigs University Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg, Germany
| | - Pierre Colonna
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Jagrit Grover
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Sébastien Garcia-Argote
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Daniel B Werz
- Albert-Ludwigs University Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
5
|
Zhang Z, Lv Y, Ong WQR, Zhao X, Jia Z, Loh TP. Robust Catalytic S EAr H/D Exchange of Arenes with D 2O: Metal-Free Deuteration of Natural Complexes and Drugs. Angew Chem Int Ed Engl 2024; 63:e202408509. [PMID: 39152649 DOI: 10.1002/anie.202408509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
A catalytic metal-free approach for the H/D exchange in aromatic compounds using D2O as the terminal deuterating reagent has been developed. This metal-free protocol employs a triaryl carbenium as the mediator and showcases a wide applicability in the late-stage deuteration of various natural products and small-molecule drugs. Gram-scale deuteration was successfully demonstrated with β-Estradiol, highlighting the method's practicability. Detailed mechanistic insights, supported by DFT calculations, unveiled the essential role of in situ generated acidic species in this electrophilic aromatic substitution process. This newly developed method offers a sustainable and versatile alternative to traditional metal-catalyzed H/D exchange techniques, addressing challenges such as the use of expensive metals, impurity formation, and the necessity for residual metal removal from the final products.
Collapse
Affiliation(s)
- Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yongheng Lv
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wan Qing Renee Ong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xuefei Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
6
|
Kaga A, Saito H, Yamano M. Divergent and chemoselective deuteration of N-unsubstituted imidazoles enabled by precise acid/base control. Chem Commun (Camb) 2024; 60:8920-8923. [PMID: 39092668 DOI: 10.1039/d4cc02471k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Herein, we report acid/base-controlled and divergent deuteration of N-unsubstituted imidazoles in an imidazole-selective manner. This protocol enabled the deuteration of not only the 4-arylimidazoles but also the 2-arylimidazoles without labelling the aromatic rings. We demonstrated the advantages of this protocol by the synthesis of deuterated pharmaceuticals, which is difficult to achieve by means of transition metals.
Collapse
Affiliation(s)
- Atsushi Kaga
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| | - Hayate Saito
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| | - Mitsuhisa Yamano
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| |
Collapse
|
7
|
Hartmann H, Liebscher J. Formation and Reactions of Brønsted and Lewis Acid Adducts with Electron-Rich Heteroaromatic Compounds. Molecules 2024; 29:3151. [PMID: 38999101 PMCID: PMC11243428 DOI: 10.3390/molecules29133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Electron-rich heteroaromatics, such as furan, thiophene and pyrrole, as well as their benzo-condensed derivatives, are of great interest as components of natural products and as starting substances for various products including high-tech materials. Although their reactions with Brønsted and Lewis acids play important roles, in particular as the primary step of various transformations, they are often disregarded and mechanistically not understood. The present publication gives a first overview about this chemistry focusing on the parent compounds. It comprises reactions with strong Brønsted acids forming adducts that can undergo intramolecular proton and/or substituent transfer reactions, ring openings or ring transformations into other heterocycles, depending on their structure. Interactions with weak Brønsted acids usually initiate oligomerizations/polymerizations. A similar behaviour is observed in reactions of these heteroaromatics with Lewis acids. Special effects are achieved when the Lewis acids are activated through primary protonation. Deuterated Brønsted acids allow straight forward deuteration of electron-rich heteroaromatics. Mercury salts as extremely weak Lewis acids cause direct metalation in a straight forward way replacing ring H-atoms yielding organomercury heterocycles. This review will provide comprehensive information about the chemistry of adducts of such heterocycles with Brønsted and Lewis acids enabling chemists to understand the mechanisms and the potential of this field and to apply the findings in future syntheses.
Collapse
Affiliation(s)
- Horst Hartmann
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jürgen Liebscher
- National Institute for Research and Development of Isotopic and Molecular Technologies INCDTIM, 400293 Cluj-Napoca, Romania;
- Institute of Chemistry, Humboldt-University of Berlin, 12489 Berlin, Germany
| |
Collapse
|
8
|
Lin ZH, Yao YF, Zhang CP. Deuteration of Arylthianthren-5-ium Salts in CD 3OD. Org Lett 2022; 24:8417-8422. [DOI: 10.1021/acs.orglett.2c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeng-Hui Lin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu-Fei Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
9
|
Tortajada A, Hevia E. Perdeuteration of Arenes via Hydrogen Isotope Exchange Catalyzed by the Superbasic Sodium Amide Donor Species NaTMP·PMDETA. J Am Chem Soc 2022; 144:20237-20242. [DOI: 10.1021/jacs.2c09778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreu Tortajada
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Appert E, Martin‐Mingot A, Karam O, Zunino F, Michelet B, Bouazza F, Thibaudeau S. Superacid‐Mediated Late‐Stage Aromatic Polydeuteration of Pharmaceuticals. Chemistry 2022; 28:e202201583. [DOI: 10.1002/chem.202201583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Emeline Appert
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Agnès Martin‐Mingot
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Omar Karam
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Fabien Zunino
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Bastien Michelet
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Fodil Bouazza
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Sébastien Thibaudeau
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| |
Collapse
|
11
|
Bourriquen F, Rockstroh N, Bartling S, Junge K, Beller M. Manganese‐Catalysed Deuterium Labelling of Anilines and Electron‐Rich (Hetero)Arenes. Angew Chem Int Ed Engl 2022; 61:e202202423. [PMID: 35484978 PMCID: PMC9322005 DOI: 10.1002/anie.202202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/18/2022]
Abstract
There is a constant need for deuterium‐labelled products for multiple applications in life sciences and beyond. Here, a new class of heterogeneous catalysts is reported for practical deuterium incorporation in anilines, phenols, and heterocyclic substrates. The optimal material can be conveniently synthesised and allows for high deuterium incorporation using deuterium oxide as isotope source. This new catalyst has been fully characterised and successfully applied to the labelling of natural products as well as marketed drugs.
Collapse
Affiliation(s)
- Florian Bourriquen
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
12
|
Bourriquen F, Rockstroh N, Bartling S, Junge K, Beller M. Manganese Catalysed Deuterium Labelling of Anilines and Electron‐Rich (Hetero)Arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Nils Rockstroh
- LIKAT: Leibniz-Institut fur Katalyse eV Analytics GERMANY
| | | | - Kathrin Junge
- LIKAT: Leibniz-Institut fur Katalyse eV Applied Chemistry GERMANY
| | - Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a 18059 Rostock GERMANY
| |
Collapse
|
13
|
Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. C-H deuteration of organic compounds and potential drug candidates. Chem Soc Rev 2022; 51:3123-3163. [PMID: 35320331 DOI: 10.1039/d0cs01496f] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C-H deuteration has been intricately developed to satisfy the urgent need for site-selectively deuterated organic frameworks. Deuteration has been primarily used to study kinetic isotope effects of reactions but recently its significance in pharmaceutical chemistry has been discovered. Deuterium labelled compounds have stolen the limelight since the inception of the first FDA-approved deuterated drug, for the treatment of chorea-associated Huntington's disease, and their pharmacological importance was realised by chemists, although surprisingly very late. Various approaches were developed to carry out site-selective deuteration. However, the most common and efficient method is hydrogen isotope exchange (HIE). This review summarises deuteration methods of various organic motifs containing C(sp2)-H and C(sp3)-H bonds utilizing C-H bond functionalisation as a key step along with a variety of catalysts, and exemplifies their biological relevance.
Collapse
Affiliation(s)
- Gaurav Prakash
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Nilanjan Paul
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Gwyndaf A Oliver
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
14
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
15
|
Ozakai C, Kitamura K, Horikawa M, Hoshiyama TS, Imamura A, Yoneyama T, Umeyama A, Noji M, Tsunoda T, Kaku H. Strong acid-promoted skeletal remodeling of the aphid pigment: red uroleuconaphin to green viridaphin. NEW J CHEM 2022. [DOI: 10.1039/d1nj05261f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strong acid-promoted single-step transformation of red uroleuconaphin A1 to green viridaphins A1 and A2 is described here.
Collapse
Affiliation(s)
- Chiharu Ozakai
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kei Kitamura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Mitsuyo Horikawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - To-sho Hoshiyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Akari Imamura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Tatsuro Yoneyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masaaki Noji
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Tetsuto Tsunoda
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hiroto Kaku
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
16
|
Zhao LL, Wu Y, Huang S, Zhang Z, Liu W, Yan X. Ortho-Selective Hydrogen Isotope Exchange of Phenols and Benzyl Alcohols by Mesoionic Carbene-Iridium Catalyst. Org Lett 2021; 23:9297-9302. [PMID: 34792358 DOI: 10.1021/acs.orglett.1c03685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen isotope exchange reactions of phenols and benzyl alcohols have been achieved by a mesoionic carbene-iridium catalyst with high ortho selectivity and high functional group tolerance. Control experiments indicated that acetate is crucial to realize the ortho selectivity, whereas density functional theory calculations supported an outer-sphere direction with hydrogen bonding between acetate and the hydroxyl group.
Collapse
Affiliation(s)
- Liang-Liang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixin Wu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
17
|
Farizyan M, Mondal A, Mal S, Deufel F, van Gemmeren M. Palladium-Catalyzed Nondirected Late-Stage C-H Deuteration of Arenes. J Am Chem Soc 2021; 143:16370-16376. [PMID: 34582686 PMCID: PMC8517979 DOI: 10.1021/jacs.1c08233] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 12/11/2022]
Abstract
We describe a palladium-catalyzed nondirected late-stage deuteration of arenes. Key aspects include the use of D2O as a convenient and easily available deuterium source and the discovery of highly active N,N-bidentate ligands containing an N-acylsulfonamide group. The reported protocol enables high degrees of deuterium incorporation via a reversible C-H activation step and features extraordinary functional group tolerance, allowing for the deuteration of complex substrates. This is exemplified by the late-stage isotopic labeling of various pharmaceutically relevant motifs and related scaffolds. We expect that this method, among other applications, will prove useful as a tool in drug development processes and for mechanistic studies.
Collapse
Affiliation(s)
| | | | | | | | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
18
|
Yan H, Jia SK, Geng YH, Han JJ, Hua YZ, Wang MC. Dinuclear zinc-catalyzed asymmetric Friedel-Crafts alkylation/cyclization of 3-aminophenols with α,α-dicyanoolefins. Chem Commun (Camb) 2021; 57:9854-9857. [PMID: 34490871 DOI: 10.1039/d1cc04177k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An enantioselective Friedel-Crafts alkylation/cyclization tandem reaction of 3-aminophenols with α,α-dicyanoolefins has been performed successfully using a chiral dinuclear zinc catalyst, leading to a range of chiral 2-amino-4H-chromenes (up to 98% yield and >99% ee). To the best of our knowledge, this is the first asymmetric example of the dinuclear zinc-catalysed functionalization of aromatic C(sp2)-H bonds.
Collapse
Affiliation(s)
- Hang Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yu-Huan Geng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiao-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Darshana D, Sureram S, Mahidol C, Ruchirawat S, Kittakoop P. Spontaneous conversion of prenyl halides to acids: application in metal-free preparation of deuterated compounds under mild conditions. Org Biomol Chem 2021; 19:7390-7402. [PMID: 34296730 DOI: 10.1039/d1ob01275d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we reveal a simple generation of deuterium halide (DX) from common and inexpensive reagents readily available in a synthetic chemistry laboratory, i.e. prenyl-, allyl-, and propargyl halides, under mild conditions. We envisaged that in situ generation of an acid, deuterium halide, would be useful for acid-catalyzed reactions and could be employed for organocatalytic deuteration. The present work reports a metal-free method for deuterium labeling covering a broad range of substrate including phenolic compounds (i.e. flavonoids and stilbenes), indoles, pyrroles, carbonyl compounds, and steroids. This method was also applied for commonly used drugs such as loxoprofen, haloperidol, stanolone, progesterone, androstenedione, donepezil, ketorolac, adrenosterone, cortisone, pregnenolone, and dexamethasone. A gram-scale chromatography-free synthesis of some deuterated compounds is demonstrated in this work. This work provides a simple, clean and by-product-free, site-selective deuteration, and the deuterated products are obtained without chromatographic separation. When applying these initiators for other acid-catalyzed reactions, the deuterium isotope effects of DX may provide products which are different from those obtained from reactions using common acids. Although the mechanism of the spontaneous transformation of prenyl halides to acid is unclear, this overlooked chemistry may be useful for many reactions.
Collapse
Affiliation(s)
- Dhanushka Darshana
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.
| | | | | | | | | |
Collapse
|
20
|
Abstract
AbstractThe introduction of deuterium and tritium into molecules is of great importance in drug discovery. Many attempts have been made to develop late-stage hydrogen isotope exchange (HIE) reactions to avoid multistep syntheses using commercially available labeled precursors. In this review, we summarize recent progress in catalytic HIE reactions, with our main focus on their applications in the late-stage labeling of bioactive complex molecules and pharmaceuticals1 Introduction2 Non-Transition-Metal-Catalyzed Hydrogen Isotope Exchange2.1 Organocatalysis2.2 Photoredox Catalysis3 Transition-Metal-Catalyzed Hydrogen Isotope Exchang3.1 Palladium3.2 Ruthenium3.3 Iridium3.4 Other Metals4 Summary
Collapse
Affiliation(s)
- Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University
- Institute of Natural Sciences, Westlake Institute for Advanced Study
| | - Qi-Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University
- Institute of Natural Sciences, Westlake Institute for Advanced Study
| |
Collapse
|