1
|
Sahoo SS, Manna D. Nanomaterial-Triggered Ferroptosis and Cuproptosis in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412462. [PMID: 40018870 DOI: 10.1002/smll.202412462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Suman Sekhar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
2
|
Boerkamp VJP, Hennebelle M, Vincken JP, van Duynhoven JPM. Comprehensive quantitative profiling of vegetable oil oxidation products by NMR-based oxylipidomics. Food Res Int 2025; 202:115612. [PMID: 39967087 DOI: 10.1016/j.foodres.2024.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Lipid oxidation is one the major causes of food deterioration. Current advancement in mechanistic understanding is limited by the lack of high-throughput methods that can simultaneously quantify a wide range of oxidation product classes, such as lipid hydroperoxides, epoxides, ketones, hydroxides, and aldehydes. Here, we introduce an NMR-based 'oxylipidomics' platform by providing the annotation of 42 substructures formed during lipid oxidation in vegetable oils. The annotated substructures accounted for respectively 93, 90 and 70% of the oxidation products of triolein, trilinolein, and trilinolenin. The spectral assignments allowed for quantification of lipid oxidation products in vegetable oil at class (e.g., epoxides) and substructure level (e.g., trans-epoxides) at the commonly available field strength of 14.1 T (600 MHz). We anticipate that our workflow will enable rapid assessment of health risks, unravelling of precursor-sensory relationships, rational design of antioxidant strategies, and in-depth mechanistic studies into food lipid oxidation.
Collapse
Affiliation(s)
- Vincent J P Boerkamp
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, the Netherlands; Unilever Food Innovation Centre, Bronland 14, Wageningen 6708 WH, the Netherlands
| |
Collapse
|
3
|
Jin Z, Mollica F, Huang Y, Guernelli S, Baschieri A, Diquigiovanni C, Rizzardi N, Valenti F, Pincigher L, Bergamini C, Amorati R. Pro-aromatic Natural Terpenes as Unusual "Slingshot" Antioxidants with Promising Ferroptosis Inhibition Activity. Chemistry 2024; 30:e202403320. [PMID: 39392313 DOI: 10.1002/chem.202403320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/12/2024]
Abstract
Ferroptosis is a cell death mechanism based on extensive cellular membrane peroxidation, implicated in neurodegenerative and other diseases. The essential oil component γ-terpinene, a natural monoterpene with a unique highly oxidizable pro-aromatic 1,4-cyclohexadiene skeleton, inhibits peroxidation of polyunsaturated lipid in model heterogeneous systems (micelles and liposomes). Upon H-atom abstraction, an unstable γ-terpinene-derived peroxyl radical is formed, that aromatizes to p-cymene generating HOO⋅ radicals. As HOO⋅ are small and hydrophilic radicals, they quickly diffuse outside the lipid core, blocking the radical chain propagation of polyunsaturated lipids. This unprecedented antioxidant "slingshot" mechanism explains why γ-terpinene shows a protective activity against ferroptosis, being effective at submicromolar concentrations in human neuroblastoma (SH-SY5Y) cells.
Collapse
Affiliation(s)
- Zongxin Jin
- Department of Chemistry, "G. Ciamician" University of Bologna, Via Gobetti 83, 40129, Bologna, Italy
| | - Fabio Mollica
- Department of Chemistry, "G. Ciamician" University of Bologna, Via Gobetti 83, 40129, Bologna, Italy
| | - Yeqin Huang
- Department of Chemistry, "G. Ciamician" University of Bologna, Via Gobetti 83, 40129, Bologna, Italy
| | - Susanna Guernelli
- Department of Chemistry, "G. Ciamician" University of Bologna, Via Gobetti 83, 40129, Bologna, Italy
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity, (ISOF) National Research Council of Italy (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry, "G. Ciamician" University of Bologna, Via Gobetti 83, 40129, Bologna, Italy
| |
Collapse
|
4
|
Zhu K, Cai Y, Lan L, Luo N. Tumor Metabolic Reprogramming and Ferroptosis: The Impact of Glucose, Protein, and Lipid Metabolism. Int J Mol Sci 2024; 25:13413. [PMID: 39769177 PMCID: PMC11676715 DOI: 10.3390/ijms252413413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025] Open
Abstract
Ferroptosis, a novel form of cell death discovered in recent years, is typically accompanied by significant iron accumulation and lipid peroxidation during the process. This article systematically elucidates how tumor metabolic reprogramming affects the ferroptosis process in tumor cells. The paper outlines the basic concepts and physiological significance of tumor metabolic reprogramming and ferroptosis, and delves into the specific regulatory mechanisms of glucose metabolism, protein metabolism, and lipid metabolism on ferroptosis. We also explore how complex metabolic changes in the tumor microenvironment further influence the response of tumor cells to ferroptosis. Glucose metabolism modulates ferroptosis sensitivity by influencing intracellular energetic status and redox balance; protein metabolism, involving amino acid metabolism and protein synthesis, plays a crucial role in the initiation and progression of ferroptosis; and the relationship between lipid metabolism and ferroptosis primarily manifests in the generation and elimination of lipid peroxides. This review aims to provide a new perspective on how tumor cells regulate ferroptosis through metabolic reprogramming, with the ultimate goal of offering a theoretical basis for developing novel therapeutic strategies targeting tumor metabolism and ferroptosis.
Collapse
Affiliation(s)
- Keyu Zhu
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| | - Yuang Cai
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| | - Lan Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China;
| | - Na Luo
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| |
Collapse
|
5
|
Hirata Y, Yamada Y, Taguchi S, Kojima R, Masumoto H, Kimura S, Niijima T, Toyama T, Kise R, Sato E, Uchida Y, Ito J, Nakagawa K, Taguchi T, Inoue A, Saito Y, Noguchi T, Matsuzawa A. Conjugated fatty acids drive ferroptosis through chaperone-mediated autophagic degradation of GPX4 by targeting mitochondria. Cell Death Dis 2024; 15:884. [PMID: 39643606 PMCID: PMC11624192 DOI: 10.1038/s41419-024-07237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Conjugated fatty acids (CFAs) have been known for their anti-tumor activity. However, the mechanism of action remains unclear. Here, we identify CFAs as inducers of glutathione peroxidase 4 (GPX4) degradation through chaperone-mediated autophagy (CMA). CFAs, such as (10E,12Z)-octadecadienoic acid and α-eleostearic acid (ESA), induced GPX4 degradation, generation of mitochondrial reactive oxygen species (ROS) and lipid peroxides, and ultimately ferroptosis in cancer cell lines, including HT1080 and A549 cells, which were suppressed by either pharmacological blockade of CMA or genetic deletion of LAMP2A, a crucial molecule for CMA. Mitochondrial ROS were sufficient and necessary for CMA-dependent GPX4 degradation. Oral administration of an ESA-rich oil attenuated xenograft tumor growth of wild-type, but not that of LAMP2A-deficient HT1080 cells, accompanied by increased lipid peroxidation, GPX4 degradation and cell death. Our study establishes mitochondria as the key target of CFAs to trigger lipid peroxidation and GPX4 degradation, providing insight into ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Yuto Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Soma Taguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryota Kojima
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haruka Masumoto
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shinnosuke Kimura
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Niijima
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryoji Kise
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasunori Uchida
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
6
|
Aida K, Hirao M, Saitoh T, Yamamoto T, Einaga Y, Ota E, Yamaguchi J. Selective C-N Bond Cleavage in Unstrained Pyrrolidines Enabled by Lewis Acid and Photoredox Catalysis. J Am Chem Soc 2024; 146:30698-30707. [PMID: 39440606 PMCID: PMC11544709 DOI: 10.1021/jacs.4c13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Cleavage of inert C-N bonds in unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To address this, we introduce an effective strategy for the reductive cleavage of the C-N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at the C2-N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C-N bond cleavage including C-C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, γ-lactones, and tetrahydrofurans, showcasing its potential of the inert C-N bond cleavage for expanding synthetic strategies.
Collapse
Affiliation(s)
- Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Marina Hirao
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Tsuyoshi Saitoh
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Yamamoto
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
7
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
8
|
Kim J, Johnson DH, Bharucha TS, Yoo JM, Zeno WF. Graphene Quantum Dots Inhibit Lipid Peroxidation in Biological Membranes. ACS APPLIED BIO MATERIALS 2024; 7:5597-5608. [PMID: 39032174 PMCID: PMC12165724 DOI: 10.1021/acsabm.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Excessive reactive oxygen species (ROS) in cellular environments leads to oxidative stress, which underlies numerous diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Oxidative stress can be particularly damaging to biological membranes such as those found in mitochondria, which are abundant with polyunsaturated fatty acids (PUFAs). Oxidation of these biological membranes results in concomitant disruption of membrane structure and function, which ultimately leads to cellular dysfunction. Graphene quantum dots (GQDs) have garnered significant interest as a therapeutic agent for numerous diseases that are linked to oxidative stress. Specifically, GQDs have demonstrated an ability to protect mitochondrial structure and function under oxidative stress conditions. However, the fundamental mechanisms by which GQDs interact with membranes in oxidative environments are poorly understood. Here, we used C11-BODIPY, a fluorescent lipid oxidation probe, to develop quantitative fluorescence assays that determine both the extent and rate of oxidation that occurs to PUFAs in biological membranes. Based on kinetics principles, we have developed a generalizable model that can be used to assess the potency of antioxidants that scavenge ROS in the presence of biological membranes. By augmenting our fluorescence assays with 1H NMR spectroscopy, the results demonstrate that GQDs scavenge nascent hydroxyl and peroxyl ROS that interact with membranes and that GQDs are potent inhibitors of ROS-induced lipid oxidation in PUFA-containing biological membranes. The antioxidant potency of GQDs is comparable to or even greater than established antioxidant molecules, such as ascorbic acid and Trolox. This work provides mechanistic insights into the mitoprotective properties of GQDs under oxidative stress conditions, as well as a quantitative framework for assessing antioxidant interactions in biological membrane systems.
Collapse
Affiliation(s)
- Juhee Kim
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States
| | - David H. Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States
| | - Trushita S. Bharucha
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States
| | - Je Min Yoo
- Chaperone Ventures LLC., Los Angeles, CA 90005, United States
| | - Wade F. Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
9
|
Saraev DD, Pratt DA. Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity. Curr Opin Chem Biol 2024; 81:102478. [PMID: 38908300 DOI: 10.1016/j.cbpa.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024]
Abstract
The accumulation of lipid hydroperoxides (LOOHs) has long been associated with numerous pathologies and has more recently been shown to drive a specific type of cell death known as ferroptosis. In competition with their detoxification by glutathione peroxidases, LOOHs can react with both one-electron reductants and one-electron oxidants to afford radicals that initiate lipid peroxidation (LPO) chain reactions leading to more LOOH. These radicals can alternatively undergo a variety of (primarily unimolecular) reactions leading to electrophilic species that destabilize the membrane and/or react with cellular nucleophiles. While some reaction mechanisms leading to lipid-derived electrophiles have been known for some time, others have only recently been elucidated. Since LOOH (and related peroxides, LOOL) undergo these various reactions at different rates to afford distinct product distributions specific to their structures, not all LOOHs (and LOOLs) should be equivalently problematic for the cell - be it in their propensity to initiate further LPO or fragment to electrophiles, drive membrane permeabilization and eventual cell death. Herein we briefly review the fates of LOOH and discuss how they may contribute to the modulation of cell sensitivity to ferroptosis by different lipids.
Collapse
Affiliation(s)
- Dmitry D Saraev
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
10
|
Van Kessel ATM, Cosa G. Lipid-derived electrophiles inhibit the function of membrane channels during ferroptosis. Proc Natl Acad Sci U S A 2024; 121:e2317616121. [PMID: 38743627 PMCID: PMC11127018 DOI: 10.1073/pnas.2317616121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.
Collapse
Affiliation(s)
- Antonius T. M. Van Kessel
- Department of Chemistry, Centre for Structural Biology Research (CRBS) and Quebec Centre for Advanced Materials (QCAM), McGill University, Montreal, QCH3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, Centre for Structural Biology Research (CRBS) and Quebec Centre for Advanced Materials (QCAM), McGill University, Montreal, QCH3A 0B8, Canada
| |
Collapse
|
11
|
Vermonden P, Martin M, Glowacka K, Neefs I, Ecker J, Höring M, Liebisch G, Debier C, Feron O, Larondelle Y. Phospholipase PLA2G7 is complementary to GPX4 in mitigating punicic-acid-induced ferroptosis in prostate cancer cells. iScience 2024; 27:109774. [PMID: 38711443 PMCID: PMC11070704 DOI: 10.1016/j.isci.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells. The greater sensitivity of androgen-negative cells to PunA was associated with lower expression of glutathione peroxidase 4 (GPX4). We then identified the phospholipase PLA2G7 as a PunA-induced ferroptosis suppressor in PCa cells. Overexpressing PLA2G7 decreased lipid peroxidation levels, suggesting that PLA2G7 hydrolyzes hydroperoxide-containing phospholipids, thus preventing ferroptosis. Importantly, overexpressing both PLA2G7 and GPX4 strongly prevented PunA-induced ferroptosis in androgen-negative PCa cells. This study shows that PLA2G7 acts complementary to GPX4 to protect PCa cells from CLnA-induced ferroptosis.
Collapse
Affiliation(s)
- Perrine Vermonden
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Manon Martin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Glowacka
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Josef Ecker
- Functional Lipidomics and Metabolism Research, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Feron
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
13
|
Du M, Gong M, Wu G, Jin J, Wang X, Jin Q. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5503-5525. [PMID: 38442367 DOI: 10.1021/acs.jafc.3c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.
Collapse
Affiliation(s)
- Meijun Du
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengyue Gong
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
14
|
Freitas FP, Alborzinia H, Dos Santos AF, Nepachalovich P, Pedrera L, Zilka O, Inague A, Klein C, Aroua N, Kaushal K, Kast B, Lorenz SM, Kunz V, Nehring H, Xavier da Silva TN, Chen Z, Atici S, Doll SG, Schaefer EL, Ekpo I, Schmitz W, Horling A, Imming P, Miyamoto S, Wehman AM, Genaro-Mattos TC, Mirnics K, Kumar L, Klein-Seetharaman J, Meierjohann S, Weigand I, Kroiss M, Bornkamm GW, Gomes F, Netto LES, Sathian MB, Konrad DB, Covey DF, Michalke B, Bommert K, Bargou RC, Garcia-Saez A, Pratt DA, Fedorova M, Trumpp A, Conrad M, Friedmann Angeli JP. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature 2024; 626:401-410. [PMID: 38297129 DOI: 10.1038/s41586-023-06878-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.
Collapse
Affiliation(s)
- Florencio Porto Freitas
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ancély Ferreira Dos Santos
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Palina Nepachalovich
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Lohans Pedrera
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Omkar Zilka
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Inague
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nesrine Aroua
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kamini Kaushal
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bettina Kast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktoria Kunz
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Helene Nehring
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Thamara N Xavier da Silva
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Zhiyi Chen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sena Atici
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sebastian G Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emily L Schaefer
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ifedapo Ekpo
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aline Horling
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Peter Imming
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Sayuri Miyamoto
- Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lokender Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Judith Klein-Seetharaman
- Department of Physics, Colorado School of Mines, Golden, CO, USA
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | | | - Isabel Weigand
- Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany
| | - Matthias Kroiss
- Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany
| | - Georg W Bornkamm
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Fernando Gomes
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Manjima B Sathian
- Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - David B Konrad
- Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, MO, USA
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center München (HMGU), Neuherberg, Germany
| | - Kurt Bommert
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ana Garcia-Saez
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
15
|
Do Q, Xu L. How do different lipid peroxidation mechanisms contribute to ferroptosis? CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101683. [PMID: 38322411 PMCID: PMC10846681 DOI: 10.1016/j.xcrp.2023.101683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Lipid peroxidation is the driver of ferroptotic cell death. However, nonconjugated and conjugated polyunsaturated fatty acids potentiate ferroptosis differently, while some isoprenoid-derived lipids inhibit ferroptosis despite being highly oxidizable. In this perspective, we propose that different oxidation mechanisms and products contribute to the discrepancies in the lipids' potency in modulating ferroptosis. We first discuss the relative reactivities of various lipids toward two rate-determining free radical propagating mechanisms, hydrogen atom transfer (HAT) and peroxyl radical addition (PRA), and the resulting differential product profiles. We then discuss the role and regulation of lipid peroxidation in ferroptosis and the potential contributions of different oxidation products, such as truncated lipids and lipid electrophiles, from HAT and PRA mechanisms to the execution of ferroptosis. Lastly, we offer our perspective on the remaining questions to fully understand the process from lipid peroxidation to ferroptosis.
Collapse
Affiliation(s)
- Quynh Do
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Present address: Partner Therapeutics, 2625 162nd St. SW, Lynnwood, WA 98087, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023; 13:1291. [PMID: 37759691 PMCID: PMC10526874 DOI: 10.3390/biom13091291] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid peroxidation (LP) is the most important type of oxidative-radical damage in biological systems, owing to its interplay with ferroptosis and to its role in secondary damage to other biomolecules, such as proteins. The chemistry of LP and its biological consequences are reviewed with focus on the kinetics of the various processes, which helps understand the mechanisms and efficacy of antioxidant strategies. The main types of antioxidants are discussed in terms of structure-activity rationalization, with focus on mechanism and kinetics, as well as on their potential role in modulating ferroptosis. Phenols, pyri(mi)dinols, antioxidants based on heavy chalcogens (Se and Te), diarylamines, ascorbate and others are addressed, along with the latest unconventional antioxidant strategies based on the double-sided role of the superoxide/hydroperoxyl radical system.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
17
|
Do Q, Zhang R, Hooper G, Xu L. Differential Contributions of Distinct Free Radical Peroxidation Mechanisms to the Induction of Ferroptosis. JACS AU 2023; 3:1100-1117. [PMID: 37124288 PMCID: PMC10131203 DOI: 10.1021/jacsau.2c00681] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Ferroptosis is a form of regulated cell death driven by lipid peroxidation of polyunsaturated fatty acids (PUFAs). Lipid peroxidation can propagate through either the hydrogen-atom transfer (HAT) or peroxyl radical addition (PRA) mechanism. However, the contribution of the PRA mechanism to the induction of ferroptosis has not been studied. In this study, we aim to elucidate the relationship between the reactivity and mechanisms of lipid peroxidation and ferroptosis induction. We found that while some peroxidation-reactive lipids, such as 7-dehydrocholesterol, vitamins D3 and A, and coenzyme Q10, suppress ferroptosis, both nonconjugated and conjugated PUFAs enhanced cell death induced by RSL3, a ferroptosis inducer. Importantly, we found that conjugated PUFAs, including conjugated linolenic acid (CLA 18:3) and conjugated linoleic acid (CLA 18:2), can induce or potentiate ferroptosis much more potently than nonconjugated PUFAs. We next sought to elucidate the mechanism underlying the different ferroptosis-inducing potency of conjugated and nonconjugated PUFAs. Lipidomics revealed that conjugated and nonconjugated PUFAs are incorporated into distinct cellular lipid species. The different peroxidation mechanisms predict the formation of higher levels of reactive electrophilic aldehydes from conjugated PUFAs than nonconjugated PUFAs, which was confirmed by aldehyde-trapping and mass spectrometry. RNA sequencing revealed that protein processing in the endoplasmic reticulum and proteasome are among the most significantly upregulated pathways in cells treated with CLA 18:3, suggesting increased ER stress and activation of unfolded protein response. These results suggest that protein damage by lipid electrophiles is a key step in ferroptosis.
Collapse
Affiliation(s)
- Quynh Do
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rutan Zhang
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gavin Hooper
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Shi X, Tang R, Dong Z, Liu H, Xu F, Zhang Q, Zong W, Cheng J. A neglected pathway for the accretion products formation in the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157494. [PMID: 35914590 DOI: 10.1016/j.scitotenv.2022.157494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Highly oxygenated organic molecules (HOM) formed by the autoxidation of α-pinene initiated by OH radicals play an important role in new particle formation. It is believed that the accretion products, ROOR´, formed by the self- and cross-reaction of peroxy radicals (RO2 + R'O2 reactions), have extremely low volatility and are more likely to participate in nucleation. However, the mechanism of ROOR´ formation has not been fully demonstrated by experiment or theoretical calculation. Herein, we propose a novel mechanism of RO2 reacting with α-pinene (RO2 + α-pinene reactions) that have much lower potential barriers and larger rate constants than the reaction of RO2 with R'O2, which explains the ROOR´ formation found in the mass spectrometry experiments. The ROOR´ resulting from the reaction of RO2 with α-pinene can produce HOM dimers and trimers with a higher oxygen-to‑carbon (O/C) ratio through a autoxidation chain. We also demonstrated that the presence of NOx and HO2 radical will reduce the RO2 concentration, but cannot completely inhibit the formation of HOM monomers and ROOR´. Even if one or both of RO2 radicals are acyl peroxy radicals (RC(O)O2), the potential barriers of the reactions between RC(O)O2 and α-pinene (RC(O)O2 + α-pinene reactions) are lower than that of RO2 reacting with RC(O)O2 (RO2 + RC(O)O2 reactions) or RC(O)O2 self-reactions (RC(O)O2 + RC(O)O2 reactions). The current work revealed, for the first time, a mechanism of RO2/RC(O)O2 reacting with α-pinene in the atmosphere, which provides new insight into the atmospheric chemistry of accretion products as SOA precursors.
Collapse
Affiliation(s)
- Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Ruoyu Tang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Zuokang Dong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China.
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
19
|
Korade Z, Tallman KA, Kim HYH, Balog M, Genaro-Mattos TC, Pattnaik A, Mirnics K, Pattnaik AK, Porter NA. Dose-Response Effects of 7-Dehydrocholesterol Reductase Inhibitors on Sterol Profiles and Vesicular Stomatitis Virus Replication. ACS Pharmacol Transl Sci 2022; 5:1086-1096. [PMID: 36407960 PMCID: PMC9667548 DOI: 10.1021/acsptsci.2c00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.
Collapse
Affiliation(s)
- Zeljka Korade
- Department
of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Keri A. Tallman
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hye-Young H. Kim
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marta Balog
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Aryamav Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Asit K. Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Ned A. Porter
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
20
|
Effect of caffeic acid esters on antioxidant activity and oxidative stability of sunflower oil: Molecular simulation and experiments. Food Res Int 2022; 160:111760. [DOI: 10.1016/j.foodres.2022.111760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/26/2022]
|
21
|
Ferroptosis: A Promising Therapeutic Target for Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2022; 23:ijms23137420. [PMID: 35806425 PMCID: PMC9267109 DOI: 10.3390/ijms23137420] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a type of programmed cell death caused by phospholipid peroxidation that has been implicated as a mechanism in several diseases resulting from ischemic-reperfusion injury. Most recently, ferroptosis has been identified as a possible key injury mechanism in neonatal hypoxic-ischemic brain injury (HIBI). This review summarizes the current literature regarding the different ferroptotic pathways, how they may be activated after neonatal HIBI, and which current or investigative interventions may attenuate ferroptotic cell death associated with neonatal HIBI.
Collapse
|
22
|
Zilka O, Poon JF, Pratt DA. Radical-Trapping Antioxidant Activity of Copper and Nickel Bis(Thiosemicarbazone) Complexes Underlies Their Potency as Inhibitors of Ferroptotic Cell Death. J Am Chem Soc 2021; 143:19043-19057. [PMID: 34730342 DOI: 10.1021/jacs.1c08254] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we demonstrate that copper(II)-diacetyl-bis(N4-methylthiosemicarbazone)(CuATSM), clinical candidate for the treatment of ALS and Parkinson's disease, is a highly potent radical-trapping antioxidant (RTA) and inhibitor of (phospho)lipid peroxidation. In THF autoxidations, CuATSM reacts with THF-derived peroxyl radicals with kinh = 2.2 × 106 M-1 s-1─roughly 10-fold greater than α-tocopherol (α-TOH), Nature's best RTA. Mechanistic studies reveal no H/D kinetic isotope effects and a lack of rate-suppressing effects from H-bonding interactions, implying a different mechanism from α-TOH and other canonical RTAs, which react by H-atom transfer (HAT). Similar reactivity was observed for the corresponding Ni2+ complex and complexes of both Cu2+ and Ni2+ with other bis(thiosemicarbazone) ligands. Computations corroborate the experimental finding that rate-limiting HAT cannot account for the observed RTA activity and instead suggest that the reversible addition of a peroxyl radical to the bis(thiosemicarbazone) ligand is responsible. Subsequent HAT or combination with another peroxyl radical drives the reaction forward, such that a maximum of four radicals are trapped per molecule of CuATSM. This sequence is supported by spectroscopic and mass spectrometric experiments on isolated intermediates. Importantly, the RTA activity of CuATSM (and its analogues) translates from organic solution to phospholipid bilayers, thereby accounting for its (their) ability to inhibit ferroptosis. Experiments in mouse embryonic fibroblasts and hippocampal cells reveal that lipophilicity as well as inherent RTA activity contribute to the potency of ferroptosis rescue, and that one compound (CuATSP) is almost 20-fold more potent than CuATSM and among the most potent ferroptosis inhibitors reported to date.
Collapse
Affiliation(s)
- Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
23
|
Punicic Acid Triggers Ferroptotic Cell Death in Carcinoma Cells. Nutrients 2021; 13:nu13082751. [PMID: 34444911 PMCID: PMC8399984 DOI: 10.3390/nu13082751] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Plant-derived conjugated linolenic acids (CLnA) have been widely studied for their preventive and therapeutic properties against diverse diseases such as cancer. In particular, punicic acid (PunA), a conjugated linolenic acid isomer (C18:3 c9t11c13) present at up to 83% in pomegranate seed oil, has been shown to exert anti-cancer effects, although the mechanism behind its cytotoxicity remains unclear. Ferroptosis, a cell death triggered by an overwhelming accumulation of lipid peroxides, has recently arisen as a potential mechanism underlying CLnA cytotoxicity. In the present study, we show that PunA is highly cytotoxic to HCT-116 colorectal and FaDu hypopharyngeal carcinoma cells grown either in monolayers or as three-dimensional spheroids. Moreover, our data indicate that PunA triggers ferroptosis in carcinoma cells. It induces significant lipid peroxidation and its effects are prevented by the addition of ferroptosis inhibitors. A combination with docosahexaenoic acid (DHA), a known polyunsaturated fatty acid with anticancer properties, synergistically increases PunA cytotoxicity. Our findings highlight the potential of using PunA as a ferroptosis-sensitizing phytochemical for the prevention and treatment of cancer.
Collapse
|
24
|
Abstract
Autoxidation limits the longevity of essentially all hydrocarbons and materials made therefrom - including us. The radical chain reaction responsible often leads to complex mixtures of hydroperoxides, alkyl peroxides, alcohols, carbonyls and carboxylic acids, which change the physical properties of the material - be it a lubricating oil or biological membrane. Autoxidation is inhibited by addtitives such as radical-trapping antioxidants, which intervene directly in the chain reaction. Herein we review the most salient features of autoxidation and its inhibition, emphasizing concepts and mechanistic considerations important in understanding this chemistry across the wide range of contexts in which it is relevant.
Collapse
Affiliation(s)
- Julian Helberg
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada.
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
25
|
Beatty A, Singh T, Tyurina YY, Tyurin VA, Samovich S, Nicolas E, Maslar K, Zhou Y, Cai KQ, Tan Y, Doll S, Conrad M, Subramanian A, Bayır H, Kagan VE, Rennefahrt U, Peterson JR. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun 2021; 12:2244. [PMID: 33854057 PMCID: PMC8046803 DOI: 10.1038/s41467-021-22471-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown. Here, we identify conjugated linoleates including α-eleostearic acid (αESA) as ferroptosis inducers. αESA does not alter GPX4 activity but is incorporated into cellular lipids and promotes lipid peroxidation and cell death in diverse cancer cell types. αESA-triggered death is mediated by acyl-CoA synthetase long-chain isoform 1, which promotes αESA incorporation into neutral lipids including triacylglycerols. Interfering with triacylglycerol biosynthesis suppresses ferroptosis triggered by αESA but not by GPX4 inhibition. Oral administration of tung oil, naturally rich in αESA, to mice limits tumor growth and metastasis with transcriptional changes consistent with ferroptosis. Overall, these findings illuminate a potential approach to ferroptosis, complementary to GPX4 inhibition.
Collapse
Affiliation(s)
| | - Tanu Singh
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana Samovich
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kristen Maslar
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | | |
Collapse
|