1
|
Alvi S, Ali R. Named reaction in carbohydrate chemistry: A review. Carbohydr Res 2025; 550:109396. [PMID: 39879944 DOI: 10.1016/j.carres.2025.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 12/26/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Central to the synthetic organic chemist's armoury are the organic/inorganic reagents which are employed to effect a broad range of structural changes. Herein, we report a collection of 29 organic named reactions applicable in the carbohydrate chemistry, arranged in alphabetical order. In this contribution, we have displayed general schemes, examples and probable reaction mechanism for each chemical reaction. This collection should be useful to researchers and students alike.
Collapse
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, 110025, India
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, 110025, India.
| |
Collapse
|
2
|
Kamruzzaman M, Kelly M, Charles RC, Harris JB, Calderwood SB, Akter A, Biswas R, Kaisar MH, Bhuiyan TR, Ivers LC, Ternier R, Jerome JG, Pfister HB, Lu X, Soliman SE, Ruttens B, Saksena R, Mečárová J, Čížová A, Qadri F, Bystrický S, Kováč P, Xu P, Ryan ET. Defining Polysaccharide-Specific Antibody Targets against Vibrio cholerae O139 in Humans following O139 Cholera and following Vaccination with a Commercial Bivalent Oral Cholera Vaccine, and Evaluation of Conjugate Vaccines Targeting O139. mSphere 2021; 6:e0011421. [PMID: 34232076 PMCID: PMC8386440 DOI: 10.1128/msphere.00114-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cholera caused by Vibrio cholerae O139 could reemerge, and proactive development of an effective O139 vaccine would be prudent. To define immunoreactive and potentially immunogenic carbohydrate targets of Vibrio cholerae O139, we assessed immunoreactivities of various O-specific polysaccharide (OSP)-related saccharides with plasma from humans hospitalized with cholera caused by O139, comparing responses to those induced in recipients of a commercial oral whole-cell killed bivalent (O1 and O139) cholera vaccine (WC-O1/O139). We also assessed conjugate vaccines containing selected subsets of these saccharides for their ability to induce protective immunity using a mouse model of cholera. We found that patients with wild-type O139 cholera develop IgM, IgA, and IgG immune responses against O139 OSP and many of its fragments, but we were able to detect only a moderate IgM response to purified O139 OSP-core, and none to its fragments, in immunologically naive recipients of WC-O1/O139. We found that immunoreactivity of O139-specific polysaccharides with antibodies elicited by wild-type infection markedly increase when saccharides contain colitose and phosphate residues, that a synthetic terminal tetrasaccharide fragment of OSP is more immunoreactive and protectively immunogenic than complete OSP, that native OSP-core is a better protective immunogen than the synthetic OSP lacking core, and that functional vibriocidal activity of antibodies predicts in vivo protection in our model but depends on capsule thickness. Our results suggest that O139 OSP-specific responses are not prominent following vaccination with a currently available oral cholera vaccine in immunologically naive humans and that vaccines targeting V. cholerae O139 should be based on native OSP-core or terminal tetrasaccharide. IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae serogroup O1 or O139. Protection against cholera is serogroup specific, and serogroup specificity is defined by O-specific polysaccharide (OSP). Little is known about immunity to O139 OSP. In this study, we used synthetic fragments of the O139 OSP to define immune responses to OSP in humans recovering from cholera caused by V. cholerae O139, compared these responses to those induced by the available O139 vaccine, and evaluated O139 fragments in next-generation conjugate vaccines. We found that the terminal tetrasaccharide of O139 is a primary immune target but that the currently available bivalent cholera vaccine poorly induces an anti-O139 OSP response in immunologically naive individuals.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Aklima Akter
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Rajib Biswas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Louise C. Ivers
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Xiaowei Lu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Sameh E. Soliman
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Bart Ruttens
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Rina Saksena
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Soliman SE, Kováč P. Total Synthesis of the Complete Protective Antigen of Vibrio cholerae O139. Angew Chem Int Ed Engl 2016; 55:12850-3. [PMID: 27623688 PMCID: PMC5165651 DOI: 10.1002/anie.201606116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 01/09/2023]
Abstract
The first chemical synthesis of the complete protective O-antigen of a human-disease-causing pathogenic bacterium is described. The synthesis involved a protecting-group strategy that facilitated the regioselectivity of the key transformations, stereoselective glycosylation reactions, and enabled the one-step global deprotection of the completely assembled, fully protected, phosphorylated hexasaccharide by hydrogenation/hydrogenolysis. The final amino-group-functionalized, linker-equipped antigen was obtained in a form ready for conjugation to suitable carriers, for example, proteins, to yield immunogens.
Collapse
Affiliation(s)
- Sameh E Soliman
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health (NIH), Bethesda, MD, 20892-0815, USA
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Pavol Kováč
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health (NIH), Bethesda, MD, 20892-0815, USA.
| |
Collapse
|
7
|
Lu X, Kováč P. Chemical Synthesis of the Galacturonic Acid Containing Pentasaccharide Antigen of the O-Specific Polysaccharide of Vibrio cholerae O139 and Its Five Fragments. J Org Chem 2016; 81:6374-94. [DOI: 10.1021/acs.joc.6b01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaowei Lu
- Section on Carbohydrates,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland 20892-0815, United States
| | - Pavol Kováč
- Section on Carbohydrates,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland 20892-0815, United States
| |
Collapse
|
9
|
Soliman SE, Kováč P. Synthesis of a Conjugation-Ready, Phosphorylated, Tetrasaccharide Fragment of the O-PS of Vibrio cholerae O139. J Org Chem 2015; 80:11227-32. [DOI: 10.1021/acs.joc.5b02105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sameh E. Soliman
- NIDDK,
LBC, Section on Carbohydrates, National Institutes of Health, Bethesda, Maryland 20892-0815, United States
- Department
of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Pavol Kováč
- NIDDK,
LBC, Section on Carbohydrates, National Institutes of Health, Bethesda, Maryland 20892-0815, United States
| |
Collapse
|