1
|
Pupavac D, Nikolić AM, Webster JP, Curtis TP, And Elković B, Newhouse TR, Opsenica IM. Computational Rational Design of Bridgehead Nitrogen Heterocyclic Azobenzene Photoswitches. J Org Chem 2025. [PMID: 40371946 DOI: 10.1021/acs.joc.5c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Azobenzenes are proven to be one of the most successful molecular photoswitches applied across different fields such as organic chemistry, material science, cosmetics, and pharmaceuticals. Such a widespread implementation is possible because of their photochromic properties contingent upon the substitution pattern and aryl-core nature. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatics turned out to be a good strategy to access compounds with improved photoswitching properties, as well as to expand molecular diversity. One of the challenges related to the design of new azobenzene photoswitches is that it often includes the synthesis of large libraries of compounds due to limited methods for prediction of their properties. Herein, we present a computationally driven workflow for the design and synthesis of a novel class of azobenzene photoswitches, heteroaryl azobenzenes with N-bridgehead heterocycles─pyrazolo[1,5-a]pyrimidine and 1,2,4-triazolo[1,5-a]pyrimidine. A small library of heteroaryl photoswitches was synthesized, and their photochemical properties were evaluated. Subsequently, these results were used to validate a computational approach, which included the in silico evaluation of a large library of designed photoswitch candidates leading to the synthesis of a new photoswitch with improved spectral properties, red-shifted λmax values.
Collapse
Affiliation(s)
- Dunja Pupavac
- Innovative Centre, Faculty of Chemistry, Ltd., Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Andrea M Nikolić
- University of Belgrade, Faculty of Chemistry, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - John-Paul Webster
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Theodore P Curtis
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Boban And Elković
- University of Belgrade, Faculty of Chemistry, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Igor M Opsenica
- University of Belgrade, Faculty of Chemistry, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| |
Collapse
|
2
|
Ganzoni RLZ, Bournons SS, Carreira EM, De Bundel D, Smolders I. A Bright Future for Photopharmaceuticals Addressing Central Nervous System Disorders: State of the Art and Challenges Toward Clinical Translation. Med Res Rev 2025. [PMID: 40186449 DOI: 10.1002/med.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Photopharmacology is an innovative approach that uses light to activate drugs. This method offers the potential for highly localized and precise drug activation, making it particularly promising for the treatment of neurological disorders. Despite the enticing prospects of photopharmacology, its application to treat human central nervous system (CNS) diseases remains to be demonstrated. In this review, we provide an overview of prominent strategies for the design and activation of photopharmaceutical agents in the field of neuroscience. Photocaged and photoswitchable drugs and bioactive molecules are discussed, and an instructive list of examples is provided to highlight compound design strategies. Special emphasis is placed on photoactivatable compounds for the modulation of glutamatergic, GABAergic, dopaminergic, and serotonergic neurotransmission for the treatment of neurological conditions, as well as various photoresponsive molecules with potential for improved pain management. Compounds holding promise for clinical translation are discussed in-depth and their potential for future applications is assessed. Neurophotopharmaceuticals have yet to achieve breakthrough in the clinic, as both light delivery and drug design have not reached full maturity. However, by describing the current state of the art and providing illustrative case studies, we offer a perspective on future opportunities in the field of neurophotopharmacology focused on addressing CNS disorders.
Collapse
Affiliation(s)
- Rudolf L Z Ganzoni
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Sofie S Bournons
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Dimitri De Bundel
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Chen AH, Knepp ZJ, Guzman CA, Young ER, Fredin LA. Intramolecular subtleties in indole azo dyes revealed by multidimensional potential energy surfaces. Phys Chem Chem Phys 2025; 27:6430-6437. [PMID: 40071795 DOI: 10.1039/d5cp00110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Despite their wide use as molecular photoswitches, the mechanistic photophysics of azo dyes are complex and nuanced, and therefore under-explored. To understand the complex electronic interactions that govern the photoisomerization and thermal reversion of two phenyl-azo-indole dyes that differ by R-sterics near the azo bond, potential energy surfaces that combine the dihedral rotation of the azo bond and the aryl inversion on each side of the azo bond were calculated with density functional theory and time-dependent density functional theory. These multidimensional singlet surfaces provide insights into the correlated rotation and inversion pathways allowing for detailed understanding of both photoisomerization, governed by the excited-state surfaces, and thermal reversion, governed by the ground-state surface, mechanisms to be developed. Large plateaus on the S1 surface arise from strong intramolecular interactions between a phenyl substituent and one of the aryl groups, extending the experimental photoisomerization lifetime of the dye with a phenyl R-group by two times over the unsubstituted dye. While one might expect the sterics of the larger phenyl substituent to lead to a slower thermal reversion rate, this was not the case. The thermally accessible meta-stable rotamers of the cis-isomer leads to more reversion pathways and a longer cis-lifetime for the unsubstituted dye, by a factor of four in the experiment. Careful computational mapping of multidimensional potential energy surfaces allows accurate mechanistic understanding for systems with interdependent degrees of freedom between meta-stable states.
Collapse
Affiliation(s)
- Allen H Chen
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, USA.
| | - Zachary J Knepp
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, USA.
| | - Christian A Guzman
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, USA.
| |
Collapse
|
4
|
Brandt T, Lentes P, Rudtke J, Hösgen M, Näther C, Herges R. Synthesis of N-acetyl diazocine derivatives via cross-coupling reaction. Beilstein J Org Chem 2025; 21:490-499. [PMID: 40079020 PMCID: PMC11897653 DOI: 10.3762/bjoc.21.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Diazocines are photoswitches derived from azobenzenes by bridging the two phenyl rings in ortho position with a CH2CH2 group forming an eight membered (diazocine) ring. Diazocine is superior to most azobenzenes in almost all photophysical properties (switching efficiency, quantum yield, wavelengths etc.). The biggest advantage, especially in photopharmacology and when used in photoswitchable materials, is the inverted thermodynamic stability of the two switching states (isomers). The Z isomer is more stable than the E form. However, one disadvantage that it shares with the frequently used azobenzene is that the switching efficiency decreases sharply with increasing water content in the solvent. In a recently published paper, we reported that replacing one CH2 group in the bridge with NCOCH3 not only confers intrinsic water solubility, but also largely eliminates the problem of reduced switching efficiency in aqueous solutions. In order to investigate the chemistry of this promising photoswitch and to unlock further applications, we now investigate strategies for the synthesis of derivatives, which are based on cross-coupling reactions. Fourteen vinyl-, aryl-, cyano-, and amino-substituted diazocines were prepared via Stille, Suzuki, and Buchwald-Hartwig reactions. X-ray structures are presented for derivatives 1, 2 and 7.
Collapse
Affiliation(s)
- Thomas Brandt
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Pascal Lentes
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Jeremy Rudtke
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Michael Hösgen
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Christian Näther
- Institute for Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Colaço M, Ewert J, von Glasenapp JS, Pischel U, Herges R, Basílio N. Diazocines as Guests of Cucurbituril Macrocycles: Light-Responsive Binding and Supramolecular Catalysis of Thermal Isomerization. J Am Chem Soc 2025; 147:734-745. [PMID: 39720919 DOI: 10.1021/jacs.4c13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The photoswitching of supramolecular host-guest complexes is the basis of numerous molecularly controlled macroscopic functions, such as sol-gel transition, photopharmacology, the active transport of ions or molecules, light-powered molecular machines, and much more. The most commonly used systems employ photoactive azobenzene guests and synthetic host molecules, which bind as the stable E isomers and dissociate as the Z forms after exposure to UV light. We present a new, extraordinarily efficient cucurbit[7]uril (CB7)/diazocine host/guest complex with inverted stability that self-assembles under UV irradiation and dissociates in the dark. The association constants of the Z and E isomers in water differ by more than 104-fold. We also show that the thermally activated E → Z isomerization is significantly accelerated by CB7, which is a rare case of enzyme-like catalysis by transition state stabilization without product inhibition. In contrast to CB7, cucurbit[8]uril (CB8) binds both isomers with high affinity, showing good selectivity (∼1000-fold) toward the Z isomer. Notably, this isomer preferentially binds CB8 relative to CB7 by a factor greater than 1 × 106. We also use the system to introduce a supramolecular photoacid that builds on the increased basicity of a guest bound to CB7 and on the extremely high affinity of the E isomer, which is utilized to displace the acid from CB7, thereby switching the pH of the solution.
Collapse
Affiliation(s)
- Miriam Colaço
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Julia Ewert
- Otto Diels-Institute of Organic Chemistry, Christian-Albrechts-University Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Jan-Simon von Glasenapp
- Otto Diels-Institute of Organic Chemistry, Christian-Albrechts-University Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Uwe Pischel
- CIQSO─Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Rainer Herges
- Otto Diels-Institute of Organic Chemistry, Christian-Albrechts-University Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Chen H, Yang C, Ren H, Zhang W, Cui X, Tang Q. Water-Soluble Azobenzene-Based Solar Thermal Fuels with Improved Long-Term Energy Storage and Energy Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66837-66845. [PMID: 37944917 DOI: 10.1021/acsami.3c12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Azobenzene (azo)-based solar thermal fuels (STFs) have been developed to harvest and store solar energy. However, due to the lipophilicity and low energy density of azo-based STFs, the derived devices demand a large amount of toxic organic solvents for continuous and scalable energy storage. Herein, we report an ionic strategy to prepare water-soluble azo-based STFs (WASTFs) with improved energy storage performance, which can be realized through a facile quaternization reaction using commercial reagents. A family of WASTFs were synthesized, and all of them showed good water solubility, long-term thermal half-life (>30 days), and high energy storage density (a highest energy density of ∼143.6 J g-1 corresponding to an energy storage enthalpy of ∼111.8 kJ mol-1). Compared to the electrically neutral azo-based STFs with similar chemical structures, ΔH and thermal half-life (τ1/2) of the WASTFs are 2.5 times higher and 7.3 times longer, respectively. Cation-π interactions between the quaternized moieties [N+(CHx)4] and benzene moieties of azo were confirmed, which could account for their improvement of the energy storage performance. Macroscale heat release with an average temperature difference of ∼2 °C was achieved for the WASTFs prepared in this work. Generally, a novel family of WASTFs are synthesized and show great applicable prospects in fabricating advanced solar energy storage devices.
Collapse
Affiliation(s)
- Haojie Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Hubei Key Laboratory for New Textile Materials and Applications, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chang Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Hubei Key Laboratory for New Textile Materials and Applications, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Hao Ren
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Hubei Key Laboratory for New Textile Materials and Applications, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Qingquan Tang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Hubei Key Laboratory for New Textile Materials and Applications, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
7
|
Nguyen HPQ, Mukherjee A, Usuba J, Wan J, Han GGD. Large and long-term photon energy storage in diazetidines via [2+2] photocycloaddition. Chem Sci 2024:d4sc05374e. [PMID: 39483249 PMCID: PMC11520292 DOI: 10.1039/d4sc05374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
We report a series of p-functionalized phenylbenzoxazoles that offer remarkable energy storage, exceeding 300 J g-1, for the first time among intermolecular cycloaddition-based molecular solar thermal energy storage systems. The [2 + 2] photocycloaddition of phenylbenzoxazoles generates diazetidine cycloadducts that store energy for up to 23 years in the solid state and release energy upon triggered cycloreversion. The solid-state phase transition contributes to increasing overall energy storage densities, and the dearomative cycloaddition process is revealed to be critical for maximizing the intrinsic energy storage capacities. The solvent-assisted cycloreversion is also used to accelerate the energy release from the emerging molecular scaffold.
Collapse
Affiliation(s)
- Han P Q Nguyen
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Anurag Mukherjee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
8
|
Knepp ZJ, Hamburger RC, Thongchai IA, Englehart K, Sorto K, Jaffer A, Young ER, Fredin LA. Pinning Down Small Populations of Photoinduced Intermediates Using Transient Absorption Spectroscopy and Time-Dependent Density Functional Theory Difference Spectra to Provide Mechanistic Insight into Controlling Pyridine Azo Dynamics with Protons. J Phys Chem Lett 2024; 15:9593-9600. [PMID: 39270049 PMCID: PMC11440581 DOI: 10.1021/acs.jpclett.4c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In this work, the impact of protonation on the photoisomerization (trans → cis) and reversion (cis → trans) of three pyridine-based azo dyes (PyrN) is investigated by using a combination of transient absorption spectroscopy and time-dependent density functional theory computed difference spectra. The photophysical behaviors of the PyrN dyes are altered by the addition of one or two protons. Protonation of basic pyridine nitrogens results in an ultrafast accelerated reversion mechanism after photoisomerization, while protonation of azo bond nitrogens restricts cis isomer formation entirely. Computed difference spectra provide spectral signatures that are critical for the assignment of low-population long-lived states, providing direct evidence of the accelerated reversion mechanism. Thus, the addition of organic acids can selectively control the photophysics of azo dyes for a wide range of applications, including materials design and pharmaceuticals.
Collapse
Affiliation(s)
- Zachary J Knepp
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Robert C Hamburger
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Ing-Angsara Thongchai
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Kiera Englehart
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Keyri Sorto
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Athina Jaffer
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
Kumar Gaur A, Gupta D, Narayanan Nampoothiry D, Velloth A, Kaur R, Kaur N, Venkataramani S. Azopyridinium Ionic Photoswitches: Tuning Half-Lives of Z Isomers from Seconds to Days in Water. Chemistry 2024:e202401239. [PMID: 38818941 DOI: 10.1002/chem.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Herein, we describe water-soluble heteroaryl azopyridinium ionic photoswitches (HAPIPs). We aim to combine variations in five-membered heterocycles, their substitutions, N-alkyl groups at pyridinium nitrogen, the position of pyridinium center relative to azo group, counterions, and solvents, in achieving better photoswitching. Through these studies, we successfully tuned the half-life of Z isomers of the resultant HAPIPs between seconds to days in water. Extensive spectroscopic studies and density functional theory (DFT) computations unravelled the factors responsible for thermal relaxation behavior. Considering the versatility of these photoswitches, the tunability of half-lives and photoswitching in aqueous medium allows the scope of applications in several fields.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Dhanyaj Narayanan Nampoothiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ramanpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Navneet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|
10
|
Wages F, Brandt T, Martin HJ, Herges R, Maser E. Light-switchable diazocines as potential inhibitors of testosterone-synthesizing 17β-hydroxysteroid dehydrogenase 3. Chem Biol Interact 2024; 390:110872. [PMID: 38244963 DOI: 10.1016/j.cbi.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
In patients with prostate carcinoma as well as in some other cancer types, the reduction of testosterone levels is desired because the hormone stimulates cancer cell growth. One molecular target for this goal is the inhibition of 17β-hydroxysteroid dehydrogenase type 3 (17βHSD3), which produces testosterone from its direct precursor androstenedione. Recent research in this field is trying to harness photopharmacological properties of certain compounds so that the inhibitory effect could be turned on and off by irradiation. Seven new light-switchable diazocines were investigated with regard to their inhibition of 17βHSD3. For this purpose, transfected HEK-293 cells and isolated microsomes were treated with the substrate and the potential inhibitors with and without irradiation for an incubation period of 3 or 5 h. The amount of generated testosterone was measured by UHPLC and compared between samples and control as well as between irradiated and non-irradiated samples. There was no significant difference between samples with and without irradiation. However, four of the seven diazocines led to a significantly lower testosterone production both in cell and in microsome assays. In some of the irradiated samples, a partial destruction of the diazocines was observed, indicated by an additional UHPLC peak. However, the influence on the inhibition is negligible, because the majority of the substance remained intact. In conclusion, new inhibitors of 17βHSD3 have been found, but so far without the feature of a light switch, since the configurational alteration of the diazocines by irradiation did not lead to a change in bioactivity. Further modification might help to find a light-switching molecule that inhibits only in one configuration.
Collapse
Affiliation(s)
- F Wages
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - T Brandt
- Otto Diels Institute of Organic Chemistry, Christian-Albrecht University of Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - H-J Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - R Herges
- Otto Diels Institute of Organic Chemistry, Christian-Albrecht University of Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - E Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany.
| |
Collapse
|
11
|
Isokuortti J, Griebenow T, von Glasenapp JS, Raeker T, Filatov MA, Laaksonen T, Herges R, Durandin NA. Triplet sensitization enables bidirectional isomerization of diazocine with 130 nm redshift in excitation wavelengths. Chem Sci 2023; 14:9161-9166. [PMID: 37655019 PMCID: PMC10466275 DOI: 10.1039/d3sc02681g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Diazocines are bridged azobenzenes with phenyl rings connected by a CH2-CH2 group. Despite this rather small structural difference, diazocine exhibits improved properties over azobenzene as a photoswitch and most importantly, its Z configuration is more stable than the E isomer. Herein, we reveal yet another unique feature of this emerging class of photoswitches. In striking contrast to azobenzenes and other photochromes, diazocine can be selectively switched in E → Z direction and most intriguingly from its thermodynamically stable Z to metastable E isomer upon successive excitation of two different triplet sensitizers present in solution at the same time. This approach leads to extraordinary large redshift of excitation wavelengths to perform isomerization i.e. from 400 nm blue to 530 nm green light (Z → E) and from 530 nm green to 740 nm far-red one (E → Z), which falls in the near-infrared window in biological tissue. Therefore, this work opens up of potential avenues for utilizing diazocines for example in photopharmacology, smart materials, light energy harvesting/storage devices, and out-of-equilibrium systems.
Collapse
Affiliation(s)
- Jussi Isokuortti
- Faculty of Engineering and Natural Sciences, Tampere University FI-33101 Tampere Finland
| | - Thomas Griebenow
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Tim Raeker
- Institute for Physical Chemistry, Department for Theoretical Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Mikhail A Filatov
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus Grangegorman Dublin 7 Ireland
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University FI-33101 Tampere Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki Finland
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University FI-33101 Tampere Finland
| |
Collapse
|
12
|
Gaur AK, Gupta D, Mahadevan A, Kumar P, Kumar H, Nampoothiry DN, Kaur N, Thakur SK, Singh S, Slanina T, Venkataramani S. Bistable Aryl Azopyrazolium Ionic Photoswitches in Water. J Am Chem Soc 2023; 145:10584-10594. [PMID: 37133353 DOI: 10.1021/jacs.2c13733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a new class of arylazopyrazolium-based ionic photoswitches (AAPIPs). These AAPIPs with different counter ions have been accessed through a modular synthetic approach in high yields. More importantly, the AAPIPs exhibit excellent reversible photoswitching and exceptional thermal stability in water. The effects of solvents, counter ions, substitutions, concentration, pH, and glutathione (GSH) have been evaluated using spectroscopic investigations. The results revealed that the bistability of studied AAPIPs is robust and near quantitative. The thermal half-life of Z isomers is extremely high in water (up to years), and it can be lowered electronically by the electron-withdrawing groups or highly basic pH.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Debapriya Gupta
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Anjali Mahadevan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Himanshu Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Dhanyaj Narayanan Nampoothiry
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Navneet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sandeep Kumar Thakur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sanjay Singh
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague 160 00, Czech Republic
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| |
Collapse
|
13
|
Qiu Q, Sun Z, Joubran D, Li X, Wan J, Schmidt-Rohr K, Han GGD. Optically Controlled Recovery and Recycling of Homogeneous Organocatalysts Enabled by Photoswitches. Angew Chem Int Ed Engl 2023; 62:e202300723. [PMID: 36688731 DOI: 10.1002/anie.202300723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
We address a critical challenge of recovering and recycling homogeneous organocatalysts by designing photoswitchable catalyst structures that display a reversible solubility change in response to light. Initially insoluble catalysts are UV-switched to a soluble isomeric state, which catalyzes the reaction, then back-isomerizes to the insoluble state upon completion of the reaction to be filtered and recycled. The molecular design principles that allow for the drastic solubility change over 10 times between the isomeric states, 87 % recovery by the light-induced precipitation, and multiple rounds of catalyst recycling are revealed. This proof of concept will open up opportunities to develop highly recyclable homogeneous catalysts that are important for the synthesis of critical compounds in various industries, which is anticipated to significantly reduce environmental impact and costs.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhenhuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Danielle Joubran
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xiang Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
14
|
Volarić J, Buter J, Schulte AM, van den Berg KO, Santamaría-Aranda E, Szymanski W, Feringa BL. Design and Synthesis of Visible-Light-Responsive Azobenzene Building Blocks for Chemical Biology. J Org Chem 2022; 87:14319-14333. [PMID: 36285612 PMCID: PMC9639001 DOI: 10.1021/acs.joc.2c01777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tetra-ortho-fluoro-azobenzenes are a class of photoswitches useful for the construction of visible-light-controlled molecular systems. They can be used to achieve spatio-temporal control over the properties of a chosen bioactive molecule. However, the introduction of different substituents to the tetra-fluoro-azobenzene core can significantly affect the photochemical properties of the switch and compromise biocompatibility. Herein, we explored the effect of useful substituents, such as functionalization points, attachment handles, and water-solubilizing groups, on the photochemical properties of this photochromic system. In general, all the tested fluorinated azobenzenes exhibited favorable photochemical properties, such as high photostationary state distribution and long half-lives, both in organic solvents and in water. One of the azobenzene building blocks was functionalized with a trehalose group to enable the uptake of the photoswitch into mycobacteria. Following metabolic uptake and incorporation of the trehalose-based azobenzene in the mycobacterial cell wall, we demonstrated photoswitching of the azobenzene in the isolated total lipid extract.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Albert M. Schulte
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Eduardo Santamaría-Aranda
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,Departamento
de Química, Universidad de la Rioja, Centro de investigación en Síntesis Química, Madre de Dios 53, 26006 Logroño, Spain
| | - Wiktor Szymanski
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,Department
of Radiology, Medical Imaging, Center, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands,
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,
| |
Collapse
|
15
|
Shen X, Zhang C, Lan F, Su Z, Zheng Y, Zheng T, Xiong Q, Xie X, Du G, Zhao X, Hu C, Deng P, Yu Z. Dibenzo[
b
,
f
][1,4,5]chalcogenadiazepine Photoswitches: Conversion of Excitation Energy into Ring Strain. Angew Chem Int Ed Engl 2022; 61:e202209441. [DOI: 10.1002/anie.202209441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Shen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Fengying Lan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xinyu Xie
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Guangxi Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Pengchi Deng
- Analytical & Testing Center Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
16
|
Shen X, Zhang C, Lan F, Su Z, Zheng Y, Zheng T, Xiong Q, Xie X, Du G, Zhao X, Hu C, Deng P, Yu Z. Dibenzo[b,f][1,4,5]chalcogenadiazepine Photoswitches: Conversion of Excitation Energy into Ring Strain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Shen
- Sichuan University Department of Chemistry 610000 Chengdu CHINA
| | - Cefei Zhang
- Sichuan University College of Chemistry CHINA
| | - Fengying Lan
- Sichuan University Department of Chemistry CHINA
| | - Zhishan Su
- Sichuan University College of Chemistry CHINA
| | | | | | - Qin Xiong
- Sichuan University Department of Chemistry CHINA
| | - Xinyu Xie
- Sichuan University Department of Chemistry CHINA
| | - Guangxi Du
- Sichuan University Department of Chemistry CHINA
| | - Xiaohu Zhao
- Sichuan University Department of Chemistry CHINA
| | - Changwei Hu
- Sichuan University College of Chemistry CHINA
| | - Pengchi Deng
- Sichuan University Analytical & Testing Center CHINA
| | - Zhipeng Yu
- Sichuan University - Wangjiang Campus: Sichuan University College of Chemistry College of Chemistry29 Wangjianglu, Jiuyanqiao 610064 Chengdu CHINA
| |
Collapse
|
17
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
18
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
19
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
20
|
Mravec B, Budzák Š, Medved' M, Pašteka LF, Slavov C, Saßmannshausen T, Wachtveitl J, Kožíšek J, Hegedüsová L, Filo J, Cigáň M. Design of High-Performance Pyridine/Quinoline Hydrazone Photoswitches. J Org Chem 2021; 86:11633-11646. [PMID: 34323500 DOI: 10.1021/acs.joc.1c01174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of P-type photoswitches with thermal stability of the metastable form of hundreds of years that would efficiently transform using excitation wavelengths above 350 nm remains a challenge in the field of photochromism. In this regard, we designed and synthesized an extended set of 13 pyridine/quinoline hydrazones and systematically investigated the structure-property relationships, defining their kinetic and photoswitching parameters. We show that the operational wavelengths of the pyridine hydrazone structural motif can be effectively shifted toward the visible region without simultaneous loss of their high thermal stability. Furthermore, we characterized the ground-state and excited-state potential energy surfaces with quantum-chemical calculations and ultrafast transient absorption spectroscopy, which allowed us to rationalize both the thermal and photochemical reaction mechanisms of the designed hydrazones. Whereas introducing an electron-withdrawing pyridyl moiety in benzoylpyridine hydrazones leads to thermal stabilities exceeding 200 years, extended π-conjugation in naphthoylquinoline hydrazones pushes the absorption maxima toward the visible spectral region. In either case, the compounds retain highly efficient photoswitching characteristics. Our findings open a route to the rational design of a new family of hydrazone-based P-type photoswitches with high application potential in photonics or photopharmacology.
Collapse
Affiliation(s)
- Bernard Mravec
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97400 Banská Bystrica, Slovakia
| | - Miroslav Medved'
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97400 Banská Bystrica, Slovakia.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 8, 77900 Olomouc, Czech Republic
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Jozef Kožíšek
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Lea Hegedüsová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Marek Cigáň
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
21
|
Lentes P, Rudtke J, Griebenow T, Herges R. Substituted nitrogen-bridged diazocines. Beilstein J Org Chem 2021; 17:1503-1508. [PMID: 34239618 PMCID: PMC8239257 DOI: 10.3762/bjoc.17.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Novel nitrogen-bridged diazocines (triazocines) were synthesized that carry a formyl or an acetyl group at the CH2NR-bridge and bromo- or iodo-substituents at the distant phenyl ring. The photophysical properties were investigated in acetonitrile and water. As compared to previous approaches the yields of the intramolecular azo cyclizations were increased (from ≈40 to 60%) using an oxidative approach starting from the corresponding aniline precursors. The Z→E photoconversion yields in acetonitrile are 80-85% and the thermal half-lives of the metastable E configurations are 31-74 min. Particularly, the high photoconversion yields (≈70%) of the water-soluble diazocines are noteworthy, which makes them promising candidates for applications in photopharmacology. The halogen substituents allow further functionalization via cross-coupling reactions.
Collapse
Affiliation(s)
- Pascal Lentes
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Jeremy Rudtke
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Thomas Griebenow
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Rainer Herges
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| |
Collapse
|