1
|
Li SY, Li XG, Li WQ, Xu J, Zhang Q, Xu HJ. Photoinduced Iron-Catalyzed Decarboxylation/Isomerization of gem-Difluoroallyl Carboxylic Acid to Access Vinyl Difluoromethylene Units. Org Lett 2025; 27:3789-3794. [PMID: 40152816 DOI: 10.1021/acs.orglett.5c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Vinyl difluoromethylene units (-CF-) significantly enhance the bioactivity and physical and chemical properties of compounds. Despite recent advances in introducing vinyl difluoromethylene units, radical-mediated formation of these motifs remains largely unexplored. A novel serial catalytic strategy for selective defluoroalkylation of trifluoromethyl alkenes has been developed, utilizing photocatalytic defluorocarboxylation followed by photoinduced iron-catalyzed decarboxylation/isomerization. The defluoroalkylation reaction involves generating difluoroallyl radicals, tautomerizing to vinyl difluoromethylene radicals, and proceeding through radical addition and alkylation.
Collapse
Affiliation(s)
- Shi-Yu Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xin-Guang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Wen-Qian Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jun Xu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230009, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
2
|
Tagami K, Nakayama M, Kanbara T, Cahard D, Yajima T. 10-Phenylphenothiazine-Organophotocatalyzed Bromo-Perfluoroalkylation of Unactivated Olefins. J Org Chem 2024; 89:7084-7094. [PMID: 38663869 DOI: 10.1021/acs.joc.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In this study, we have developed a smooth metal-free visible-light-induced bromo-perfluoroalkylation of unactivated olefins with the aid of 10-phenylphenothiazine (PTH) as an organic photoredox catalyst. The reaction is 100% atom-economic redox-neutral and proceeds with stoichiometric amounts of olefin and perfluoroalkyl bromide. To show the potential of these unexplored motifs, we carried out various postfunctionalizations taking advantage of the bromine atom, including gram-scale experiments.
Collapse
Affiliation(s)
- Koto Tagami
- Department of Chemistry, Ochanomizu University, Tokyo 112-8610, Japan
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen, Normandie Univ, INC3M FR 3038, F-76000 Rouen, France
| | - Moeko Nakayama
- Department of Chemistry, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tadashi Kanbara
- Department of Chemistry, Ochanomizu University, Tokyo 112-8610, Japan
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen, Normandie Univ, INC3M FR 3038, F-76000 Rouen, France
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
3
|
Singh H, Tak RK, Poudel DP, Giri R. Catalytic Photoredox Carbobromination of Unactivated Alkenes with α-Bromocarbonyls via the Mechanistically Distinct Radical-Addition Radical-Pairing Pathway. ACS Catal 2024; 14:6001-6008. [PMID: 39758593 PMCID: PMC11694795 DOI: 10.1021/acscatal.4c00955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We disclose a catalytic photoredox carbobromination of unactivated alkenes with α-bromocarbonyl compounds under a blue LED light. The reaction proceeds with α-bromoesters, α-bromonitriles and α-bromo-γ-lactones along with terminal and 1,2-disubstituted internal alkenes. Reactions with indenes and 1,1-disubstituted alkenes generate alkylated alkenes. Mechanistic studies by product selectivity and three-way competitive crossover experiments suggest that the reaction operates by a radical-addition radical-pairing (RARP) mechanism. The catalytic turnover is achieved by a single electron reduction of PC•+ by Br- (or Br3 -), rather than by alkyl radical (R•), and the product is generated by the pairing of Br• (or Br2•-) and R•, instead of the combination of Br- and a carbocation (R+).
Collapse
Affiliation(s)
- Harshvardhan Singh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raj K Tak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dhruba P Poudel
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
5
|
Bian KJ, Lu YC, Nemoto D, Kao SC, Chen X, West JG. Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids. Nat Chem 2023; 15:1683-1692. [PMID: 37957278 PMCID: PMC10983801 DOI: 10.1038/s41557-023-01365-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023]
Abstract
Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - David Nemoto
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaowei Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Julian G West
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
6
|
Tagami K, Yajima T. Development of Electrophilic Radical Perfluoroalkylation of Electron-Deficient Olefins. CHEM REC 2023; 23:e202300037. [PMID: 37058111 DOI: 10.1002/tcr.202300037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Fluorinated organic compounds have attracted significant attention over the past few decades owing to their unique properties and versatility. An established method for the synthesis of fluorinated organic compounds involves radical perfluoroalkylation reactions towards double bonds. In this radical pathway, electrophilic perfluoroalkyl radicals exhibit excellent reactivity towards electron-rich olefins. Therefore, several splendid perfluoroalkylation reactions of electron-rich olefins have been reported. However, there are only a few examples of reaction involving electron-deficient olefins because of their poor electronic compatibility with perfluoroalkyl radicals. This review focuses on the reports that challenge this long-standing issue. Radical perfluoroalkylation/bifunctionalization reactions of electron-deficient olefins are described according to the radical generation methods.
Collapse
Affiliation(s)
- Koto Tagami
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| |
Collapse
|
7
|
Zhao S, Ali AS, Kong X, Zhang Y, Liu X, Skidmore MA, Forsyth CM, Savage GP, Wu D, Xu Y, Francis CL. 1-Benzyloxy-5-phenyltetrazole derivatives highly active against androgen receptor-dependent prostate cancer cells. Eur J Med Chem 2023; 246:114982. [PMID: 36495632 DOI: 10.1016/j.ejmech.2022.114982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
A series of 1-benzyloxy-5-phenyltetrazole derivatives and similar compounds were synthesized and evaluated for their in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) prostate cancer cells. The most active compounds had in vitro IC50 values against 22Rv1 cells of <50 nM and showed apparent selectivity for this cell type over PC3 cells; however, these active compounds had short half-lives when incubated with mouse liver microsomes and/or when plasma concentration was monitored during in vivo pharmacokinetic studies in mice or rats. Importantly, lead compound 1 exhibited promising inhibitory effects on cell proliferation, expression of AR and its splicing variant AR-v7 as well as AR regulated target genes in 22Rv1 cells, which are so called castration-resistant prostate cancer (CRPC) cells, and a 22Rv1 CRPC xenograft tumour model in mice. Structural changes which omitted the N-O-benzyl moiety led to dramatic or total loss of activity and S-benzylation of a cysteine derivative, as a surrogate for in vivo S-nucleophiles, by representative highly active compounds, suggested a possible chemical reactivity basis for this "activity cliff" and poor pharmacokinetic profile. However, representative highly active compounds did not inhibit a cysteine protease, indicating that the mode of activity is unlikely to be protein modification by S-benzylation. Despite our efforts to elucidate the mode of action, the mechanism remains unclear.
Collapse
Affiliation(s)
- Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangzhou Medical University, Guangzhou, 511436, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Abdelsalam S Ali
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia
| | - Xinyu Kong
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | - Craig M Forsyth
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - G Paul Savage
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangzhou Medical University, Guangzhou, 511436, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangzhou Medical University, Guangzhou, 511436, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia.
| |
Collapse
|
8
|
Peng P, Yang R, Xu B. Tunable Reduction of Benzyl
α
,
α
‐Difluorotriflones: Synthesis of Difluoroarenes and Sodium Aryldifluoromethyl Sufinates and their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology, Address Hangzhou 310014 China
| | - Ren‐Yin Yang
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| |
Collapse
|
9
|
Shigenaga S, Shibata H, Tagami K, Kanbara T, Yajima T. Eosin Y-Catalyzed Visible-Light-Induced Hydroperfluoroalkylation of Electron-Deficient Alkenes. J Org Chem 2022; 87:14923-14929. [PMID: 36200531 DOI: 10.1021/acs.joc.2c01827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eosin Y-catalyzed hydroperfluoroalkylation of electron-deficient alkenes is described herein. The reaction proceeded smoothly under visible light irradiation and selectively afforded a hydroperfluoroalkylated product. Various perfluoroalkyl bromides and electron-deficient olefins can be used in this reaction, and all chemicals required for this reaction are safe and readily available.
Collapse
Affiliation(s)
- Satsuki Shigenaga
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Haruko Shibata
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Koto Tagami
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tadashi Kanbara
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
10
|
Ren C, Ji G, Li X, Zhang J. Direct Synthesis of Adipic Esters and Adiponitrile via Photoassisted Cobalt‐Catalyzed Alkene Hydrodimerization. Chemistry 2022; 28:e202201442. [DOI: 10.1002/chem.202201442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng Ren
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| | - Guanghao Ji
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| | - Xiankai Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| | - Jing Zhang
- The Institute for Advanced Studies Wuhan University 299 Bayi Rd 430072 Wuhan P. R. China
| |
Collapse
|
11
|
Yue WJ, Day CS, Brenes Rucinski AJ, Martin R. Catalytic Hydrodifluoroalkylation of Unactivated Olefins. Org Lett 2022; 24:5109-5114. [PMID: 35815401 PMCID: PMC9490814 DOI: 10.1021/acs.orglett.2c01941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Jun Yue
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Craig S. Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Adrian J. Brenes Rucinski
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
12
|
Improved efficiency of photo-induced synthetic reactions enabled by advanced photo flow technologies. Photochem Photobiol Sci 2022; 21:761-775. [DOI: 10.1007/s43630-021-00151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
13
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
14
|
Moreno-Simoni M, Torres T, de la Torre G. Subphthalocyanine capsules: molecular reactors for photoredox transformations of fullerenes. Chem Sci 2022; 13:9249-9255. [PMID: 36092995 PMCID: PMC9384690 DOI: 10.1039/d2sc01931k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/19/2022] [Indexed: 12/20/2022] Open
Abstract
The internal cavity formed by a dimeric subphthalocyanine (SubPc) capsule (SubPc2Pd3, 2), ensembled by coordination of pyridyl substituents in the monomeric SubPc 1 to Pd centers, has proved an optimal space for the complexation of C60 fullerene. Taking advantage of the intense absorption of green light of the SubPc component at around 550 nm, we have tested different green-light induced photoredox addition reactions over the double bonds of guest C60. Both addition of amine radicals, generated by reductive quenching of the excited state of 2 by aromatic trimethylsilylamines, and addition of trifluoroethyl radicals, obtained from oxidative quenching of the photosensitizer, have successfully taken place with good yields in the 2:C60 host:guest complex. On the other hand, both the photoredox reactions result in much lower yields when the monomeric pyridyl-SubPc is used as a photocatalyst, demonstrating that encapsulation results in a strong acceleration of the reaction. Importantly, this is the first example of the use of a confined microenvironment to trigger photoredox chemical transformations of fullerenes. A photoredox cage built by coordination of two pyridyl-subphthalocyanines to Pd centers has proved versatile and efficient to catalyze photoredox addition reactions over encapsulated C60.![]()
Collapse
Affiliation(s)
- Marta Moreno-Simoni
- Organic Chemistry Department, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain
| | - Tomás Torres
- Organic Chemistry Department, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain
- IMDEA-Nanociencia, C/Faraday 9, 28049-Madrid, Spain
| | - Gema de la Torre
- Organic Chemistry Department, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain
| |
Collapse
|
15
|
Zhang Y, Lai GW, Nie LJ, He Q, Lin MJ, Chi R, Lu DL, Fan X. Organocatalytic difluorobenzylation of 1,2-diketones via mild cleavage of carbon–carbon bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01645h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Difluoroacetophenones (DFAPs) are developed as a class of novel and practical reagents for organocatalytic difluorobenzylation reactions.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guo-Wei Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Long-Jun Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Qifang He
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Mei-Juan Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Rong Chi
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Dong-Liang Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
16
|
Yang RY, Gao X, Gong K, Wang J, Zeng X, Wang M, Han J, Xu B. Synthesis of ArCF 2X and [ 18F]Ar-CF 3 via Cleavage of the Trifluoromethylsulfonyl Group. Org Lett 2021; 24:164-168. [PMID: 34882424 DOI: 10.1021/acs.orglett.1c03803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile synthesis of ArCF2X and [18F]Ar-CF3 type compounds from readily available ArCF2SO2CF3 has been developed. Diverse nucleophiles, including weak nucleophiles such as halides (18F-, Cl-, Br-, and I-), RSH, and ROH, could react with ArCF2SO2CF3 efficiently to give the corresponding difluoromethylene products. The control experiments and the Hammett plot indicated that the reaction might proceed through a difluorocarbocation intermediate generated from the steric hindrance-assisted cleavage of the trifluoromethylsulfonyl group.
Collapse
Affiliation(s)
- Ren-Yin Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| | - Xinyan Gao
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Kehao Gong
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Juan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| | - Xiaojun Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, China
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| |
Collapse
|
17
|
Campbell MW, Polites VC, Patel S, Lipson JE, Majhi J, Molander GA. Photochemical C-F Activation Enables Defluorinative Alkylation of Trifluoroacetates and -Acetamides. J Am Chem Soc 2021; 143:19648-19654. [PMID: 34793157 DOI: 10.1021/jacs.1c11059] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The installation of gem-difluoromethylene groups into organic structures remains a daunting synthetic challenge despite their attractive structural, physical, and biochemical properties. A very efficient retrosynthetic approach would be the functionalization of a single C-F bond from a trifluoromethyl group. Recent advances in this line of attack have enabled the C-F activation of trifluoromethylarenes, but limit the accessible motifs to only benzylic gem-difluorinated scaffolds. In contrast, the C-F activation of trifluoroacetates would enable their use as a bifunctional gem-difluoromethylene synthon. Herein, we report a photochemically mediated method for the defluorinative alkylation of a commodity feedstock: ethyl trifluoroacetate. A novel mechanistic approach was identified using our previously developed diaryl ketone HAT catalyst to enable the hydroalkylation of a diverse suite of alkenes. Furthermore, electrochemical studies revealed that more challenging radical precursors, namely trifluoroacetamides, could also be functionalized via synergistic Lewis acid/photochemical activation. Finally, this method enabled a concise synthetic approach to novel gem-difluoro analogs of FDA-approved pharmaceutical compounds.
Collapse
Affiliation(s)
- Mark W Campbell
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Viktor C Polites
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shivani Patel
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Juliette E Lipson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
18
|
Fu Y, Shen G, Wang K, Zhu X. Comparison of Thermodynamic, Kinetic Forces for Three NADH Analogues to Release Hydride Ion or Hydrogen Atom in Acetonitrile. ChemistrySelect 2021. [DOI: 10.1002/slct.202102048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology, Anyang Henan 455000 China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining, Shandong 272000 P. R. China
| | - Kai Wang
- College of Chemistry and Environmental Engineering Anyang Institute of Technology, Anyang Henan 455000 China
| | - Xiao‐Qing Zhu
- Collaborative Innovation Center of Chemical Science and Engineering Nankai University Tianjin 300071 China
| |
Collapse
|
19
|
Gellé A, Price GD, Voisard F, Brodusch N, Gauvin R, Amara Z, Moores A. Enhancing Singlet Oxygen Photocatalysis with Plasmonic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35606-35616. [PMID: 34309350 DOI: 10.1021/acsami.1c05892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalysts able to trigger the production of singlet oxygen species are the topic of intense research efforts in organic synthesis. Yet, challenges still exist in improving their activity and optimizing their use. Herein, we exploited the benefits of plasmonic nanoparticles to boost the activity of such photocatalysts via an antenna effect in the visible range. We synthesized silica-coated silver nanoparticles (Ag@SiO2 NPs), with silica shells which thicknesses ranged from 7 to 45 nm. We showed that they served as plasmonically active supports for tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, and demonstrated an enhanced catalytic activity under white light-emitting diode (LED) irradiation for citronellol oxidation, a key step in the commercial production of rose oxide fragrance. A maximum enhancement of the plasmon-mediated reactivity of approximately 3-fold was observed with a 28 nm silica layer along with a 4-fold enhancement in the emission intensity of the photocatalyst. Using electron energy loss spectroscopy (EELS) and boundary element method simulations, we mapped the decay of the plasmonic signal around the Ag core and provided a rationale for the observed catalytic enhancement. This work provides a systematic analysis of the promising properties of plasmonic NPs used as catalysis-enhancing supports for common homogeneous photocatalysts and a framework for the successful design of such systems in the context of organic transformations.
Collapse
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Frédéric Voisard
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Nicolas Brodusch
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Raynald Gauvin
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Zacharias Amara
- Équipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA7528, Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, Cedex 03, France
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
20
|
Dorian A, Landgreen EJ, Petras HR, Shepherd JJ, Williams FJ. Iron-Catalyzed Halogen Exchange of Trifluoromethyl Arenes*. Chemistry 2021; 27:10839-10843. [PMID: 34137084 DOI: 10.1002/chem.202101324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/10/2022]
Abstract
The facile production of ArCF2 X and ArCX3 from ArCF3 using catalytic iron(III)halides is reported, which constitutes the first iron-catalyzed halogen exchange for non-aromatic C-F bonds. Theoretical calculations suggest direct activation of C-F bonds by iron coordination. ArCX3 and ArCF2 X products of the reaction are synthetically valuable due to their diversification potential. In particular, chloro- and bromodifluoromethyl arenes (ArCF2 Cl, ArCF2 Br respectively) provide access to a myriad of difluoromethyl arene derivatives (ArCF2 R). To optimize for mono-halogen exchange, a statistical method called Design of Experiments was used. Optimized parameters were successfully applied to electron rich and electron deficient aromatic substrates, and to the late stage diversification of flufenoxuron, a commercial insecticide. These methods are highly practical, being run at convenient temperatures and using inexpensive common reagents.
Collapse
Affiliation(s)
- Andreas Dorian
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Emily J Landgreen
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Hayley R Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | | |
Collapse
|
21
|
Zhang Z, Li X, Shi D. Visible‐Light‐Promoted Oxy‐difluoroalkylation of Aryl Alkynes for the Synthesis of
β
‐Fluoroenones and
α
‐Difluoroalkyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology 168 Wenhai Road Qingdao 266237 Shandong People's Republic of China
| |
Collapse
|
22
|
Li XR, Li WX, Zhang ZW, Shen C, Zhou X, Chu XQ, Rao W, Shen ZL. Stereoselective synthesis of fluoroalkylated ( Z)-alkene via nickel-catalyzed and iron-mediated hydrofluoroalkylation of alkynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00983d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient nickel-catalyzed, iron-mediated hydrofluoroalkylation of alkynes with bromodifluoroacetate or perfluoroalkyl iodide, which proceeded smoothly to give fluoroalkylated (Z)-alkenes with high stereocontrol (up to 99 : 1 Z/E), was developed.
Collapse
Affiliation(s)
- Xiang-Rui Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Xin Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuo-Wen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
23
|
Larionova NA, Ondozabal JM, Cambeiro XC. Reduction of Electron‐Deficient Alkenes Enabled by a Photoinduced Hydrogen Atom Transfer. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Natalia A. Larionova
- Department of Chemistry School of Biological and Chemical Sciences Queen Mary University of London. Mile End Rd London E1 4NS UK)
| | - Jun Miyatake Ondozabal
- Department of Chemistry School of Biological and Chemical Sciences Queen Mary University of London. Mile End Rd London E1 4NS UK)
| | - Xacobe C. Cambeiro
- Department of Chemistry School of Biological and Chemical Sciences Queen Mary University of London. Mile End Rd London E1 4NS UK)
| |
Collapse
|
24
|
Laishram RD, Chen J, Fan B. Progress in Visible Light‐Induced Difluroalkylation of Olefins. CHEM REC 2020; 21:69-86. [DOI: 10.1002/tcr.202000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ronibala Devi Laishram
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Baomin Fan
- School of Chemistry and Environment Yunnan Minzu University Kunming 650504 Yunnan China
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| |
Collapse
|
25
|
Kallemeyn JM, Engstrom KM, Pelc MJ, Lukin KA, Morrill WH, Wei H, Towne TB, Henle J, Nere NK, Welch DS, Shekhar S, Ravn MM, Zhao G, Fickes MG, Ding C, Vinci JC, Marren J, Cink RD. Development of a Large-Scale Route to Glecaprevir: Synthesis of the Macrocycle via Intramolecular Etherification. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey M. Kallemeyn
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Kenneth M. Engstrom
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Matthew J. Pelc
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Kirill A. Lukin
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Westin H. Morrill
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Haojuan Wei
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Timothy B. Towne
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Jeremy Henle
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Nandkishor K. Nere
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Dennie S. Welch
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Matthew M. Ravn
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Gang Zhao
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Michael G. Fickes
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Chen Ding
- Analytical Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - John C. Vinci
- Analytical Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - James Marren
- Analytical Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Russell D. Cink
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
26
|
Wu N, Huang Y, Xu X, Qing F. Copper‐Catalyzed Hydrodifluoroallylation of Terminal Alkynes to Access (
E
)‐1,1‐Difluoro‐1,4‐Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nuo‐Yi Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Feng‐Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
27
|
Zhang S, Li Y, Wang J, Hao X, Jin K, Zhang R, Duan C. A photocatalyst-free photo-induced denitroalkylation of β-nitrostyrenes with 4-alkyl substituted Hantzsch esters at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Mandal D, Gupta R, Jaiswal AK, Young RD. Frustrated Lewis-Pair-Meditated Selective Single Fluoride Substitution in Trifluoromethyl Groups. J Am Chem Soc 2020; 142:2572-2578. [DOI: 10.1021/jacs.9b12167] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dipendu Mandal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Richa Gupta
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Amit K. Jaiswal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Rowan D. Young
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
29
|
González MJ, Breit B. Visible-Light-Driven Intermolecular Reductive Ene-Yne Coupling by Iridium/Cobalt Dual Catalysis for C(sp 3 )-C(sp 2 ) Bond Formation. Chemistry 2019; 25:15746-15750. [PMID: 31549749 PMCID: PMC6916364 DOI: 10.1002/chem.201903708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/19/2019] [Indexed: 02/02/2023]
Abstract
A new methodology to form C(sp3 )-C(sp2 ) bonds by visible-light-driven intermolecular reductive ene-yne coupling has been successfully developed. The process relies on the ability of the Hantzsch ester to contribute in both SET and HAT processes through a unified cobalt and iridium catalytic system. This procedure avoids the use of stoichiometric amounts of reducing metallic reagents, which is translated into high functional-group tolerance and atom economy.
Collapse
Affiliation(s)
- María J. González
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Bernhard Breit
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| |
Collapse
|
30
|
Tong CL, Xu XH, Qing FL. Oxidative Hydro-, Bromo-, and Chloroheptafluoroisopropylation of Unactivated Alkenes with Heptafluoroisopropyl Silver. Org Lett 2019; 21:9532-9535. [DOI: 10.1021/acs.orglett.9b03705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
31
|
Lyu XL, Huang SS, Song HJ, Liu YX, Wang QM. Blue light photoredox-catalysed acetalation of alkynyl bromides. RSC Adv 2019; 9:36213-36216. [PMID: 35540617 PMCID: PMC9074944 DOI: 10.1039/c9ra06596b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022] Open
Abstract
Herein, we report an organo-photoredox-based protocol using 2,2-diethoxyacetic acid as the acetal source to achieve acetalation of alkynyl bromides to afford various alkynyl acetal products. In addition to arylethynyl bromides, substrates bearing heteroaryl rings (thiophene, pyridine, and indole) smoothly gave the corresponding acetalation products. This mild protocol has potential utility for the synthesis of aldehydes by further protonization.
Collapse
Affiliation(s)
- Xue-Li Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Shi-Sheng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Hong-Jian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Yu-Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Qing-Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
32
|
Wei Z, Qi S, Xu Y, Liu H, Wu J, Li H, Xia C, Duan G. Visible Light‐Induced Photocatalytic C−H Perfluoroalkylation of Quinoxalinones under Aerobic Oxidation Condition. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900885] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenjiang Wei
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Sijia Qi
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Yanhao Xu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Hao Liu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Junzhen Wu
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Hongshuang Li
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Chengcai Xia
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| | - Guiyun Duan
- Pharmacy CollegeShandong First Medical University & Shandong Academy of Medical Sciences Taian 271000 People's Republic of China
| |
Collapse
|
33
|
Barthelemy AL, Dagousset G, Magnier E. Metal-Free Visible-Light-Mediated Hydrotrifluoromethylation of Unactivated Alkenes and Alkynes in Continuous Flow. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anne-Laure Barthelemy
- Institut Lavoisier de Versailles, UMR 8180; Université de Versailles-Saint-Quentin; 78035 Versailles Cedex France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, UMR 8180; Université de Versailles-Saint-Quentin; 78035 Versailles Cedex France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, UMR 8180; Université de Versailles-Saint-Quentin; 78035 Versailles Cedex France
| |
Collapse
|
34
|
Lopp JM, Schmidt VA. Intermolecular Phosphite-Mediated Radical Desulfurative Alkene Alkylation Using Thiols. Org Lett 2019; 21:8031-8036. [PMID: 31552741 DOI: 10.1021/acs.orglett.9b03018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein the development of a S atom transfer process using triethyl phosphite as the S atom acceptor that allows thiols to serve as precursors of C-centered radicals. A range of functionalized and electronically unbiased alkenes including those containing common heteroatom-based functional groups readily participate in this reductive coupling. This process is driven by the exchange of relatively weak S-H and C-S bonds of aliphatic thiols for C-H, C-C, and S-P bonds of the products formed.
Collapse
Affiliation(s)
- John M Lopp
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Valerie A Schmidt
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
35
|
Nakano M, Morimoto T, Noguchi J, Tanimoto H, Mori H, Tokumoto SI, Koishi H, Nishiyama Y, Kakiuchi K. Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions Using N2 Gas as an Unreactive Substance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Momoe Nakano
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Jiro Noguchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hajime Mori
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Shin-ichi Tokumoto
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Hideyuki Koishi
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Yasuhiro Nishiyama
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
36
|
Luo C, Bandar JS. Selective Defluoroallylation of Trifluoromethylarenes. J Am Chem Soc 2019; 141:14120-14125. [DOI: 10.1021/jacs.9b07766] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chaosheng Luo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
37
|
Lewis SE, Wilhelmy BE, Leibfarth FA. Upcycling aromatic polymers through C-H fluoroalkylation. Chem Sci 2019; 10:6270-6277. [PMID: 31341579 PMCID: PMC6601422 DOI: 10.1039/c9sc01425j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/04/2019] [Indexed: 11/28/2022] Open
Abstract
The unique properties imparted by planar, rigid aromatic rings in synthetic polymers make these macromolecules useful in a range of applications, including disposable packaging, aerospace materials, flexible electronics, separation membranes, and engineering thermoplastics. The thermal and chemical stability of aromatic polymers, however, makes it difficult to alter their bulk and/or surface properties and results in challenges during recycling. In response, we report a platform approach for the C-H functionalization of aromatic polymers by taking advantage of their innate reactivity with electrophilic radical intermediates. The method uses mild reaction conditions to photocatalytically generate electrophilic fluoroalkyl radicals for the functionalization of an array of commercially relevant polyaromatic substrates, including post-industrial and post-consumer plastic waste, without altering their otherwise attractive thermomechanical properties. The density of fluorination, and thus the material properties, is tuned by either increasing the reagent concentration or incorporating longer perfluoroalkyl species. Additionally, the installation of versatile chemical functionality to aromatic polymers is demonstrated through the addition of a bromodifluoromethyl group, which acts as an initiator for atom transfer radical polymerization (ATRP) grafting of vinyl polymers. The method described herein imparts new and versatile chemical functionality to aromatic polymers, enabling an efficient approach to diversify the properties of these otherwise recalcitrant commodity plastics and demonstrating a viable pathway to upcycle post-consumer plastic waste.
Collapse
Affiliation(s)
- Sally E Lewis
- Department of Chemistry , University of North Carolina at Chapel Hill , 125 South Rd , Chapel Hill , NC 27599 , USA .
| | - Bradley E Wilhelmy
- Department of Chemistry , University of North Carolina at Chapel Hill , 125 South Rd , Chapel Hill , NC 27599 , USA .
| | - Frank A Leibfarth
- Department of Chemistry , University of North Carolina at Chapel Hill , 125 South Rd , Chapel Hill , NC 27599 , USA .
| |
Collapse
|
38
|
Li L, Ma Y, Tang M, Guo J, Yang Z, Yan Y, Ma X, Tang L. Photoredox‐Catalyzed Oxydifluoroalkylation of Styrenes for Access to Difluorinated Ketones with DMSO as an Oxidant. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900521] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lixin Li
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Yan‐Na Ma
- College of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453000 People's Republic of China
| | - Mi Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Jing Guo
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Zhen Yang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Yizhe Yan
- School of Food and Biological EngineeringZhengzhou University of Light Industry Zhengzhou 450000 People's Republic of China
| | - Xiantao Ma
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Lin Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| |
Collapse
|
39
|
Uno M, Sumino S, Fukuyama T, Matsuura M, Kuroki Y, Kishikawa Y, Ryu I. Synthesis of 4,4-Difluoroalkenes by Coupling of α-Substituted α,α-Difluoromethyl Halides with Allyl Sulfones under Photoredox Catalyzed Conditions. J Org Chem 2019; 84:9330-9338. [DOI: 10.1021/acs.joc.9b00901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Misae Uno
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Shuhei Sumino
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | | | | | | | - Ilhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
40
|
Zhang L, Si X, Yang Y, Witzel S, Sekine K, Rudolph M, Rominger F, Hashmi ASK. Reductive C–C Coupling by Desulfurizing Gold-Catalyzed Photoreactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01368] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lumin Zhang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Xiaojia Si
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Yangyang Yang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sina Witzel
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kohei Sekine
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
41
|
Sumino S, Ryu I. Alkenylation and Allylation Reactions of Alkyl Halides Using Photo Catalyst. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuhei Sumino
- Department of Chemistry, Osaka Prefecture University
| | - Ilhyong Ryu
- Department of Chemistry, Osaka Prefecture University
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
42
|
Dmitriev IA, Supranovich VI, Levin VV, Dilman AD. Reductive Bromodifluoromethylation of Nitrones Promoted by Visible Light. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Igor A. Dmitriev
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
- Moscow State University; Department of Chemistry; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | | | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
43
|
Paymode DJ, Ramana CV. Studies toward the Total Synthesis of Parvifolals A/B: An Intramolecular o-Quinone Methide [4 + 2]-Cycloaddition To Construct the Central Tetracyclic Core. ACS OMEGA 2019; 4:810-818. [PMID: 31459360 PMCID: PMC6648467 DOI: 10.1021/acsomega.8b02777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/26/2018] [Indexed: 06/10/2023]
Abstract
Two different approaches funded upon the intramolecular [4 + 2]-cycloaddition of in situ generated o-quinone methides have been explored to construct the central tetracyclic core of parvifolals A/B. At the outset, a cross-pinacol coupling of 2-formyl tri-O-methyl resveratrol with 4-methoxysalicylaldehyde followed by acid treatment was found to provide the desired tetracyclic core with an internal olefin. The requisite pendant aryl group has been introduced by a Pd-catalyzed direct coupling of corresponding diazonium salt.
Collapse
Affiliation(s)
- Dinesh J Paymode
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| |
Collapse
|
44
|
Alkene Carboarylation through Catalyst‐Free, Visible Light‐Mediated Smiles Rearrangement. Chemistry 2019; 25:1927-1930. [DOI: 10.1002/chem.201805712] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Indexed: 11/07/2022]
|
45
|
Qin Q, Wang W, Zhang C, Song S, Jiao N. A metal-free desulfurizing radical reductive C–C coupling of thiols and alkenes. Chem Commun (Camb) 2019; 55:10583-10586. [PMID: 31418430 DOI: 10.1039/c9cc05378f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intermolecular reductive C–C coupling of electrophilic alkyl radicals and alkenes has been developed.
Collapse
Affiliation(s)
- Qixue Qin
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Weijing Wang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Cheng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
46
|
Wang PZ, Chen JR, Xiao WJ. Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Org Biomol Chem 2019; 17:6936-6951. [DOI: 10.1039/c9ob01289c] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This minireview highlights the recent advances in the chemistry of Hantzsch esters in photoredox catalyzed organic synthesis, with particular emphasis placed on reaction mechanisms.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Jia-Rong Chen
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
47
|
Yang Z, Cheng Y, Long J, Feng X, Tang R, Wei J. Transition metal-free synthesis of fluoroalkylated oxindoles via base-mediated fluoroalkylation of N-arylacrylamides with RFI. NEW J CHEM 2019. [DOI: 10.1039/c9nj04458b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method for synthesizing fluoroalkylated oxindoles by the cyclization of N-arylacrylamides with fluoroalkyl iodide initiated with K2CO3 is reported.
Collapse
Affiliation(s)
- Zhiyong Yang
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Yuanyuan Cheng
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Jikun Long
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Xiaoying Feng
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Rong Tang
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Jinmei Wei
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| |
Collapse
|
48
|
Yajima T, Shigenaga S. Metal-Free Visible Light Hydroperfluoroalkylation of Unactivated Alkenes Using Perfluoroalkyl Bromides. Org Lett 2018; 21:138-141. [DOI: 10.1021/acs.orglett.8b03596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoko Yajima
- Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Satsuki Shigenaga
- Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
49
|
Miura T, Funakoshi Y, Nakahashi J, Moriyama D, Murakami M. Synthesis of Elongated Esters from Alkenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Yuuta Funakoshi
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Junki Nakahashi
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Daisuke Moriyama
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| |
Collapse
|
50
|
Miura T, Funakoshi Y, Nakahashi J, Moriyama D, Murakami M. Synthesis of Elongated Esters from Alkenes. Angew Chem Int Ed Engl 2018; 57:15455-15459. [PMID: 30264919 DOI: 10.1002/anie.201809115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/07/2018] [Indexed: 12/30/2022]
Abstract
A convenient method for synthesizing elongated aliphatic esters from alkenes is reported. An (alkoxycarbonyl)methyl radical species is generated upon visible-light irradiation of an ester-stabilized phosphorus ylide in the presence of a photoredox catalyst. This radical species adds onto the carbon-carbon double bond of an alkene to produce an elongated aliphatic ester.
Collapse
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Yuuta Funakoshi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Junki Nakahashi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Daisuke Moriyama
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| |
Collapse
|