1
|
Noguchi T, Zhao F, Moriwaki Y, Yamamoto H, Kudo K, Nagata R, Tomita T, Terada T, Shimizu K, Nishiyama M, Kuzuyama T. Biosynthesis of the tetrahydroxynaphthalene-derived meroterpenoid furaquinocin via reductive deamination and intramolecular hydroalkoxylation of an alkene. Chem Sci 2025; 16:7912-7920. [PMID: 40191119 PMCID: PMC11969235 DOI: 10.1039/d4sc08319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/29/2025] [Indexed: 04/09/2025] Open
Abstract
Hybrid isoprenoid-polyketides, known as meroterpenoids, are a family of natural products that exhibit various bioactivities and are promising drug scaffolds. Despite the structural diversity of 1,3,6,8-tetrahydroxynaphthalene (THN)-derived meroterpenoids, such as furaquinocin, naphterpin, and furanonaphthoquinone, several biosynthetic genes for these compounds are conserved, suggesting a shared biosynthetic mechanism. However, the common biosynthetic mechanism and pathway-specific structural diversification mechanisms of these meroterpenoids are not yet fully understood. This study reveals the biosynthetic pathway for furaquinocin, demonstrating that it involves reductive deamination to form a key hydroquinone intermediate essential for subsequent reactions, including a unique cyclization step. We identified the mechanism of reductive deamination of the biosynthetic intermediate 8-amino-flaviolin through transient diazotization, leading to the formation of the hydroquinone intermediate 1,2,4,5,7-pentahydroxynaphthalene (PHN). Structural and computational studies confirmed that PHN is a key substrate for the subsequent methylation. We also showed that the hydroquinone intermediates are prerequisites for the subsequent pathway-specific reactions, including prenylation and novel intramolecular hydroalkoxylation of an alkene. This hydroalkoxylation reaction is notable in that a methyltransferase homolog catalyzes it in an S-adenosylmethionine-independent manner. Our findings provide a new model for furaquinocin biosynthesis, offering insights into the biosynthetic strategies for THN-derived meroterpenoids.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Fan Zhao
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yoshitaka Moriwaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hideaki Yamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kei Kudo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tohru Terada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kentaro Shimizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
2
|
Kawai S, Karasawa M, Moriwaki Y, Terada T, Katsuyama Y, Ohnishi Y. Structural Basis for the Catalytic Mechanism of ATP-Dependent Diazotase CmaA6. Angew Chem Int Ed Engl 2025:e202505851. [PMID: 40275441 DOI: 10.1002/anie.202505851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Although several diazotases have been recently reported, the details of the reaction mechanism are not yet understood. In this study, we investigated the mechanism of CmaA6, an ATP-dependent diazotase, which catalyzes the diazotization of 3-aminocoumaric acid using nitrous acid. X-ray crystallography and cryogenic electron microscopy-single particle analysis revealed CmaA6 structures in the substrate-free and AMP-binding states. Kinetic analysis suggested that CmaA6 catalyzes diazotization via a sequential reaction mechanism in which three substrates (nitrous acid, ATP, and 3-aminocoumaric acid) are simultaneously bound in the reaction pocket. The nitrous acid and 3-aminocoumaric acid binding sites were predicted based on the AMP-binding state and confirmed by site-directed mutagenesis. In addition, computational analysis revealed a tunnel for 3-aminocoumaric acid to enter the reaction pocket, which was advantageous for the sequential reaction mechanism. This study provides important insights into the catalytic mechanism of diazotization in natural product biosynthesis.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masayuki Karasawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Division of Computational Drug Discovery and Design, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Cheng Y, Pang H, Zhang W. Exquisite Complex Reaction Cascade in the Natural 1,2,4-Triazine Assembly. J Am Chem Soc 2025; 147:12075-12081. [PMID: 40156852 PMCID: PMC11981835 DOI: 10.1021/jacs.4c18761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
1,2,4-Triazine ring is a scaffold widely found in biologically active compounds, but how nature makes it remains enigmatic. In this study, we unveil the complex enzymatic and nonenzymatic cascade reactions that assemble the 1,2,4-triazine moiety found in the structures of the natural products pseudoiodinine and toxoflavin. Through biochemical studies, isotope labeling, and the application of substrate analogues, we propose a plausible pathway for the 1,2,4-triazine assembly from a common precursor in riboflavin biosynthesis. This process involves four two-electron oxidation steps, C-N bond formation, decarboxylation, and the N-N bond forming step catalyzed by a metal-dependent WD40-repeat (WDR) protein. This study thus not only provides the first biocatalytic route for the 1,2,4-triazine assembly but also identifies a previously unrecognized catalytic role of a large WDR protein family.
Collapse
Affiliation(s)
- Yiyuan Cheng
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Haoran Pang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
5
|
Del Rio Flores A, Zhai R, Kastner DW, Seshadri K, Yang S, De Matias K, Shen Y, Cai W, Narayanamoorthy M, Do NB, Xue Z, Marzooqi DA, Kulik HJ, Zhang W. Enzymatic synthesis of azide by a promiscuous N-nitrosylase. Nat Chem 2024; 16:2066-2075. [PMID: 39333393 PMCID: PMC11611683 DOI: 10.1038/s41557-024-01646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Azides are energy-rich compounds with diverse representation in a broad range of scientific disciplines, including material science, synthetic chemistry, pharmaceutical science and chemical biology. Despite ubiquitous usage of the azido group, the underlying biosynthetic pathways for its formation remain largely unknown. Here we report the characterization of an enzymatic route for de novo azide construction. We demonstrate that Tri17, a promiscuous ATP- and nitrite-dependent enzyme, catalyses organic azide synthesis through sequential N-nitrosation and dehydration of aryl hydrazines. Through biochemical, structural and computational analyses, we further propose a plausible molecular mechanism for azide synthesis that sets the stage for future biocatalytic applications and biosynthetic pathway engineering.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - David W Kastner
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Siyue Yang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Kyle De Matias
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Yuanbo Shen
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Nicholas B Do
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Zhaoqiang Xue
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Dunya Al Marzooqi
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Noya R, Murakoshi K, Fukuda M, Yushina T, Kitamura K, Kobayashi M, Takano H. Light inducible gene expression system for Streptomyces. Sci Rep 2024; 14:25852. [PMID: 39468183 PMCID: PMC11519972 DOI: 10.1038/s41598-024-76860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
The LitR/CarH family comprises adenosyl B12-based photosensory transcriptional regulators that control light-inducible carotenoid production in nonphototrophic bacteria. In this study, we established a blue-green light-inducible hyperexpression system using LitR and its partner ECF-type sigma factor LitS in streptomycin-producing Streptomyces griseus NBRC 13350. The constructed multiple-copy number plasmid, pLit19, carried five genetic elements: pIJ101rep, the thiostrepton resistance gene, litR, litS, and σLitS-recognized light-inducible crtE promoter. Streptomyces griseus transformants harboring pLit19 exhibited a light-dependent hyper-production of intracellular reporter enzymes including catechol-2,3-dioxygenase and β-glucuronidase, extracellular secreted enzymes including laccase and transglutaminase, and secondary metabolites including melanin, flaviolin, and indigoidine. Cephamycin-producing Streptomyces sp. NBRC 13304, carrying an entire actinorhodin gene cluster, exhibited light-dependent actinorhodin production after the introduction of the pLit19 shuttle-type plasmid with the pathway-specific activator actII-ORF4. Insertion of sti fragment derived from Streptomyces phaeochromogenes pJV1 plasmid into pLit19 increased its light sensitivity, allowing gene expression under weak light irradiation. The two constructed Escherichia coli-Streptomyces shuttle-type pLit19 plasmids were found to have abilities similar to those of pLit19. We successfully established an optogenetically controlled hyperproduction system for S. griseus NBRC 13350 and Streptomyces sp. NBRC 13304.
Collapse
Affiliation(s)
- Ryuta Noya
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Kyohei Murakoshi
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Madoka Fukuda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Tetsuya Yushina
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Kaichi Kitamura
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Manami Kobayashi
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan.
| |
Collapse
|
7
|
Prado-Alonso L, Ye S, Pérez-Victoria I, Montero I, Riesco P, Ortiz-López FJ, Martín J, Olano C, Reyes F, Méndez C. Genome Mining for Diazo-Synthesis-Related Genes in Streptomyces sp. CS057 Unveiled the Cryptic Biosynthetic Gene Cluster crx for the Novel 3,4-AHBA-Derived Compound Crexazone 2. Biomolecules 2024; 14:1084. [PMID: 39334851 PMCID: PMC11429834 DOI: 10.3390/biom14091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Natural products play a crucial role in drug development, addressing the escalating microbial resistance to antibiotics and the treatment of emerging diseases. Progress in genome sequencing techniques, coupled with the development of bioinformatics tools and the exploration of uncharted habitats, has highlighted the biosynthetic potential of actinomycetes. By in silico screening for diazo-related gene genomes from twelve Streptomyces strains isolated from Attini leaf-cutting ants, the new crx biosynthetic gene cluster (BGC) was identified in Streptomyces sp. CS057. This cluster, highly conserved in several Streptomyces strains, contains genes related to diazo group formation and genes for the biosynthesis of 3,4-AHBA. By overexpressing the LuxR-like regulatory gene crxR1, we were able to activate the crx cluster, which encodes the biosynthesis of three 3,4-AHBA-derived compounds that we named crexazones (CRXs). The chemical structure of crexazones (CRXs) was determined by LC-DAD-HRMS-based dereplication and NMR spectroscopic analyses and was found to correspond to two known compounds, 3-acetamido-4-hydroxybenzoic acid (CRX1) and the phenoxazinone texazone (CRX3), and a novel 3,4-AHBA-containing compound herein designated as CRX2. Experimental proof linking the crx BGC to their encoded compounds was achieved by generating mutants in selected crx genes.
Collapse
Affiliation(s)
- Laura Prado-Alonso
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Ignacio Montero
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pedro Riesco
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Javier Ortiz-López
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Johnson SB, Valentino H, Sobrado P. Kinetic Characterization and Identification of Key Active Site Residues of the L-Aspartate N-Hydroxylase, CreE. Chembiochem 2024; 25:e202400350. [PMID: 38775737 DOI: 10.1002/cbic.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Indexed: 07/04/2024]
Abstract
CreE is a flavin-dependent monooxygenase (FMO) that catalyzes three sequential nitrogen oxidation reactions of L-aspartate to produce nitrosuccinate, contributing to the biosynthesis of the antimicrobial and antiproliferative nautral product, cremeomycin. This compound contains a highly reactive diazo functional group for which the reaction of CreE is essential to its formation. Nitro and diazo functional groups can serve as potent electrophiles, important in some challenging nucleophilic addition reactions. Formation of these reactive groups positions CreE as a promising candidate for biomedical and synthetic applications. Here, we present the catalytic mechanism of CreE and the identification of active site residues critical to binding L-aspartate, aiding in future enzyme engineering efforts. Steady-state analysis demonstrated that CreE is very specific for NADPH over NADH and performs a highly coupled reaction with L-aspartate. Analysis of the rapid-reaction kinetics showed that flavin reduction is very fast, along with the formation of the oxygenating species, the C4a-hydroperoxyflavin. The slowest step observed was the dehydration of the flavin. Structural analysis and site-directed mutagenesis implicated T65, R291, and R440 in the binding L-aspartate. The data presented describes the catalytic mechanism and the active site architecture of this unique FMO.
Collapse
Affiliation(s)
- Sydney B Johnson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Hannah Valentino
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409
| |
Collapse
|
9
|
Matsuda K, Wakimoto T. Bacterial Hydrazine Biosynthetic Pathways Featuring Cupin/Methionyl tRNA Synthetase-like Enzymes. Chembiochem 2024; 25:e202300874. [PMID: 38458972 DOI: 10.1002/cbic.202300874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Nitrogen-Nitrogen (N-N) bond-containing functional groups in natural products and synthetic drugs play significant roles in exerting biological activities. The mechanisms of N-N bond formation in natural organic molecules have garnered increasing attention over the decades. Recent advances have illuminated various enzymatic and nonenzymatic strategies, and our understanding of natural N-N bond construction is rapidly expanding. A group of didomain proteins with zinc-binding cupin/methionyl-tRNA synthetase (MetRS)-like domains, also known as hydrazine synthetases, generates amino acid-based hydrazines, which serve as key biosynthetic precursors of diverse N-N bond-containing functionalities such as hydrazone, diazo, triazene, pyrazole, and pyridazinone groups. In this review, we summarize the current knowledge on hydrazine synthetase mechanisms and the various pathways employing this unique bond-forming machinery.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
10
|
Matsuda K, Nakahara Y, Choirunnisa AR, Arima K, Wakimoto T. Phylogeny-guided Characterization of Bacterial Hydrazine Biosynthesis Mediated by Cupin/methionyl tRNA Synthetase-like Enzymes. Chembiochem 2024; 25:e202300838. [PMID: 38403952 DOI: 10.1002/cbic.202300838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
Cupin/methionyl-tRNA synthetase (MetRS)-like didomain enzymes catalyze nitrogen-nitrogen (N-N) bond formation between Nω-hydroxylamines and amino acids to generate hydrazines, key biosynthetic intermediates of various natural products containing N-N bonds. While the combination of these two building blocks leads to the creation of diverse hydrazine products, the full extent of their structural diversity remains largely unknown. To explore this, we herein conducted phylogeny-guided genome-mining of related hydrazine biosynthetic pathways consisting of two enzymes: flavin-dependent Nω-hydroxylating monooxygenases (NMOs) that produce Nω-hydroxylamine precursors and cupin/MetRS-like enzymes that couple the Nω-hydroxylamines with amino acids via N-N bonds. A phylogenetic analysis identified the largely unexplored sequence spaces of these enzyme families. The biochemical characterization of NMOs demonstrated their capabilities to produce various Nω-hydroxylamines, including those previously not known as precursors of N-N bonds. Furthermore, the characterization of cupin/MetRS-like enzymes identified five new hydrazine products with novel combinations of building blocks, including one containing non-amino acid building blocks: 1,3-diaminopropane and putrescine. This study substantially expanded the variety of N-N bond forming pathways mediated by cupin/MetRS-like enzymes.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuto Nakahara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Atina Rizkiya Choirunnisa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kuga Arima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
11
|
Kries H, Trottmann F, Hertweck C. Novel Biocatalysts from Specialized Metabolism. Angew Chem Int Ed Engl 2024; 63:e202309284. [PMID: 37737720 DOI: 10.1002/anie.202309284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Enzymes are increasingly recognized as valuable (bio)catalysts that complement existing synthetic methods. However, the range of biotransformations used in the laboratory is limited. Here we give an overview on the biosynthesis-inspired discovery of novel biocatalysts that address various synthetic challenges. Prominent examples from this dynamic field highlight remarkable enzymes for protecting-group-free amide formation and modification, control of pericyclic reactions, stereoselective hetero- and polycyclizations, atroposelective aryl couplings, site-selective C-H activations, introduction of ring strain, and N-N bond formation. We also explore unusual functions of cytochrome P450 monooxygenases, radical SAM-dependent enzymes, flavoproteins, and enzymes recruited from primary metabolism, which offer opportunities for synthetic biology, enzyme engineering, directed evolution, and catalyst design.
Collapse
Affiliation(s)
- Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
12
|
Zheng Z, Xiong J, Bu J, Ren D, Lee YH, Yeh YC, Lin CI, Parry R, Guo Y, Liu HW. Reconstitution of the Final Steps in the Biosynthesis of Valanimycin Reveals the Origin of Its Characteristic Azoxy Moiety. Angew Chem Int Ed Engl 2024; 63:e202315844. [PMID: 37963815 PMCID: PMC10843709 DOI: 10.1002/anie.202315844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Valanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine. Subsequent installation of the azoxy group is shown to be catalyzed by the non-heme diiron enzyme VlmB in a reaction in which the N-N single bond in the VlmO/ForJ product is oxidized by four electrons to yield the azoxy group. The catalytic cycle of VlmB appears to begin with a resting μ-oxo diferric complex in VlmB, as supported by Mössbauer spectroscopy. This study also identifies N-(isobutylamino)-d-serine as an alternative substrate for VlmB leading to two azoxy regioisomers. The reactions catalyzed by the kinase VlmJ and the lyase VlmK during the final steps of valanimycin biosynthesis are established as well. The biosynthesis of valanimycin was thus fully reconstituted in vitro using the enzymes VlmO/ForJ, VlmB, VlmJ and VlmK. Importantly, the VlmB-catalyzed reaction represents the first example of enzyme-catalyzed azoxy formation and is expected to proceed by an atypical mechanism.
Collapse
Affiliation(s)
- Ziyang Zheng
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Junling Bu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX-78712, USA
| | - Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Chia-I Lin
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Ronald Parry
- Department of Chemistry, Rice University, Houston, TX-77005, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX-78712, USA
| |
Collapse
|
13
|
Kawai S, Yamada A, Katsuyama Y, Ohnishi Y. Identification of the p-coumaric acid biosynthetic gene cluster in Kutzneria albida: insights into the diazotization-dependent deamination pathway. Beilstein J Org Chem 2024; 20:1-11. [PMID: 38213839 PMCID: PMC10777205 DOI: 10.3762/bjoc.20.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
Recently, we identified the biosynthetic gene cluster of avenalumic acid (ava cluster) and revealed its entire biosynthetic pathway, resulting in the discovery of a diazotization-dependent deamination pathway. Genome database analysis revealed the presence of more than 100 ava cluster-related biosynthetic gene clusters (BGCs) in actinomycetes; however, their functions remained unclear. In this study, we focused on an ava cluster-related BGC in Kutzneria albida (cma cluster), and revealed that it is responsible for p-coumaric acid biosynthesis by heterologous expression of the cma cluster and in vitro enzyme assays using recombinant Cma proteins. The ATP-dependent diazotase CmaA6 catalyzed the diazotization of both 3-aminocoumaric acid and 3-aminoavenalumic acid using nitrous acid in vitro. In addition, the high efficiency of the CmaA6 reaction enabled us to perform a kinetic analysis of AvaA7, which confirmed that AvaA7 catalyzes the denitrification of 3-diazoavenalumic acid in avenalumic acid biosynthesis. This study deepened our understanding of the highly reducing type II polyketide synthase system as well as the diazotization-dependent deamination pathway for the production of avenalumic acid or p-coumaric acid.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akito Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Liu K, Zhang J, Zhang G, Zhang L, Meng Z, Ma L, Zhang W, Xiong W, Zhu Y, Wang B, Zhang C. Deciphering Deoxynybomycin Biosynthesis Reveals Fe(II)/α-Ketoglutarate-Dependent Dioxygenase-Catalyzed Oxazoline Ring Formation and Decomposition. J Am Chem Soc 2023; 145:27886-27899. [PMID: 38055632 DOI: 10.1021/jacs.3c11772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The antibacterial agents deoxynybomycin (DNM) and nybomycin (NM) have a unique tetracyclic structure featuring an angularly fused 4-oxazoline ring. Here, we report the identification of key enzymes responsible for forming the 4-oxazoline ring in Embleya hyalina NBRC 13850 by comparative bioinformatics analysis of the biosynthetic gene clusters encoding structurally similar natural products DNM, deoxynyboquinone (DNQ), and diazaquinomycins (DAQs). The N-methyltransferase DnmS plays a crucial role in catalyzing the N-dimethylation of a tricyclic precursor prenybomycin to generate NM D; subsequently, the Fe(II)/α-ketoglutarate-dependent dioxygenase (Fe/αKGD) DnmT catalyzes the formation of a 4-oxazoline ring from NM D to produce DNM; finally, a second Fe/αKGD DnmU catalyzes the C-12 hydroxylation of DNM to yield NM. Strikingly, DnmT is shown to display unexpected functions to also catalyze the decomposition of the 4-oxazoline ring and the N-demethylation, thereby converting DNM back to prenybomycin, to putatively serve as a manner to control the intracellular yield of DNM. Structure modeling, site-directed mutagenesis, and quantum mechanics calculations provide mechanistic insights into the DnmT-catalyzed reactions. This work expands our understanding of the functional diversity of Fe/αKGDs in natural product biosynthesis.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Meng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Weiliang Xiong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
15
|
Shi J, Zang X, Zhao Z, Shen Z, Li W, Zhao G, Zhou J, Du YL. Conserved Enzymatic Cascade for Bacterial Azoxy Biosynthesis. J Am Chem Soc 2023; 145:27131-27139. [PMID: 38018127 DOI: 10.1021/jacs.3c12018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Azoxy compounds exhibit a wide array of biological activities and possess distinctive chemical properties. Although there has been considerable interest in the biosynthetic mechanisms of azoxy metabolites, the enzymatic basis responsible for azoxy bond formation has remained largely enigmatic. In this study, we unveil the enzyme cascade that constructs the azoxy bond in valanimycin biosynthesis. Our research demonstrates that a pair of metalloenzymes, comprising a membrane-bound hydrazine synthase and a nonheme diiron azoxy synthase, collaborate to convert an unstable pathway intermediate to an azoxy product through a hydrazine-azo-azoxy pathway. Additionally, by characterizing homologues of this enzyme pair from other azoxy metabolite pathways, we propose that this two-enzyme cascade could represent a conserved enzymatic strategy for azoxy bond formation in bacteria. These findings provide significant mechanistic insights into biological N-N bond formation and should facilitate the targeted isolation of bioactive azoxy compounds through genome mining.
Collapse
Affiliation(s)
- Jingkun Shi
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Zang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijie Zhao
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhuanglin Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Li
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guiyun Zhao
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiahai Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi-Ling Du
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
16
|
Zhao Y, Liu X, Xiao Z, Zhou J, Song X, Wang X, Hu L, Wang Y, Sun P, Wang W, He X, Lin S, Deng Z, Pan L, Jiang M. O-methyltransferase-like enzyme catalyzed diazo installation in polyketide biosynthesis. Nat Commun 2023; 14:5372. [PMID: 37666836 PMCID: PMC10477347 DOI: 10.1038/s41467-023-41062-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Diazo compounds are rare natural products possessing various biological activities. Kinamycin and lomaiviticin, two diazo natural products featured by the diazobenzofluorene core, exhibit exceptional potency as chemotherapeutic agents. Despite the extensive studies on their biosynthetic gene clusters and the assembly of their polyketide scaffolds, the formation of the characteristic diazo group remains elusive. L-Glutamylhydrazine was recently shown to be the hydrazine donor in kinamycin biosynthesis, however, the mechanism for the installation of the hydrazine group onto the kinamycin scaffold is still unclear. Here we describe an O-methyltransferase-like protein, AlpH, which is responsible for the hydrazine incorporation in kinamycin biosynthesis. AlpH catalyses a unique SAM-independent coupling of L-glutamylhydrazine and polyketide intermediate via a rare Mannich reaction in polyketide biosynthesis. Our discovery expands the catalytic diversity of O-methyltransferase-like enzymes and lays a strong foundation for the discovery and development of novel diazo natural products through genome mining and synthetic biology.
Collapse
Affiliation(s)
- Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Xiangyang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Jie Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Xingyu Song
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, 200438, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Lijun Hu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, Jinan University, 510632, Guangzhou, P. R. China
| | - Ying Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, Jinan University, 510632, Guangzhou, P. R. China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, 200433, Shanghai, P. R. China
| | - Wenning Wang
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, 200438, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China.
| |
Collapse
|
17
|
Shikai Y, Kawai S, Katsuyama Y, Ohnishi Y. In vitro characterization of nonribosomal peptide synthetase-dependent O-(2-hydrazineylideneacetyl)serine synthesis indicates a stepwise oxidation strategy to generate the α-diazo ester moiety of azaserine. Chem Sci 2023; 14:8766-8776. [PMID: 37621439 PMCID: PMC10445470 DOI: 10.1039/d3sc01906c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/02/2023] [Indexed: 08/26/2023] Open
Abstract
Azaserine, a natural product containing a diazo group, exhibits anticancer activity. In this study, we investigated the biosynthetic pathway to azaserine. The putative azaserine biosynthetic gene (azs) cluster, which contains 21 genes, including those responsible for hydrazinoacetic acid (HAA) synthesis, was discovered using bioinformatics analysis of the Streptomyces fragilis genome. Azaserine was produced by the heterologous expression of the azs cluster in Streptomyces albus. In vitro enzyme assays using recombinant Azs proteins revealed the azaserine biosynthetic pathway as follows. AzsSPTF and carrier protein (CP) AzsQ are used to synthesize the 2-hydrazineylideneacetyl (HDA) moiety attached to AzsQ from HAA. AzsD transfers the HDA moiety to the C-terminal CP domain of AzsN. The heterocyclization (Cy) domain of the nonribosomal peptide synthetase AzsO synthesizes O-(2-hydrazineylideneacetyl)serine (HDA-Ser) attached to its CP domain from l-serine and HDA moiety-attached AzsN. The thioesterase AzsB hydrolyzes it to yield HDA-Ser, which appears to be converted to azaserine by oxidation. Bioinformatics analysis of the Cy domain of AzsO showed that it has a conserved DxxxxD motif; however, two conserved amino acid residues (Thr and Asp) important for heterocyclization are substituted for Asn. Site-directed mutagenesis of two Asp residues in the DxxxxD motif (D193 and D198) and two substituted Asn residues (N414 and N447) indicated that these four residues are important for ester bond synthesis. These results showed that the diazo ester of azasrine is synthesized by the stepwise oxidation of the HAA moiety and provided another strategy to biosynthesize the diazo group.
Collapse
Affiliation(s)
- Yusuke Shikai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
18
|
Kawai S, Yamada A, Du D, Sugai Y, Katsuyama Y, Ohnishi Y. Identification and Analysis of the Biosynthetic Gene Cluster for the Hydrazide-Containing Aryl Polyene Spinamycin. ACS Chem Biol 2023; 18:1821-1828. [PMID: 37498311 DOI: 10.1021/acschembio.3c00248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Natural products containing nitrogen-nitrogen (N-N) bonds have attracted much attention because of their bioactivities and chemical features. Several recent studies have revealed the nitrous acid-dependent N-N bond-forming machinery. However, the catalytic mechanisms of hydrazide synthesis using nitrous acid remain unknown. Herein, we focused on spinamycin, a hydrazide-containing aryl polyene produced by Streptomyces albospinus JCM3399. In the S. albospinus genome, we discovered a putative spinamycin biosynthetic gene (spi) cluster containing genes that encode a type II polyketide synthase and genes for the secondary metabolism-specific nitrous acid biosynthesis pathway. A gene inactivation experiment showed that this cluster was responsible for spinamycin biosynthesis. A feeding experiment using stable isotope-labeled sodium nitrite and analysis of nitrous acid-synthesizing enzymes in vitro strongly indicated that one of the nitrogen atoms of the hydrazide group was derived from nitrous acid. In vitro substrate specificity analysis of SpiA3, which is responsible for loading a starter substrate onto polyketide synthase, indicated that N-N bond formation occurs after starter substrate loading. In vitro analysis showed that the AMP-dependent ligase SpiA7 catalyzes the diazotization of an amino group on a benzene ring without a hydroxy group, resulting in a highly reactive diazo intermediate, which may be the key step in hydrazide group formation. Therefore, we propose the overall biosynthetic pathway of spinamycin. This study expands our knowledge of N-N bond formation in microbial secondary metabolism.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akito Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Danyao Du
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
19
|
Makris C, Leckrone JK, Butler A. Tistrellabactins A and B Are Photoreactive C-Diazeniumdiolate Siderophores from the Marine-Derived Strain Tistrella mobilis KA081020-065. JOURNAL OF NATURAL PRODUCTS 2023; 86:1770-1778. [PMID: 37341506 PMCID: PMC10391617 DOI: 10.1021/acs.jnatprod.3c00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 06/22/2023]
Abstract
The C-diazeniumdiolate group in the amino acid graminine is emerging as a new microbially produced Fe(III) coordinating ligand in siderophores, which is photoreactive. While the few siderophores reported from this class have only been isolated from soil-associated microbes, here we report the first C-diazeniumdiolate siderophores tistrellabactins A and B, isolated from the bioactive marine-derived strain Tistrella mobilis KA081020-065. The structural characterization of the tistrellabactins reveals unique biosynthetic features including an NRPS module iteratively loading glutamine residues and a promiscuous adenylation domain yielding either tistrellabactin A with an asparagine residue or tistrellabactin B with an aspartic acid residue at analogous positions. Beyond the function of scavenging Fe(III) for growth, these siderophores are photoreactive upon irradiation with UV light, releasing the equivalent of nitric oxide (NO) and an H atom from the C-diazeniumdiolate group. Fe(III)-tistrellabactin is also photoreactive, with both the C-diazeniumdiolate and the β-hydroxyaspartate residues undergoing photoreactions, resulting in a photoproduct without the ability to chelate Fe(III).
Collapse
Affiliation(s)
- Christina Makris
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Jamie K. Leckrone
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Alison Butler
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
20
|
Van Cura D, Ng TL, Huang J, Hager H, Hartwig JF, Keasling JD, Balskus EP. Discovery of the Azaserine Biosynthetic Pathway Uncovers a Biological Route for α-Diazoester Production. Angew Chem Int Ed Engl 2023; 62:e202304646. [PMID: 37151182 PMCID: PMC10330308 DOI: 10.1002/anie.202304646] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Azaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α-diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster from Glycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of the aza gene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)-producing enzymes, implicating HYAA in α-diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2-electron oxidation of a hydrazonoacetyl intermediate is required for α-diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α-diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene-mediated biosynthetic transformations in vivo.
Collapse
Affiliation(s)
- Devon Van Cura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jing Huang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Harry Hager
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institute for Advanced Technologies, Shenzhen, China
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
21
|
Rotilio L, Boverio A, Nguyen QT, Mannucci B, Fraaije MW, Mattevi A. A biosynthetic aspartate N-hydroxylase performs successive oxidations by holding intermediates at a site away from the catalytic center. J Biol Chem 2023; 299:104904. [PMID: 37302552 PMCID: PMC10404684 DOI: 10.1016/j.jbc.2023.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Nitrosuccinate is a biosynthetic building block in many microbial pathways. The metabolite is produced by dedicated L-aspartate hydroxylases that use NADPH and molecular oxygen as co-substrates. Here, we investigate the mechanism underlying the unusual ability of these enzymes to perform successive rounds of oxidative modifications. The crystal structure of Streptomyces sp. V2 L-aspartate N-hydroxylase outlines a characteristic helical domain wedged between two dinucleotide-binding domains. Together with NADPH and FAD, a cluster of conserved arginine residues forms the catalytic core at the domain interface. Aspartate is found to bind in an entry chamber that is close to but not in direct contact with the flavin. It is recognized by an extensive H-bond network that explains the enzyme's strict substrate-selectivity. A mutant designed to create steric and electrostatic hindrance to substrate binding disables hydroxylation without perturbing the NADPH oxidase side-activity. Critically, the distance between the FAD and the substrate is far too long to afford N-hydroxylation by the C4a-hydroperoxyflavin intermediate whose formation is confirmed by our work. We conclude that the enzyme functions through a catch-and-release mechanism. L-aspartate slides into the catalytic center only when the hydroxylating apparatus is formed. It is then re-captured by the entry chamber where it waits for the next round of hydroxylation. By iterating these steps, the enzyme minimizes the leakage of incompletely oxygenated products and ensures that the reaction carries on until nitrosuccinate is formed. This unstable product can then be engaged by a successive biosynthetic enzyme or undergoes spontaneous decarboxylation to produce 3-nitropropionate, a mycotoxin.
Collapse
Affiliation(s)
- Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Boverio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Quoc-Thai Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Marco W Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
22
|
Liu W, Lu Z, Yuan S, Jiang X, Xian M. Identification and mechanistic analysis of a bifunctional enzyme involved in the C-N and N-N bond formation. Biochem Biophys Res Commun 2022; 635:154-160. [DOI: 10.1016/j.bbrc.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
23
|
Matsuda K, Arima K, Akiyama S, Yamada Y, Abe Y, Suenaga H, Hashimoto J, Shin-Ya K, Nishiyama M, Wakimoto T. A Natural Dihydropyridazinone Scaffold Generated from a Unique Substrate for a Hydrazine-Forming Enzyme. J Am Chem Soc 2022; 144:12954-12960. [PMID: 35771530 DOI: 10.1021/jacs.2c05269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitrogen-nitrogen bond-containing functional groups are rare, but they are found in a considerably wide class of natural products. Recent clarifications of the biosynthetic routes for such functional groups shed light onto overlooked biosynthetic genes distributed across the bacterial kingdom, highlighting the presence of yet-to-be identified natural products with peculiar functional groups. Here, the genome-mining approach targeting a unique hydrazine-forming gene led to the discovery of actinopyridazinones A (1) and B (2), the first natural products with dihydropyridazinone rings. The structure of actinopyridazinone A was unambiguously established by total synthesis. Biosynthetic studies unveiled the structural diversity of natural hydrazines derived from this family of N-N bond-forming enzymes.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Kuga Arima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoko Akiyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuito Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yo Abe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Makoto Nishiyama
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| |
Collapse
|
24
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
25
|
Phelan RM, Abrahamson MJ, Brown JTC, Zhang RK, Zwick CR. Development of Scalable Processes with Underutilized Biocatalyst Classes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan M. Phelan
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Michael J. Abrahamson
- Operations Science and Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Jesse T. C. Brown
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Ruijie K. Zhang
- Discovery Chemistry and Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Christian R. Zwick
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
26
|
Yahiaoui O, Murray LAM, Zhao F, Moore BS, Houk KN, Liu F, George JH. A Diazo-Hooker Reaction, Inspired by the Biosynthesis of Azamerone. Org Lett 2022; 24:490-495. [PMID: 34994200 PMCID: PMC9006554 DOI: 10.1021/acs.orglett.1c03810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Motivated by the biosynthesis of azamerone, we report the first example of a diazo-Hooker reaction, which involves the formation of a phthalazine ring system by the oxidative rearrangement of a diazoketone. Computational studies indicate that the diazo-Hooker reaction proceeds via an 8π-electrocyclization followed by ring contraction and aromatization. The biosynthetic origin of the diazoketone functional group was also chemically mimicked using a related natural product, naphterpin, as a model system.
Collapse
Affiliation(s)
- Oussama Yahiaoui
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lauren A M Murray
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fengyue Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jonathan H George
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
27
|
Ma GL, Candra H, Pang LM, Xiong J, Ding Y, Tran HT, Low ZJ, Ye H, Liu M, Zheng J, Fang M, Cao B, Liang ZX. Biosynthesis of Tasikamides via Pathway Coupling and Diazonium-Mediated Hydrazone Formation. J Am Chem Soc 2022; 144:1622-1633. [DOI: 10.1021/jacs.1c10369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yichen Ding
- Temasek Life Sciences Laboratory Limited, Research Link, National University of Singapore, 117604 Singapore
| | - Hoa Thi Tran
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Jie Zheng
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
28
|
Zhao G, Peng W, Song K, Shi J, Lu X, Wang B, Du YL. Molecular basis of enzymatic nitrogen-nitrogen formation by a family of zinc-binding cupin enzymes. Nat Commun 2021; 12:7205. [PMID: 34893622 PMCID: PMC8664883 DOI: 10.1038/s41467-021-27523-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022] Open
Abstract
Molecules with a nitrogen-nitrogen (N-N) bond in their structures exhibit various biological activities and other unique properties. A few microbial proteins are recently emerging as dedicated N-N bond forming enzymes in natural product biosynthesis. However, the details of these biochemical processes remain largely unknown. Here, through in vitro biochemical characterization and computational studies, we report the molecular basis of hydrazine bond formation by a family of di-domain enzymes. These enzymes are widespread in bacteria and sometimes naturally exist as two standalone enzymes. We reveal that the methionyl-tRNA synthase-like domain/protein catalyzes ATP-dependent condensation of two amino acids substrates to form a highly unstable ester intermediate, which is subsequently captured by the zinc-binding cupin domain/protein and undergoes redox-neutral intramolecular rearrangement to give the N-N bond containing product. These results provide important mechanistic insights into enzymatic N-N bond formation and should facilitate future development of novel N-N forming biocatalyst.
Collapse
Affiliation(s)
- Guiyun Zhao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Wei Peng
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Kaihui Song
- grid.13402.340000 0004 1759 700XInstitute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Jingkun Shi
- grid.13402.340000 0004 1759 700XInstitute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Xingyu Lu
- grid.494629.40000 0004 8008 9315Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, 310024 Hangzhou, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Yi-Ling Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China. .,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
29
|
Del Rio Flores A, Twigg FF, Du Y, Cai W, Aguirre DQ, Sato M, Dror MJ, Narayanamoorthy M, Geng J, Zill NA, Zhai R, Zhang W. Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Nat Chem Biol 2021; 17:1305-1313. [PMID: 34725510 PMCID: PMC8605994 DOI: 10.1038/s41589-021-00895-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
Triacsins are an intriguing class of specialized metabolites possessing a conserved N-hydroxytriazene moiety not found in any other known natural products. Triacsins are notable as potent acyl-CoA synthetase inhibitors in lipid metabolism, yet their biosynthesis has remained elusive. Through extensive mutagenesis and biochemical studies, we here report all enzymes required to construct and install the N-hydroxytriazene pharmacophore of triacsins. Two distinct ATP-dependent enzymes were revealed to catalyze the two consecutive N-N bond formation reactions, including a glycine-utilizing, hydrazine-forming enzyme (Tri28) and a nitrite-utilizing, N-nitrosating enzyme (Tri17). This study paves the way for future mechanistic interrogation and biocatalytic application of enzymes for N-N bond formation.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Frederick F Twigg
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Daniel Q Aguirre
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | | | - Jiaxin Geng
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nicholas A Zill
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States.
- Chan Zuckerberg Biohub, San Francisco, CA, United States.
| |
Collapse
|
30
|
Robinson SL, Piel J, Sunagawa S. A roadmap for metagenomic enzyme discovery. Nat Prod Rep 2021; 38:1994-2023. [PMID: 34821235 PMCID: PMC8597712 DOI: 10.1039/d1np00006c] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.
Collapse
Affiliation(s)
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | | |
Collapse
|
31
|
Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nat Chem 2021; 13:1186-1191. [PMID: 34650235 PMCID: PMC8879416 DOI: 10.1038/s41557-021-00801-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Synthetic biology enables microbial hosts to produce complex molecules that are otherwise produced by organisms that are rare or difficult to cultivate, but the structures of these molecules are limited to those formed by chemical reactions catalyzed by natural enzymes. The integration of artificial metalloenzymes (ArMs) that catalyze unnatural reactions into metabolic networks could broaden the cache of molecules produced biosynthetically by microorganisms. We report an engineered microbial cell expressing a heterologous biosynthetic pathway, which contains both natural enzymes and ArMs, that produces an unnatural product with high diastereoselectivity. To create this hybrid biosynthetic organism, we engineered Escherichia coli (E. coli) with a heterologous terpene biosynthetic pathway and an ArM containing an iridium-porphyrin complex that was transported into the cell with a heterologous transport system. We improved the diastereoselectivity and product titer of the unnatural product by evolving the ArM and selecting the appropriate gene induction and cultivation conditions. This work shows that synthetic biology and synthetic chemistry can produce, together with natural and artificial enzymes in whole cells, molecules that were previously inaccessible to nature.
Collapse
|
32
|
Valentino H, Sobrado P. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis. Biochemistry 2021; 60:2851-2864. [PMID: 34516102 DOI: 10.1021/acs.biochem.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-hydroxylating monooxygenases (NMOs) are a subclass of flavin-dependent enzymes that hydroxylate nitrogen atoms. Recently, unique NMOs that perform multiple reactions on one substrate molecule have been identified. Fosfazinomycin M (FzmM) is one such NMO, forming nitrosuccinate from aspartate (Asp) in the fosfazinomycin biosynthetic pathway in some Streptomyces sp. This work details the biochemical and kinetic analysis of FzmM. Steady-state kinetic investigation shows that FzmM performs a coupled reaction with Asp (kcat, 3.0 ± 0.01 s-1) forming nitrosuccinate, which can be converted to fumarate and nitrite by the action of FzmL. FzmM displays a 70-fold higher kcat/KM value for NADPH compared to NADH and has a narrow optimal pH range (7.5-8.0). Contrary to other NMOs where the kred is rate-limiting, FzmM exhibits a very fast kred (50 ± 0.01 s-1 at 4 °C) with NADPH. NADPH binds at a KD value of ∼400 μM, and hydride transfer occurs with pro-R stereochemistry. Oxidation of FzmM in the absence of Asp exhibits a spectrum with a shoulder at ∼370 nm, consistent with the formation of a C(4a)-hydroperoxyflavin intermediate, which decays into oxidized flavin and hydrogen peroxide at a rate 100-fold slower than the kcat. This reaction is enhanced in the presence of Asp with a slightly faster kox than the kcat, suggesting that flavin dehydration or Asp oxidation is partially rate limiting. Multiple sequence analyses of FzmM to NMOs identified conserved residues involved in flavin binding but not for NADPH. Additional sequence analysis to related monooxygenases suggests that FzmM shares sequence motifs absent in other NMOs.
Collapse
Affiliation(s)
- Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
33
|
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021; 22:553-571. [PMID: 34083778 PMCID: PMC8364890 DOI: 10.1038/s41576-021-00363-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
All organisms produce specialized organic molecules, ranging from small volatile chemicals to large gene-encoded peptides, that have evolved to provide them with diverse cellular and ecological functions. As natural products, they are broadly applied in medicine, agriculture and nutrition. The rapid accumulation of genomic information has revealed that the metabolic capacity of virtually all organisms is vastly underappreciated. Pioneered mainly in bacteria and fungi, genome mining technologies are accelerating metabolite discovery. Recent efforts are now being expanded to all life forms, including protists, plants and animals, and new integrative omics technologies are enabling the increasingly effective mining of this molecular diversity.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Kawai S, Sugaya Y, Hagihara R, Tomita H, Katsuyama Y, Ohnishi Y. Complete Biosynthetic Pathway of Alazopeptin, a Tripeptide Consisting of Two Molecules of 6-Diazo-5-oxo-l-norleucine and One Molecule of Alanine. Angew Chem Int Ed Engl 2021; 60:10319-10325. [PMID: 33624374 DOI: 10.1002/anie.202100462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/06/2022]
Abstract
DON (6-diazo-5-oxo-l-norleucine), a diazo-containing amino acid, has been studied for more than 60 years as a potent antitumor agent, but its biosynthesis has not been elucidated. Here we reveal the complete biosynthetic pathway of alazopeptin, the tripeptide Ala-DON-DON, which has antitumor activity, by gene inactivation and in vitro analysis of recombinant enzymes. We also established heterologous production of N-acetyl-DON in Streptomyces albus. DON is synthesized from lysine by three enzymes and converted to alazopeptin by five enzymes and one carrier protein. Most interestingly, transmembrane protein AzpL was indicated to catalyze diazotization using 5-oxolysine and nitrous acid as substrates. Site-directed mutagenesis of AzpL indicated that the hydroxy group of Tyr-93 is important for the diazotization. These findings expand our knowledge of the enzymology of N-N bond formation.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuko Sugaya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryota Hagihara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroya Tomita
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
35
|
Kawai S, Sugaya Y, Hagihara R, Tomita H, Katsuyama Y, Ohnishi Y. Complete Biosynthetic Pathway of Alazopeptin, a Tripeptide Consisting of Two Molecules of 6‐Diazo‐5‐oxo‐
l
‐norleucine and One Molecule of Alanine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yuko Sugaya
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Ryota Hagihara
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hiroya Tomita
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
36
|
Chen L, Deng Z, Zhao C. Nitrogen-Nitrogen Bond Formation Reactions Involved in Natural Product Biosynthesis. ACS Chem Biol 2021; 16:559-570. [PMID: 33721494 DOI: 10.1021/acschembio.1c00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Construction of nitrogen-nitrogen bonds involves sophisticated biosynthetic mechanisms to overcome the difficulties inherent to the nucleophilic nitrogen atom of amine. Over the past decade, a multitude of reactions responsible for nitrogen-nitrogen bond formation in natural product biosynthesis have been uncovered. On the basis of the intrinsic properties of these reactions, this Review classifies these reactions into three categories: comproportionation, rearrangement, and radical recombination reactions. To expound the metallobiochemistry underlying nitrogen-nitrogen bond formation reactions, we discuss the enzymatic mechanisms in comparison to well characterized canonical heme-dependent enzymes, mononuclear nonheme iron-dependent enzymes, and nonheme di-iron enzymes. We also illuminate the intermediary properties of nitrogen oxide species NO2-, NO+, and N2O3 in nitrogen-nitrogen bond formation reactions with clues derived from inorganic nitrogen metabolism driven by anammox bacteria and nitrifying bacteria. These multidimentional discussions will provide further insights into the mechanistic proposals of nitrogen-nitrogen bond formation in natural product biosynthesis.
Collapse
Affiliation(s)
- Linyue Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| |
Collapse
|
37
|
Katsuyama Y, Matsuda K. Recent advance in the biosynthesis of nitrogen–nitrogen bond–containing natural products. Curr Opin Chem Biol 2020; 59:62-68. [DOI: 10.1016/j.cbpa.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
38
|
Robinson SL, Terlouw BR, Smith MD, Pidot SJ, Stinear TP, Medema MH, Wackett LP. Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic Nocardia. J Biol Chem 2020; 295:14826-14839. [PMID: 32826316 DOI: 10.1074/jbc.ra120.013528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
Enzymes that cleave ATP to activate carboxylic acids play essential roles in primary and secondary metabolism in all domains of life. Class I adenylate-forming enzymes share a conserved structural fold but act on a wide range of substrates to catalyze reactions involved in bioluminescence, nonribosomal peptide biosynthesis, fatty acid activation, and β-lactone formation. Despite their metabolic importance, the substrates and functions of the vast majority of adenylate-forming enzymes are unknown without tools available to accurately predict them. Given the crucial roles of adenylate-forming enzymes in biosynthesis, this also severely limits our ability to predict natural product structures from biosynthetic gene clusters. Here we used machine learning to predict adenylate-forming enzyme function and substrate specificity from protein sequences. We built a web-based predictive tool and used it to comprehensively map the biochemical diversity of adenylate-forming enzymes across >50,000 candidate biosynthetic gene clusters in bacterial, fungal, and plant genomes. Ancestral phylogenetic reconstruction and sequence similarity networking of enzymes from these clusters suggested divergent evolution of the adenylate-forming superfamily from a core enzyme scaffold most related to contemporary CoA ligases toward more specialized functions including β-lactone synthetases. Our classifier predicted β-lactone synthetases in uncharacterized biosynthetic gene clusters conserved in >90 different strains of Nocardia. To test our prediction, we purified a candidate β-lactone synthetase from Nocardia brasiliensis and reconstituted the biosynthetic pathway in vitro to link the gene cluster to the β-lactone natural product, nocardiolactone. We anticipate that our machine learning approach will aid in functional classification of enzymes and advance natural product discovery.
Collapse
Affiliation(s)
- Serina L Robinson
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA; Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Rochester, Minnesota, USA; Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Barbara R Terlouw
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Megan D Smith
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA; Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sacha J Pidot
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA; Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Rochester, Minnesota, USA; Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
40
|
Zhao G, Guo YY, Yao S, Shi X, Lv L, Du YL. Nitric oxide as a source for bacterial triazole biosynthesis. Nat Commun 2020; 11:1614. [PMID: 32235841 PMCID: PMC7109123 DOI: 10.1038/s41467-020-15420-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
The heterocycle 1,2,3-triazole is among the most versatile chemical scaffolds and has been widely used in diverse fields. However, how nature creates this nitrogen-rich ring system remains unknown. Here, we report the biosynthetic route to the triazole-bearing antimetabolite 8-azaguanine. We reveal that its triazole moiety can be assembled through an enzymatic and non-enzymatic cascade, in which nitric oxide is used as a building block. These results expand our knowledge of the physiological role of nitric oxide synthase in building natural products with a nitrogen-nitrogen bond, and should also inspire the development of synthetic biology approaches for triazole production.
Collapse
Affiliation(s)
- Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuan-Yang Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - Shunyu Yao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xinjie Shi
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
41
|
Sieber S, Daeppen C, Jenul C, Mannancherril V, Eberl L, Gademann K. Biosynthesis and Structure–Activity Relationship Investigations of the Diazeniumdiolate Antifungal Agent Fragin. Chembiochem 2020; 21:1587-1592. [DOI: 10.1002/cbic.201900755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Sieber
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christophe Daeppen
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christian Jenul
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Vidya Mannancherril
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Leo Eberl
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Karl Gademann
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
42
|
González-Granda S, Costin TA, Sá MM, Gotor-Fernández V. Stereoselective Bioreduction of α-diazo-β-keto Esters. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25040931. [PMID: 32093093 PMCID: PMC7070278 DOI: 10.3390/molecules25040931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/01/2023]
Abstract
Diazo compounds are versatile reagents in chemical synthesis and biology due to the tunable reactivity of the diazo functionality and its compatibility with living systems. Much effort has been made in recent years to explore their accessibility and synthetic potential; however, their preparation through stereoselective enzymatic asymmetric synthesis has been scarcely reported in the literature. Alcohol dehydrogenases (ADHs, also called ketoreductases, KREDs) are powerful redox enzymes able to reduce carbonyl compounds in a highly stereoselective manner. Herein, we have developed the synthesis and subsequent bioreduction of nine α-diazo-β-keto esters to give optically active α-diazo-β-hydroxy esters with potential applications as chiral building blocks in chemical synthesis. Therefore, the syntheses of prochiral α-diazo-β-keto esters bearing different substitution patterns at the adjacent position of the ketone group (N3CH2, ClCH2, BrCH2, CH3OCH2, NCSCH2, CH3, and Ph) and in the alkoxy portion of the ester functionality (Me, Et, and Bn), were carried out through the diazo transfer reaction to the corresponding β-keto esters in good to excellent yields (81–96%). After performing the chemical reduction of α-diazo-β-keto esters with sodium borohydride and developing robust analytical conditions to monitor the biotransformations, their bioreductions were exhaustively studied using in-house made Escherichia coli overexpressed and commercially available KREDs. Remarkably, the corresponding α-diazo-β-hydroxy esters were obtained in moderate to excellent conversions (60 to >99%) and high selectivities (85 to >99% ee) after 24 h at 30 °C. The best biotransformations in terms of conversion and enantiomeric excess were successfully scaled up to give the expected chiral alcohols with almost the same activity and selectivity values observed in the enzyme screening experiments.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006 Oviedo, Spain;
| | - Taíssa A. Costin
- Chemistry Department, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil;
| | - Marcus M. Sá
- Chemistry Department, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil;
- Correspondence: (M.M.S.); (V.G.-F.)
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006 Oviedo, Spain;
- Correspondence: (M.M.S.); (V.G.-F.)
| |
Collapse
|
43
|
Sulzbach M, Kunjapur AM. The Pathway Less Traveled: Engineering Biosynthesis of Nonstandard Functional Groups. Trends Biotechnol 2020; 38:532-545. [PMID: 31954529 DOI: 10.1016/j.tibtech.2019.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
The field of metabolic engineering has achieved biochemical routes for conversion of renewable inputs to structurally diverse chemicals, but these products contain a limited number of chemical functional groups. In this review, we provide an overview of the progression of uncommon or 'nonstandard' functional groups from the elucidation of their biosynthetic machinery to the pathway optimization framework of metabolic engineering. We highlight exemplary efforts from primarily the last 5 years for biosynthesis of aldehyde, ester, terminal alkyne, terminal alkene, fluoro, epoxide, nitro, nitroso, nitrile, and hydrazine functional groups. These representative nonstandard functional groups vary in development stage and showcase the pipeline of chemical diversity that could soon appear within customized, biologically produced molecules.
Collapse
Affiliation(s)
- Morgan Sulzbach
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
44
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
45
|
Zhao G, Yao S, Rothchild KW, Liu T, Liu Y, Lian J, He H, Ryan KS, Du Y. The Biosynthetic Gene Cluster of Pyrazomycin—A C‐Nucleoside Antibiotic with a Rare Pyrazole Moiety. Chembiochem 2019; 21:644-649. [DOI: 10.1002/cbic.201900449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Shunyu Yao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Kristina W. Rothchild
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Tengfei Liu
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Yu Liu
- College of Life SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Jiazhang Lian
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Hai‐Yan He
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Katherine S. Ryan
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yi‐Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| |
Collapse
|
46
|
Katsuyama Y. Mining novel biosynthetic machineries of secondary metabolites from actinobacteria. Biosci Biotechnol Biochem 2019; 83:1606-1615. [DOI: 10.1080/09168451.2019.1606700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Secondary metabolites produced by actinobacteria have diverse structures and important biological activities, making them a useful source of drug development. Diversity of the secondary metabolites indicates that the actinobacteria exploit various chemical reactions to construct a structural diversity. Thus, studying the biosynthetic machinery of these metabolites should result in discovery of various enzymes catalyzing interesting and useful reactions. This review summarizes our recent studies on the biosynthesis of secondary metabolites from actinobacteria, including the biosynthesis of nonproteinogenic amino acids used as building blocks of nonribosomal peptides, the type II polyketide synthase catalyzing polyene scaffold, the nitrous acid biosynthetic pathway involved in secondary metabolite biosynthesis and unique cytochrome P450 catalyzing nitrene transfer. These findings expand the knowledge of secondary metabolite biosynthesis machinery and provide useful tools for future bioengineering.
Collapse
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
47
|
Twigg FF, Cai W, Huang W, Liu J, Sato M, Perez TJ, Geng J, Dror MJ, Montanez I, Tong TL, Lee H, Zhang W. Identifying the Biosynthetic Gene Cluster for Triacsins with an N-Hydroxytriazene Moiety. Chembiochem 2019; 20:1145-1149. [PMID: 30589194 PMCID: PMC6590916 DOI: 10.1002/cbic.201800762] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/05/2022]
Abstract
Triacsins are a family of natural products having in common an N-hydroxytriazene moiety not found in any other known secondary metabolites. Though many studies have examined the biological activity of triacsins in lipid metabolism, their biosynthesis has remained unknown. Here we report the identification of the triacsin biosynthetic gene cluster in Streptomyces aureofaciens ATCC 31442. Bioinformatic analysis of the gene cluster led to the discovery of the tacrolimus producer Streptomyces tsukubaensis NRRL 18488 as a new triacsin producer. In addition to targeted gene disruption to identify necessary genes for triacsin production, stable isotope feeding was performed in vivo to advance the understanding of N-hydroxytriazene biosynthesis.
Collapse
Affiliation(s)
- Frederick F Twigg
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wei Huang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Joyce Liu
- Department of Bioengineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Michio Sato
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Tynan J Perez
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Jiaxin Geng
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94704, USA
| | - Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Ismael Montanez
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Tate L Tong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Hyunsu Lee
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
- Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA, 94158, USA
| |
Collapse
|
48
|
Caranto JD. The emergence of nitric oxide in the biosynthesis of bacterial natural products. Curr Opin Chem Biol 2019; 49:130-138. [DOI: 10.1016/j.cbpa.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
|
49
|
Huang C, Yang C, Fang Z, Zhang L, Zhang W, Zhu Y, Zhang C. Discovery of Stealthin Derivatives and Implication of the Amidotransferase FlsN3 in the Biosynthesis of Nitrogen-Containing Fluostatins. Mar Drugs 2019; 17:md17030150. [PMID: 30836614 PMCID: PMC6470958 DOI: 10.3390/md17030150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diazobenzofluorene-containing atypical angucyclines exhibit promising biological activities. Here we report the inactivation of an amidotransferase-encoding gene flsN3 in Micromonospora rosaria SCSIO N160, a producer of fluostatins. Bioinformatics analysis indicated that FlsN3 was involved in the diazo formation. Chemical investigation of the flsN3-inactivation mutant resulted in the isolation of a variety of angucycline aromatic polyketides, including four racemic aminobenzo[b]fluorenes stealthins D–G (9–12) harboring a stealthin C-like core skeleton with an acetone or butanone-like side chain. Their structures were elucidated on the basis of nuclear magnetic resonance (NMR) spectroscopic data and X-ray diffraction analysis. A plausible mechanism for the formation of stealthins D–G (9–12) was proposed. These results suggested a functional role of FlsN3 in the formation/modification of N–N bond-containing fluostatins.
Collapse
Affiliation(s)
- Chunshuai Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Chunfang Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Zhuangjie Fang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
50
|
Hu Z, Awakawa T, Ma Z, Abe I. Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nat Commun 2019; 10:184. [PMID: 30643149 PMCID: PMC6331615 DOI: 10.1038/s41467-018-08093-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Sulfonamide is present in many important drugs, due to its unique chemical and biological properties. In contrast, naturally occurring sulfonamides are rare, and their biosynthetic knowledge are scarce. Here we identify the biosynthetic gene cluster of sulfonamide antibiotics, altemicidin, SB-203207, and SB-203208, from Streptomyces sp. NCIMB40513. The heterologous gene expression and biochemical analyses reveal unique aminoacyl transfer reactions, including the tRNA synthetase-like enzyme SbzA-catalyzed L-isoleucine transfer and the GNAT enzyme SbzC-catalyzed β-methylphenylalanine transfer. Furthermore, we elucidate the biogenesis of 2-sulfamoylacetic acid from L-cysteine, by the collaboration of the cupin dioxygenase SbzM and the aldehyde dehydrogenase SbzJ. Remarkably, SbzM catalyzes the two-step oxidation and decarboxylation of L-cysteine, and the subsequent intramolecular amino group rearrangement leads to N-S bond formation. This detailed analysis of the aminoacyl sulfonamide antibiotics biosynthetic machineries paves the way toward investigations of sulfonamide biosynthesis and its engineering.
Collapse
Affiliation(s)
- Zhijuan Hu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Zhongjun Ma
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|