1
|
Grau BW, Kumar P, Nilsen A, Malhotra SV. Nitrogen-bridgehead compounds: overview, synthesis, and outlook on applications. Org Biomol Chem 2025; 23:1479-1532. [PMID: 39623962 DOI: 10.1039/d4ob01589d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The nitrogen-bridgehead is a common structural motif present in a multitude of natural products. As many of these abundant compounds exhibit biological activities, e.g. against cancer or bacteria, these derivatives are of high interest. While natural products are often associated with problematic characteristics, such as elaborate separation processes, high molecular complexity and limited room for derivatization, purely synthetic approaches can overcome these challenges. Many synthetic procedures have been reported for preparation of artificial nitrogen bridgehead compounds, however, to our surprise only a fraction of these has been tested for their bioactivity. This review is therefore meant to give an overview of existing synthetic methods that provide scaffolds containing bridgehead nitrogen atoms, covering the period from 2000 to 2023. Reviews which cover subunits of this topic are referenced as well.
Collapse
Affiliation(s)
- Benedikt W Grau
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Nilsen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Zhao L, Yang J, Yan K, Cheng X, Xiao Z, Wen J. Electrochemistry-enabled Ir-catalyzed C-H/N-N bond activation facilitates [3+2] annulation of phenidones with propiolates. Chem Commun (Camb) 2025; 61:2079-2082. [PMID: 39791194 DOI: 10.1039/d4cc03124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access N-substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of IrI-IrIII-IrV exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.
Collapse
Affiliation(s)
- LuLu Zhao
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Xingda Cheng
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Ziyang Xiao
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| |
Collapse
|
3
|
Naharwal S, Dinkar Kharat N, Bajaj K, Panda SS, Sakhuja R. Rhodium-Catalyzed Functionalization and Annulation of N-Aryl Phthalazinediones with Allyl Alcohols. Chem Asian J 2024:e202400711. [PMID: 39176435 DOI: 10.1002/asia.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
A direct ortho-Csp2-H acylalkylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with unsubstituted and substituted allyl alcohols is achieved in high yields through Rh(III)-catalyzed C-H bond activation process. The additional employment of Cu(OAc)2⋅2H2O as an oxidant detour the reaction towards [4+1] annulation, producing 13-(2-oxopropyl)-13H-indazolo[1,2-b]phthalazine-6,11-diones in moderate yields. Interestingly, Lawesson's reagent-mediated conditions accomplished intramolecular cyclization in ortho-(formylalkylated)-2,3-dihydrophthalazine-1,4-diones to produce diazepino[1,2-b]phthalazine-diones in moderate yields. Furthermore, allyl alcohol showcased distinct reactivity in presence of different additives to produce ortho-allylated, oxidative and non-oxidative [4+2] annulated products.
Collapse
Affiliation(s)
- Sushma Naharwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Narendra Dinkar Kharat
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Siva S Panda
- Department of Chemistry and Biochemistry & Department, of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
4
|
Rochet LNC, Bahou C, Wojciechowski JP, Koutsopetras I, Britton P, Spears RJ, Thanasi IA, Shao B, Zhong L, Bučar DK, Aliev AE, Porter MJ, Stevens MM, Baker JR, Chudasama V. Use of pyridazinediones for tuneable and reversible covalent cysteine modification applied to peptides, proteins and hydrogels. Chem Sci 2023; 14:13743-13754. [PMID: 38075666 PMCID: PMC10699563 DOI: 10.1039/d3sc04976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 05/02/2024] Open
Abstract
Reversible cysteine modification has been found to be a useful tool for a plethora of applications such as selective enzymatic inhibition, activity-based protein profiling and/or cargo release from a protein or a material. However, only a limited number of reagents display reliable dynamic/reversible thiol modification and, in most cases, many of these reagents suffer from issues of stability, a lack of modularity and/or poor rate tunability. In this work, we demonstrate the potential of pyridazinediones as novel reversible and tuneable covalent cysteine modifiers. We show that the electrophilicity of pyridazinediones correlates to the rates of the Michael addition and retro-Michael deconjugation reactions, demonstrating that pyridazinediones provide an enticing platform for readily tuneable and reversible thiol addition/release. We explore the regioselectivity of the novel reaction and unveil the reason for the fundamental increased reactivity of aryl bearing pyridazinediones by using DFT calculations and corroborating findings with SCXRD. We also applied this fundamental discovery to making more rapid disulfide rebridging agents in related work. We finally provide the groundwork for potential applications in various areas with exemplification using readily functionalised "clickable" pyridazinediones on clinically relevant cysteine and disulfide conjugated proteins, as well as on a hydrogel material.
Collapse
Affiliation(s)
- Léa N C Rochet
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Calise Bahou
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Ilias Koutsopetras
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Phyllida Britton
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Richard J Spears
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Baihao Shao
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Lisha Zhong
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Dejan-Krešimir Bučar
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Abil E Aliev
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Michael J Porter
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
5
|
Tang X, Ding S, Song L, Van der Eycken EV. Transition Metal-Catalyzed C-H Activation/Annulation Approaches to Isoindolo[2,1-b]isoquinolin-5(7H)-ones. CHEM REC 2023; 23:e202200255. [PMID: 36646518 DOI: 10.1002/tcr.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Indexed: 01/18/2023]
Abstract
The isoindolo[2,1-b]isoquinolin-5(7H)-one scaffold is widely present in lots of bioactive natural products. Diverse types of strategies have been developed to construct this scaffold. Recently, transition metal-catalyzed C-H activation/annulation is emerging as a powerful and straightforward method to construct diverse polyheterocycles with high atom- and step-economy. It also has been employed for the synthesis of the isoindolo[2,1-b]isoquinolin-5(7H)-one scaffold. This review provides an introduction to recent advances for the preparation of isoindolo[2,1-b]isoquinolin-5(7H)-ones by using transition metal-catalyzed C-H activation/annulation. It will help researchers to find hidden opportunities and accelerate the discovery of novel transformations based on C-H activation/annulation.
Collapse
Affiliation(s)
- Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Songtao Ding
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198, Moscow, Russia
| |
Collapse
|
6
|
Li H, Shen M, Li B, Zhang X, Fan X. Solvent-Dependent Selective Synthesis of CF 3-Tethered Indazole Derivatives Based on Multiple Bond Activations. Org Lett 2023; 25:720-725. [PMID: 36706028 DOI: 10.1021/acs.orglett.2c04003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Presented herein is a solvent-dependent selective synthesis of CF3-tethered indazole derivatives via the cascade reactions of 1-arylpyrazolidinones with trifluoromethyl ynones. Mechanistically, the formation of the title products involves cascade N-H/C-H/C-N/C-C bond cleavage along with pyrazole ring formation and pyrazolidinone ring opening. For the formation of a pyrazole scaffold, 1-phenylpyrazolidinone acts as a C2N2 synthon, while trifluoromethyl ynone serves as a C1 synthon. Meanwhile, trifluoromethyl ynone also acts as an enol unit to facilitate the ring opening of the pyrazolidinone ring and provide a trifluoropropenoxy fragment via cleavage of the alkynyl triple bond and migration of the cleaved moiety. When the reaction was run in trifluoroethanol instead of DCE, it selectively afforded indazole derivatives tethered with a trifluoroethoxy moiety through in situ transesterification. To our knowledge, this is the first synthesis of CF3-tethered indazole derivatives via concurrent alkynyl activation, pyrazole formation, and CF3 migration.
Collapse
Affiliation(s)
- Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
K 2CO 3-Promoted Formal [3+3]-Cycloaddition of N-Unsubstituted Isatin N, N'-Cyclic Azomethine Imine 1,3-Dipoles with Knoevenagel Adducts. Molecules 2023; 28:molecules28031034. [PMID: 36770700 PMCID: PMC9921867 DOI: 10.3390/molecules28031034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The synthesis of dicyclic spiropyridazine oxoindole derivatives by using [3+3]-cycloaddition of N-unsubstituted isatin N,N'-cyclic azomethine imine 1,3-dipoles was reported. The products bearing two consecutive stereocenters, including spiroquaternary stereocenters in one ring structure, can be effectively obtained in moderate to excellent yields (20-93%) and low to moderate diastereoselectivities (1:9-10:1 dr). The synthesized compounds (>35 examples) were characterized by single-crystal XRD, FTIR, NMR, and mass spectral analysis.
Collapse
|
8
|
Chiu WJ, Chen HR, Barve IJ, Sun CM. Rh(III)-Catalyzed (4 + 1) Annulation of Pyrazol-3-ones with Alkynoates via Ortho-Alkenylation/Cyclization Cascade: Synthesis of Indazole-Fused Pyrazoles. J Org Chem 2022; 87:12109-12114. [PMID: 36005756 DOI: 10.1021/acs.joc.2c01208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile synthesis of novel indazole-fused pyrazoles from pyrazol-3-ones and alkynoate esters/amides via Rh(III)-catalyzed sequential C-H activation/ortho-alkenylation/intramolecular cyclization cascade is reported. The important characteristic of this method is that the resulting scaffold bearing quaternary carbon has been obtained through unusual [4 + 1] rather than expected [4 + 2] addition where alkynoate acts as a one-carbon unit.
Collapse
Affiliation(s)
- Wei-Jung Chiu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300-10, Taiwan, ROC
| | - Hong-Ren Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300-10, Taiwan, ROC
| | - Indrajeet J Barve
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300-10, Taiwan, ROC.,Department of Chemistry, MES Abasaheb Garware College, Pune 411004, India
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300-10, Taiwan, ROC.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan, ROC
| |
Collapse
|
9
|
Naharwal S, Karishma P, Mahesha CK, Bajaj K, Mandal SK, Sakhuja R. Ruthenium-catalyzed (spiro)annulation of N-aryl-2,3-dihydrophthalazine-1,4-diones with quinones to access pentacyclic spiro-indazolones and fused-cinnolines. Org Biomol Chem 2022; 20:4753-4764. [PMID: 35616276 DOI: 10.1039/d2ob00493c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(II)-catalyzed strategies were developed for the [4 + 1] and [4 + 2] oxidative coupling between N-aryl-2,3-dihydrophthalazine-1,4-diones and 1,4-benzoquinones, achieving spiro-indazolones and fused-cinnolines, respectively. Mild, aerobic and external oxidant-free conditions, as well as the use of a ruthenium catalyst for such (spiro)annulative strategies with quinones over reported Rh/Ir-catalyts, underline the rewards of the disclosed protocols.
Collapse
Affiliation(s)
- Sushma Naharwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Chikkagundagal K Mahesha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
10
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
11
|
Autoxidation of 4-Hydrazinylquinolin-2(1 H)-one; Synthesis of Pyridazino[4,3- c:5,6- c']diquinoline-6,7(5 H,8 H)-diones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072125. [PMID: 35408525 PMCID: PMC9000902 DOI: 10.3390/molecules27072125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
An efficient synthesis of a series of pyridazino[4,3-c:5,6-c']diquinolines was achieved via the autoxidation of 4-hydrazinylquinolin-2(1H)-ones. IR, NMR (1H and 13C), mass spectral data, and elemental analysis were used to fit and elucidate the structures of the newly synthesized compounds. X-ray structure analysis and theoretical calculations unequivocally proved the formation of the structure. The possible mechanism for the reaction is also discussed.
Collapse
|
12
|
Lin S, Wang Y, Peng ZH, Li Y, Zhou Z, Ghao H, Yi W. Rh(III)‐Catalysed Switchable and Chemoselective Synthesis of Difluorinated Pyrazolo[1,2‐a]indazolone and Indole Frameworks. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuang Lin
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Yi Wang
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Zhi-Huan Peng
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Yuanyuan Li
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Zhi Zhou
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Hui Ghao
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Wei Yi
- Guangzhou Medical University Sciences & the Fifth Affiliated Hospital Xinzao, Panyu District, Guangzhou, 511436, P.R.China 511436 Guangzhou CHINA
| |
Collapse
|
13
|
Shen M, Li H, Zhang X, Fan X. Rh( iii)-catalyzed simultaneous [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes leading to fluorinated pyridopyrimidinone derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is an efficient and concise synthesis of fluorinated pyridopyrimidinone derivatives through formal [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes.
Collapse
Affiliation(s)
- Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Guo S, Zhang Z, Zhu Y, Wei Z, Zhang X, Fan X. Rh( iii)-catalyzed substrate-dependent oxidative (spiro)annulation of isoquinolones with diazonaphthoquinones: selective access to new spirocyclic and oxepine-fused polycyclic compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient protocol for the selective synthesis of novel isoquinolone-containing spirocyclic and oxepine-fused polycyclic compounds via rhodium(iii)-catalyzed (spiro)annulation of NH-isoquinolones with diazonaphthalen-2(1H)-ones is reported.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
15
|
Gu H, Jin X, Li J, Li H, Liu J. Recent Progress in Transition Metal-Catalyzed C—H Bond Activation of N-Aryl Phthalazinones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
16
|
Choi SM, Kim KD, Park JU, Xuan Z, Kim JH. Pd-catalyzed [3 + 2] cycloaddition of cyclic ketimines and trimethylenemethanes toward N-fused pyrrolidines bearing a quaternary carbon. RSC Adv 2021; 12:785-789. [PMID: 35425099 PMCID: PMC8978666 DOI: 10.1039/d1ra08579d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
A Pd-catalyzed [3 + 2] cycloaddition of N-sulfonyl cyclic ketimines and trimethylenemethanes (TMM) was developed that afforded N-fused pyrrolidines bearing a quaternary carbon. Under mild reaction conditions, structurally diverse N-sulfonyl cyclic imines, including sulfamate-fused aldimines, aryl- or styryl-substituted sulfamate-derived ketimines, and N-sulfonyl cyclic ketimines, were tolerated as reactants, affording N-fused pyrrolidines with high efficiency.
Collapse
Affiliation(s)
- Seoung-Mi Choi
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University 52828 Jinju Korea
| | - Kyeong Do Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University 52828 Jinju Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University 52828 Jinju Korea
| | - Zi Xuan
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University 52828 Jinju Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University 52828 Jinju Korea
| |
Collapse
|
17
|
Sivaraj C, Ramkumar A, Sankaran N, Gandhi T. Transition-metal-catalyzed C-H bond activation/functionalization and annulation of phthalazinones. Org Biomol Chem 2021; 19:8165-8183. [PMID: 34524346 DOI: 10.1039/d1ob01616d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phthalazinones and their higher congeners are commonly prevalent structural motifs that occur in natural products, bioactive molecules, and pharmaceuticals. In the past few decades, transition-metal-catalyzed reactions have received an overwhelming response from organic chemists as challenging organics and heterocycles could be built with ease. Currently, the synthesis of phthalazinones largely depends on transition-metal catalysis, especially by palladium-catalyzed carbonylation. Further, the dominance of transition-metal catalysts was realized from the phthalazinones viewpoint, as nitrogen and oxygen atoms endowed upon them act as directing groups to facilitate diverse C-H activation/functionalization/annulation reactions. This highlight describes the various synthetic methods used to access phthalazinones and functionalize them by reacting with various coupling partners via chelation assistance strategy involving C(sp2)-H/N-H bond activation in the presence of transition-metal (Rh, Ru, Pd, and Ir) catalysts. The mechanisms of sulfonylation, halogenation, acylmethylation, alkylation, and annulation reactions are discussed.
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Alagumalai Ramkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Nagesh Sankaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Liu S, Mao H, Qiao J, Zhang X, Lu Y, Gong X, Jia A, Gu L, Wu X, Zhao F. Temperature‐Controlled Divergent Synthesis of Tetrasubstituted Alkenes and Pyrrolo[1,2‐
a
]indole Derivatives via Iridium Catalysis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Siyu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Hui Mao
- College of Pharmacy Jinhua Polytechnic 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Jin Qiao
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Xiaoning Zhang
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Yangbin Lu
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Aiqiong Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- Zhongshan Institute for Drug Discovery Shanghai Institute of Materia Medica Chinese Academy of Sciences Zhongshan 528400 P. R. China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| |
Collapse
|
19
|
Lin C, Huang W, Huang Y, Dhole S, Sun C. Rhodium‐Catalyzed [4+2] Annulation of N‐Aryl Pyrazolones with Diazo Compounds To Access Pyrazolone‐Fused Cinnolines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chih‐Yu Lin
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
| | - Wan‐Wen Huang
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
| | - Ying‐Ti Huang
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
| | - Sandip Dhole
- Amar Chemistry Pvt. Ltd. G1 A, Ackruti Corporate Park Mumbai 400078 India
| | - Chung‐Ming Sun
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807-08, ROC Taiwan
| |
Collapse
|
20
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System‐Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Chunpu Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Qian Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
21
|
Yin C, Zhong T, Zheng X, Li L, Zhou J, Yu C. Direct synthesis of indazole derivatives via Rh(III)-catalyzed C-H activation of phthalazinones and allenes. Org Biomol Chem 2021; 19:7701-7705. [PMID: 34524333 DOI: 10.1039/d1ob01458g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(III)-catalyzed annulation of phthalazinones or pyridazinones with various allenes was developed, leading to the formation of indazole derivatives bearing a quaternary carbon in moderate to good yields. The targeted products were synthesized via sequential C-H activation and olefin insertion, followed by β-hydride elimination and intramolecular cyclization. The synthetic protocol proceeded efficiently with broad functional group tolerance, high atom efficiency and high Z-selectivity. The practicability of this method was proved by synthetic transformation.
Collapse
Affiliation(s)
- Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
22
|
Karishma P, Mandal SK, Sakhuja R. Rhodium‐Catalyzed Spirocyclization of Maleimide with
N
‐Aryl‐2,3‐dihydrophthalazine‐1,4‐dione to Access Pentacyclic Spiro‐Succinimides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| |
Collapse
|
23
|
Chemo‐ and Regioselective Synthesis of Functionalized 1
H
‐imidazo[1,5‐
a
]indol‐3(2
H
)‐ones via a Redox‐Neutral Rhodium(III)‐Catalyzed [4+1] Annulation between Indoles and Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Xu H, Bian M, Zhou Z, Gao H, Yi W. Mechanistic Insights into the Dual Directing Group-Mediated C-H Functionalization/Annulation via a Hydroxyl Group-Assisted M III-M V-M III Pathway. ACS OMEGA 2021; 6:17642-17650. [PMID: 34278149 PMCID: PMC8280669 DOI: 10.1021/acsomega.1c02183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The experimental investigations on the catalyst [Cp*Rh(OAc)2 and Cp*Ir (OAc)2)]-controlled [3 + 2] and [4 + 2] annulations of oximes with propargyl alcohols have been finished in our previous work and a supposed dual directing group-mediated reaction pathway has been deduced for the chemodivergent product synthesis. However, the detailed interaction modes of the dual directing groups binding with the corresponding metal center to achieve the above observed chemoselectivity remain unclear and even contradict. For instance, the calculational traditional dual direct coupling transition states suggested that both Cp*Rh(OAc)2- and Cp*Ir(OAc)2-catalyzed reactions would generate five-membered indenamines as the dominant products via [3 + 2] annulation. To address this concern, herein, systematic DFT calculations combined with proof-of-concept experiments have been carried out. Accordingly, a novel and more favorable MIII-MV-MIII reaction mechanism, which involves an unprecedented HOAc together with a hydroxyl group-assisted reaction pathway in which the hydroxyl group acts as double effectors for the formation of M-O coordination and [MeO···H···O(CCH3)O···H···O] bonding interactions, was deduced. Taken together, the present results would provide a rational basis for future development of the dual directing group-mediated C-H activation reactions.
Collapse
Affiliation(s)
- Huiying Xu
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengyao Bian
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Zhou
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Hui Gao
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Yi
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
25
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System-Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021; 60:21327-21333. [PMID: 34180572 DOI: 10.1002/anie.202105857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Indexed: 12/13/2022]
Abstract
A catalytic system-controlled divergent reaction strategy was here reported to construct four types of intriguing spiroheterocyclic skeletons from simple and readily available starting materials via a precise chemical bond activation/[n+1] annulation cascade. The tetraazaspiroheterocyclic and trizazspiroheterocyclic scaffolds could be independently constructed by a selective N-N bond activation/[n+1] annulation cascade, a C(sp2 )-H activation/[4+1] annulation and a novel tandem C(sp2 )-H/C(sp3 )-H bond activation/[4+1] annulation strategy, along with a broad scope of substrates, moderate to excellent yields and valuable transformations. More importantly, in these transformations, we are the first time to capture a N-N bond activation and a C(sp3 )-H bond activation of pyrazolidinones under different catalytic system.
Collapse
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Run Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
26
|
Kumar S, Nair AM, Volla CMR. Ru(II)-catalyzed allenylation and sequential annulation of N-tosylbenzamides with propargyl alcohols. Chem Commun (Camb) 2021; 57:6280-6283. [PMID: 34075961 DOI: 10.1039/d1cc01768c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We hereby report Ru(ii)-catalyzed C(sp2)-H allenylation of N-tosylbenzamides to access multi-substituted allenylamides. Furthermore, the allenylamides were converted to the corresponding isoquinolone derivatives via base mediated annulation. The current protocol features low catalyst loading, mild reaction conditions, high functional group compatibility and desired scalability. The unique functionality of the afforded allenes allowed further transformations to expand the practicality of the protocol.
Collapse
Affiliation(s)
- Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
27
|
Hu S, Han X, Xie X, Fang F, Wang Y, Saidahmatov A, Liu H, Wang J. Synthesis of Pyrazolo[1,2‐a]cinnolines
via
Rhodium(III)‐Catalyzed [4+2] Annulation Reactions of Pyrazolidinones with Sulfoxonium Ylides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shulei Hu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xiong Xie
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Feifei Fang
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Yong Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Hong Liu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| | - Jiang Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| |
Collapse
|
28
|
Li Y, Fang F, Zhou J, Li J, Wang R, Liu H, Zhou Y. Rhodium‐Catalyzed C−H Activation/Annulation Cascade of Aryl Oximes and Propargyl Alcohols to Isoquinoline
N
‐Oxides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Li
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Feifei Fang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jiyuan Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| |
Collapse
|
29
|
Veltri L, Amuso R, Petrilli M, Cuocci C, Chiacchio MA, Vitale P, Gabriele B. A Zinc-Mediated Deprotective Annulation Approach to New Polycyclic Heterocycles. Molecules 2021; 26:molecules26082318. [PMID: 33923572 PMCID: PMC8072660 DOI: 10.3390/molecules26082318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
A straightforward approach to new polycyclic heterocycles, 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-ones, is presented. It is based on the ZnCl2-promoted deprotective 6-endo-dig heterocyclization of N-Boc-2-alkynylbenzimidazoles under mild conditions (CH2Cl2, 40 °C for 3 h). The zinc center plays a dual role, as it promotes Boc deprotection (with formation of the tert-butyl carbocation, which can be trapped by substrates bearing a nucleophilic group) and activates the triple bond toward intramolecular nucleophilic attack by the carbamate group. The structure of representative products has been confirmed by X-ray diffraction analysis.
Collapse
Affiliation(s)
- Lucia Veltri
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (M.P.)
- Correspondence: (L.V.); (B.G.); Tel.: +39-0984-492817 (L.V.); +39-0984-492815 (B.G.)
| | - Roberta Amuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (M.P.)
| | - Marzia Petrilli
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (M.P.)
| | - Corrado Cuocci
- Institute of Crystallography, National Research Council, Via Amendola, 122/O, 70126 Bari, Italy;
| | - Maria A. Chiacchio
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Paola Vitale
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (M.P.)
- Correspondence: (L.V.); (B.G.); Tel.: +39-0984-492817 (L.V.); +39-0984-492815 (B.G.)
| |
Collapse
|
30
|
Gogoi K, Bora BR, Borah G, Sarma B, Gogoi S. Synthesis of quaternary carbon-centered indolo[1,2- a]quinazolinones and indazolo[1,2- a]indazolones via C-H functionalization. Chem Commun (Camb) 2021; 57:1388-1391. [PMID: 33438711 DOI: 10.1039/d0cc07419e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented Ru(ii)-catalyzed Csp2-H bond activation and annulation reaction of phenylindazolones with diaryl-substituted alkynes and dialkyl-substituted alkynes provided efficient routes for the construction of all-carbon quaternary-centered indolo[1,2-a]quinazolinones and quaternary carbon-centered indazolo[1,2-a]indazolones, respectively. The indolo[1,2-a]quinazolinones were fomed via Csp2-H activation, alkyne insertion and a 1,2-phenyl shift. Indazolo[1,2-a]indazolones were formed through a cascade reaction via the formation of exocyclic double bonds containing indolo[1,2-a]quinazolinones.
Collapse
Affiliation(s)
- Kongkona Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| | - Bidisha R Bora
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| | - Geetika Borah
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur-784028, India.
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| |
Collapse
|
31
|
Karishma P, Mahesha CK, Mandal SK, Sakhuja R. Reducing-Agent-Free Convergent Synthesis of Hydroxyimino-Decorated Tetracyclic Fused Cinnolines via Rh III-Catalyzed Annulation Using Nitroolefins. J Org Chem 2021; 86:2734-2747. [PMID: 33476149 DOI: 10.1021/acs.joc.0c02729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A mild Rh-catalyzed method was developed for the synthesis of hydroxyimino functionalized indazolo[1,2-a]cinnolines and phthalazino[2,3-a]cinnolines by reductive [4 + 2] annulation between 1-arylindazolones and 2-aryl-2,3-dihydrophthalazine-1,4-diones with varied nitroolefins. The targeted oxime decorated tetracyclic fused cinnolines were synthesized via sequential C-H activation/olefin insertion/reduction under reducing-agent-free conditions.
Collapse
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Chikkagundagal K Mahesha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| |
Collapse
|
32
|
Karishma P, Gogia A, Mandal SK, Sakhuja R. Ruthenium Catalyzed C−H Amidation and Carbocyclization using Isocyanates: An Access to Amidated 2‐phenylphthalazine‐1,4‐diones and Indazolo[1,2‐
b
]phthalazine‐triones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Alisha Gogia
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81 SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81 SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| |
Collapse
|
33
|
Zhao F, Gong X, Lu Y, Qiao J, Jia X, Ni H, Wu X, Zhang X. Additive-Controlled Divergent Synthesis of Tetrasubstituted 1,3-Enynes and Alkynylated 3H-Pyrrolo[1,2-a]indol-3-ones via Rhodium Catalysis. Org Lett 2021; 23:727-733. [DOI: 10.1021/acs.orglett.0c03950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Yangbin Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Hangcheng Ni
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaoning Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
34
|
Sato K, Ogiwara Y, Sakai N. Palladium-Catalyzed [5 + 1] Annulation of Salicylic Acid Derivatives and Propargylic Carbonates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kazuya Sato
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
35
|
Kumar GR, Rajesh M, Lin S, Liu S. Propargylic Alcohols as Coupling Partners in Transition‐Metal‐Catalyzed Arene C−H Activation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000896] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gadi Ranjith Kumar
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| |
Collapse
|
36
|
Wu X, Lu Y, Qiao J, Dai W, Jia X, Ni H, Zhang X, Liu H, Zhao F. Rhodium(III)-Catalyzed C–H Alkenylation/Directing Group Migration for the Regio- and Stereoselective Synthesis of Tetrasubstituted Alkenes. Org Lett 2020; 22:9163-9168. [DOI: 10.1021/acs.orglett.0c03077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Qiao
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| |
Collapse
|
37
|
Cho YS, Kim HD, Kim E, Han SH, Han SB, Mishra NK, Jung YH, Jeong T, Kim IS. Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)‐Catalyzed C−H Functionalization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yong Sun Cho
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hak Do Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Euntaek Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | | | - Young Hoon Jung
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Taejoo Jeong
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
38
|
Zhou J, Zhang L, Chen J, Chen J, Yin C, Yu C. Rh(III)-catalyzed [4+1] annulation and ring opening for the synthesis of pyrazolo[1,2-a] indazole bearing a quaternary carbon. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Wu X, Li P, Lu Y, Qiao J, Zhao J, Jia X, Ni H, Kong L, Zhang X, Zhao F. Rhodium‐Catalyzed Cascade Reactions of Indoles with 4‐Hydroxy‐2‐Alkynoates for the Synthesis of Indole‐Fused Polyheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
- Department of Pharmacology and Chemical BiologyBaylor College of Medicine 1 Baylor Plaza Houston Texas 77030 United States
| | - Pinyi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yangbin Lu
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Jin Qiao
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Jingwei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Hangcheng Ni
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 People's Republic of China
| | - Xiaoning Zhang
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| |
Collapse
|
40
|
Chen J, Zhang L, Zheng X, Zhou J, Zhong T, Yu C. Synthesis of isoquinolinone derivatives by Rh (III)-catalyzed C–H functionalization of N-ethoxybenzamides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1755984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Junyu Chen
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Lei Zhang
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Xiangyun Zheng
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Jian Zhou
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Tianshuo Zhong
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Chuanming Yu
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| |
Collapse
|
41
|
Jeoung D, Kim K, Han SH, Ghosh P, Lee SH, Kim S, An W, Kim HS, Mishra NK, Kim IS. Phthalazinone-Assisted C-H Amidation Using Dioxazolones Under Rh(III) Catalysis. J Org Chem 2020; 85:7014-7023. [PMID: 32275431 DOI: 10.1021/acs.joc.0c00352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The preparation of phthalazinone derivatives is pivotal for their utilization as pharmaceutical agents and other entities. Herein, we report the phthalazinone-assisted carbon-nitrogen bond forming reaction using dioxazolones as robust amidation sources under Rh(III) catalysis. The broad functional group tolerance and complete site-selectivity are observed. Notably, a series of transformations of synthesized compounds into biologically relevant N-heterocycles demonstrates the applicability of the developed methodology.
Collapse
Affiliation(s)
- Daeun Jeoung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kunyoung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Saegun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
42
|
Li T, Yang Z, Song Z, Chauvin R, Cui X. Rhodium(III)-Catalyzed [4+3] Annulation of N-Aryl-pyrazolidinones and Propargylic Acetates: Access to Benzo[c][1,2]diazepines. Org Lett 2020; 22:4078-4082. [DOI: 10.1021/acs.orglett.0c01139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tingfang Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhenyu Song
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Remi Chauvin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
- LCC-CNRS, Université de Toulouse, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
43
|
Kim K, Han SH, Jeoung D, Ghosh P, Kim S, Kim SJ, Ku JM, Mishra NK, Kim IS. Ru(II)-Catalyzed C-H Hydroxyalkylation and Mitsunobu Cyclization of N-Aryl Phthalazinones. J Org Chem 2020; 85:2520-2531. [PMID: 31904238 DOI: 10.1021/acs.joc.9b03228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruthenium(II)-catalyzed C(sp2)-H functionalization of N-aryl phthalazinones with a range of aldehydes and activated ketone is described. Initial formation of hydroxyalkylated phthalazinones and subsequent Mitsunobu cyclization provided facile access to biologically relevant indazolophthalazinones. The utility of this method is highlighted by synthetic transformations into a series of potentially bioactive scaffolds.
Collapse
Affiliation(s)
- Kunyoung Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Daeun Jeoung
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Saegun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Seung Jun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Jin-Mo Ku
- Biocenter , Gyeonggido Business & Science Accelerator (GBSA) , Suwon 16229 , Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - In Su Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
44
|
Bian M, Ma L, Wu M, Wu L, Gao H, Yi W, Zhang C, Zhou Z. Rh(III)-Catalyzed Redox-Neutral [4+2] Annulation for Direct Assembly of 3-Acyl Isoquinolin-1(2H)-ones as Potent Antitumor Agents. Chempluschem 2019; 85:405-410. [PMID: 32118370 DOI: 10.1002/cplu.201900616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022]
Abstract
By virtue of an efficient rhodium(III)-catalyzed redox-neutral C-H activation/ring-opening of a strained ring/[4+2] annulation cascade of N-methoxybenzamides with propargyl cycloalkanols, diverse 3-acyl isoquinolin-1(2H)-ones were directly obtained in good yields and with excellent functional group compatibility. Additionally, their antitumor activities against various human cancer cells including HepG2, A549, MCF-7 and SH-SY5Y were evaluated and the action mechanism of the selected compound was also investigated in vitro. The results revealed that these products possessed a potent efficacy, by inhibiting proliferation and inducing apoptosis in a time-dependent and dose-dependent manner, suggesting that such compounds can serve as promising candidates for anti lung cancer drug discovery.
Collapse
Affiliation(s)
- Mengyao Bian
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Min Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Liexin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Chao Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou, Guangdong, 511436, P. R. China
| |
Collapse
|
45
|
Karishma P, Agarwal DS, Laha B, Mandal SK, Sakhuja R. Ruthenium Catalyzed C-H Acylmethylation of N-Arylphthalazine-1,4-diones with α-Carbonyl Sulfoxonium Ylides: Highway to Diversely Functionalized Phthalazino-fused Cinnolines. Chem Asian J 2019; 14:4274-4288. [PMID: 31613428 DOI: 10.1002/asia.201901250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Indexed: 12/15/2022]
Abstract
A direct ortho-Csp2 -H acylmethylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with α-carbonyl sulfoxonium ylides is achieved through a RuII -catalyzed C-H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl-, heteroaryl-, and alkyl-substituted α-carbonyl sulfoxonium ylides. Thereafter, 2-(ortho-acylmethylaryl)-2,3-dihydrophthalazine-1,4-diones were used as potential starting materials for the expeditious synthesis of 6-arylphthalazino[2,3-a]cinnoline-8,13-diones and 5-acyl-5,6-dihydrophthalazino[2,3-a]cinnoline-8,13-diones under Lawesson's reagent and BF3 ⋅OEt2 mediated conditions, respectively. Of these, the BF3 ⋅OEt2 -mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C-C and C-N bond formations.
Collapse
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Devesh S Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Biswajit Laha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
46
|
Dabiri M, Lehi NF, Osmani C, Movahed SK. Palladium-Catalyzed Direct ortho
-C-H Bond Sulfonylation and Halogenation of Phthalazine-1,4-diones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minoo Dabiri
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| | - Noushin Farajinia Lehi
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| | - Chiman Osmani
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| | - Siyavash Kazemi Movahed
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| |
Collapse
|
47
|
Affiliation(s)
- Hongwei Qian
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Yicheng Bi
- Qingdao University of Science & TechnologySifang Campus 53 Zhengzhou Road Qingdao Shandong 266042 People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| |
Collapse
|
48
|
Ling B, Liu Y, Jiang YY, Liu P, Bi S. Mechanistic Insights into the Ruthenium-Catalyzed [4 + 1] Annulation of Benzamides and Propargyl Alcohols by DFT Studies. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00769] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
49
|
Lian B, Zhang L, Fang DC. A computational study on ruthenium-catalyzed [4 + 1] annulation via C–H activation: the origin of selectivity and the role of the internal oxidizing group. Org Chem Front 2019. [DOI: 10.1039/c9qo00154a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Internal alkynes with β-H and hydroxyl groups lead to the [4 + 1] annulation.
Collapse
Affiliation(s)
- Bing Lian
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Lei Zhang
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling
| | - De-Cai Fang
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
50
|
Yang Z, Song Z, Jie L, Wang L, Cui X. Iridium(iii)-catalysed annulation of pyrazolidinones with propiolates: a facile route to pyrazolo[1,2-a] indazoles. Chem Commun (Camb) 2019; 55:6094-6097. [DOI: 10.1039/c9cc02232e] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium(iii)-catalysed C–H bond activation/subsequent [4+1] cyclization for the synthesis of pyrazolo[1,2-a] indazoles has been developed.
Collapse
Affiliation(s)
- Zi Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Zhenyu Song
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Lianghua Jie
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Lianhui Wang
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| |
Collapse
|