1
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
2
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
3
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
4
|
Luo L, Tang S, Wu J, Jin S, Zhang H. Transition Metal-Free Aromatic C-H, C-N, C-S and C-O Borylation. CHEM REC 2023; 23:e202300023. [PMID: 36850026 DOI: 10.1002/tcr.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Aromatic organoboron compounds are highly valuable building blocks in organic chemistry. They were mainly synthesized through aromatic C-H and C-Het borylation, in which transition metal-catalysis dominate. In the past decade, with increasing attention to sustainable chemistry, numerous transition metal-free C-H and C-Het borylation transformations have been developed and emerged as efficient methods towards the synthesis of aromatic organoboron compounds. This account mainly focuses on recent advances in transition metal-free aromatic C-H, C-N, C-S, and C-O borylation transformations and provides insights to where further developments are required.
Collapse
Affiliation(s)
- Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiangyue Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
5
|
Luu TG, Bui TT, Kim HK. Visible-light-induced one-pot synthesis of sulfonic esters via multicomponent reaction of arylazo sulfones and alcohols. RSC Adv 2022; 12:17499-17504. [PMID: 35765441 PMCID: PMC9190201 DOI: 10.1039/d2ra02656b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023] Open
Abstract
Sulfonic ester is a chemical structure common to many organic molecules, including biologically active compounds. Herein, a visible-light-induced synthetic method to prepare aryl sulfonic ester from arylazo sulfones was developed. In the present study, a one-pot reaction was carried out using arylazo sulfones, DABSO (DABCO·(SO2)2), and alcohols in the presence of CuI as a coupling catalyst and HCl as an additive to yield sulfonic esters via multicomponent reaction. This synthetic method afforded a wide range of sulfonic esters with high yields under mild conditions.
Collapse
Affiliation(s)
- Truong Giang Luu
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Tien Tan Bui
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
6
|
Di Terlizzi L, Scaringi S, Raviola C, Pedrazzani R, Bandini M, Fagnoni M, Protti S. Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. J Org Chem 2022; 87:4863-4872. [PMID: 35316603 PMCID: PMC8981317 DOI: 10.1021/acs.joc.2c00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 01/02/2023]
Abstract
The preparation of symmetrical (hetero)biaryls via arylazo sulfones has been successfully carried out upon visible light irradiation in the presence of PPh3AuCl as the catalyst. The present protocol led to the efficient synthesis of a wide range of target compounds in an organic-aqueous solvent under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simone Scaringi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Department
of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Carlotta Raviola
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
7
|
|
8
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
9
|
Bui TT, Tran VH, Kim H. Visible‐Light‐Mediated Synthesis of Sulfonyl Fluorides from Arylazo Sulfones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tien Tan Bui
- Department of Chemistry Iowa State University Ames Iowa 50011 United States
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Van Hieu Tran
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Hee‐Kwon Kim
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University- Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
10
|
Terlizzi L, Cola I, Raviola C, Fagnoni M, Protti S. Dyedauxiliary Group Strategy for the α-Functionalization of Ketones and Esters. ACS ORGANIC & INORGANIC AU 2021; 1:68-71. [PMID: 36855752 PMCID: PMC9954345 DOI: 10.1021/acsorginorgau.1c00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of α-arylketones and α-arylazo esters has been achieved in mixed organic-aqueous media under photocatalyst- and metal-free conditions via visible light activation of arylazo sulfones in the presence of enol silyl ethers and ketene silyl acetals, respectively. The process took place efficiently and exhibits an excellent tolerance for a broad variety of functional groups.
Collapse
|
11
|
Shiozuka A, Sekine K, Kuninobu Y. Photoinduced Deaminative Borylation of Unreactive Aromatic Amines Enhanced by CO 2. Org Lett 2021; 23:4774-4778. [PMID: 34097411 DOI: 10.1021/acs.orglett.1c01503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, direct unreactive C-N borylation of aromatic amines by a photocatalyst was achieved. The C-N borylation of aromatic amines with bis(pinacolato)diboron (B2pin2) proceeded using a pyrene catalyst under light irradiation to afford desired borylated products and aminoborane as a byproduct. The yield of the borylated product improved under a CO2 atmosphere which probably reduced the inhibitory effect of aminoborane. Mechanistic studies suggested that the C-N bond cleavage and C-B bond formation proceeded via a concerted pathway.
Collapse
Affiliation(s)
- Akira Shiozuka
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
12
|
Firth JD, Hammarback LA, Burden TJ, Eastwood JB, Donald JR, Horbaczewskyj CS, McRobie MT, Tramaseur A, Clark IP, Towrie M, Robinson A, Krieger JP, Lynam JM, Fairlamb IJS. Light- and Manganese-Initiated Borylation of Aryl Diazonium Salts: Mechanistic Insight on the Ultrafast Time-Scale Revealed by Time-Resolved Spectroscopic Analysis. Chemistry 2021; 27:3979-3985. [PMID: 33135818 DOI: 10.1002/chem.202004568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/12/2022]
Abstract
Manganese-mediated borylation of aryl/heteroaryl diazonium salts emerges as a general and versatile synthetic methodology for the synthesis of the corresponding boronate esters. The reaction proved an ideal testing ground for delineating the Mn species responsible for the photochemical reaction processes, that is, involving either Mn radical or Mn cationic species, which is dependent on the presence of a suitably strong oxidant. Our findings are important for a plethora of processes employing Mn-containing carbonyl species as initiators and/or catalysts, which have considerable potential in synthetic applications.
Collapse
Affiliation(s)
- James D Firth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - Thomas J Burden
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - James R Donald
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - Matthew T McRobie
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Adam Tramaseur
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Alan Robinson
- Syngenta Crop Protection AG, Breitenloh 5, 4333, Münchwilen, Switzerland
| | | | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
13
|
Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem Rev 2021; 121:3561-3597. [PMID: 33596057 DOI: 10.1021/acs.chemrev.0c01236] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organoboron compounds have important synthetic value and can be applied in numerous transformations. The development of practical and convenient ways to synthesize boronate esters has thus attracted significant interest. Photoinduced borylations originated from stoichiometric reactions of alkanes and arenes with well-defined metal-boryl complexes. Now, photoredox-initiated borylations, catalyzed by either transition metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this Focus Review, we summarize research on photoinduced borylations, especially emphasizing recent developments and trends. This includes the photoinduced borylation of arenes, alkanes, aryl/alkyl halides, activated carboxylic acids, amines, alcohols, and so on based on transition metal catalysis, metal-free organocatalysis, and direct photochemical activation. We focus on reaction mechanisms involving single-electron transfer, triplet-energy transfer, and other radical processes.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xiao-Ning Guo
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Ji X, Meng L, Xu H, Wang L. Pyridine‐Catalysed Desulfonylative Addition of β‐Diketones to Arylazosulfones via Diaziridine Rearrangement. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Ji
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
| | - Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| |
Collapse
|
15
|
Wang R, Chen F, Jiang L, Yi W. Electrochemical Thiolation and Borylation of Arylazo Sulfones with Thiols and B
2
pin
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rongkang Wang
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
| | - Fangming Chen
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
| | - Lvqi Jiang
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
| | - Wenbin Yi
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute Organic Chemistry Chinese Academy of Sciences Shanghai 200032
| |
Collapse
|
16
|
Zhang X, Mei Y, Li Y, Hu J, Huang D, Bi Y. Visible‐Light‐Mediated Functionalization of Aryl Diazonium Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yaoyao Mei
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yangyang Li
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Jingang Hu
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yicheng Bi
- Qingdao University of Science & Technology
| |
Collapse
|
17
|
Chawla R, Jaiswal S, Dutta PK, Yadav LDS. A photocatalyst-free visible-light-mediated solvent-switchable route to stilbenes/vinyl sulfones from β-nitrostyrenes and arylazo sulfones. Org Biomol Chem 2021; 19:6487-6492. [PMID: 34241618 DOI: 10.1039/d1ob01028j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalyst-free visible-light-mediated reactions, based on the presence of a visible-light-absorbing functional group in the starting material itself in order to exclude the often costly, hazardous, degradable and difficult to remove or recover photoredox catalysts, have been gaining momentum recently. We have employed this approach to develop a denitrative photocatalyst-free visible-light-mediated protocol for the arylation/sulfonylation of β-nitrostyrenes employing arylazo sulfones (bench-stable photolabile compounds) in a switchable solvent-controlled manner. Arylazo sulfones served as the aryl and sulfonyl radical precursors under blue LED irradiation for the synthesis of trans-stilbenes and (E)-vinyl sulfones in CH3CN and dioxane/H2O 2 : 1, respectively. The absence of any metal, photocatalyst and additive; excellent selectivity (E-stereochemistry) and solvent-switchability; and the use of visible light and ambient temperature are the prime assets of the developed method. Moreover, we report the first photocatalyst-free visible light-driven route to synthesize stilbenes and vinyl sulfones from readily available β-nitrostyrenes.
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Lal Dhar S Yadav
- Green Synthesis Lab, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
18
|
Nitti A, Martinelli A, Batteux F, Protti S, Fagnoni M, Pasini D. Blue light driven free-radical polymerization using arylazo sulfones as initiators. Polym Chem 2021. [DOI: 10.1039/d1py00928a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The polymerization of a broad range of electron-poor olefins has been achieved under free-radical conditions by using arylazo sulfones as visible light photoinitiators.
Collapse
Affiliation(s)
- Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Angelo Martinelli
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Fabrice Batteux
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
19
|
Lai D, Ghosh S, Hajra A. Light-induced borylation: developments and mechanistic insights. Org Biomol Chem 2021; 19:4397-4428. [PMID: 33913460 DOI: 10.1039/d1ob00323b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organoboron compounds are very important derivatives because of their profound impacts on medicinal, biological as well as industrial applications. The development of several novel borylation methodologies has achieved momentous interest among synthetic chemists. In this scenario, eco-friendly light-induced borylation is progressively becoming one of the best synthetic tools in recent days to prepare organoboronic ester and acid derivatives based on green chemistry rules. In this article, we have discussed all the UV- and visible-light-induced borylation strategies developed in the last decade. Furthermore, special attention is given to the mechanisms of these borylation methodologies for better understanding of reaction insights.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
20
|
Meng N, Liu Q, Liu R, Lü Y, Zhao X, Wei W. Recent Advances in Arylations and Sulfonylations of Arylazo Sulfones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Liu Q, Lv Y, Liu R, Zhao X, Wang J, Wei W. Catalyst- and additive-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones leading to sulfonylated γ-butyrolactams. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Li A, Li Y, Liu J, Chen J, Lu K, Qiu D, Fagnoni M, Protti S, Zhao X. Metal-Free Trifluoromethylthiolation of Arylazo Sulfones. J Org Chem 2021; 86:1292-1299. [PMID: 33350303 PMCID: PMC8765700 DOI: 10.1021/acs.joc.0c02669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
Abstract
A visible-light-driven protocol for the synthesis of aryl trifluoromethyl thioethers under photocatalyst- and metal-free conditions has been pursued. The procedure exploits the peculiar properties of arylazo sulfones (having electron-rich or electron-poor substituents on the (hetero)aromatic ring) as photochemical precursors of aryl radicals and S-trifluoromethyl arylsulfonothioates as easy-to-handle trifluoromethylthiolating agents.
Collapse
Affiliation(s)
- Ankun Li
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Yuxuan Li
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Junjie Liu
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Jingqi Chen
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Kui Lu
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Di Qiu
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Xia Zhao
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| |
Collapse
|
23
|
Affiliation(s)
- B. Yadagiri
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Komal Daipule
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
| | - Surya Prakash Singh
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
24
|
Jang J, Kim R, Kim DY. Photocatalyst-free photoredox synthesis of diaryl selenides by reaction of diselenides with aryldiazo sulfones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1850796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jihoon Jang
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Rabin Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Dae Young Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
25
|
Liu J, Tian M, Li Y, Shan X, Li A, Lu K, Fagnoni M, Protti S, Zhao X. Metal‐Free Synthesis of Unsymmetrical Aryl Selenides and Tellurides via Visible Light‐Driven Activation of Arylazo Sulfones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Junjie Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Miaomiao Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Yuxuan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Xiwen Shan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Ankun Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Kui Lu
- College of Biotechnology Tianjin University of Science & Technology 300457 Tianjin China
| | - Maurizio Fagnoni
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Xia Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| |
Collapse
|
26
|
Qiu D, Lian C, Mao J, Fagnoni M, Protti S. Dyedauxiliary Groups, an Emerging Approach in Organic Chemistry. The Case of Arylazo Sulfones. J Org Chem 2020; 85:12813-12822. [PMID: 32956584 PMCID: PMC8011925 DOI: 10.1021/acs.joc.0c01895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of research papers that report photocatalyst-free protocols is currently increasing. Among the different approaches proposed, the conversion of a strong C-X bond of a stable substrate into a photolabile reactive moiety has been recently proposed. In this Synopsis, we introduce the so-dubbed dyedauxiliary group strategy by focusing on arylazo sulfones that are bench stable and visible-light responsive derivatives of anilines that have been exploited as precursors of a wide range of intermediates, including carbon-centered radicals as well as aryl cations.
Collapse
Affiliation(s)
- Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
27
|
Affiliation(s)
- Carlotta Raviola
- PhotoGreen Lab University of Pavia Viale Taramelli 10 27100 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab University of Pavia Viale Taramelli 10 27100 Pavia Italy
| |
Collapse
|
28
|
Wang M, Shi Z. Methodologies and Strategies for Selective Borylation of C-Het and C-C Bonds. Chem Rev 2020; 120:7348-7398. [PMID: 32597639 DOI: 10.1021/acs.chemrev.9b00384] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organoborons have emerged as versatile building blocks in organic synthesis to achieve molecular diversity and as carboxylic acid bioisosteres with broad applicability in drug discovery. Traditionally, these compounds are prepared by the substitution of Grignard/lithium reagents with electrophilic boron species and Brown hydroboration. Recent developments have provided new routes for the efficient preparation of organoborons by applying reactions using chemical feedstocks with leaving groups. As compared to the previous methods that used organic halides (I, Br, and Cl), the direct borylation of less reactive C-Het and C-C bonds has become highly important to get efficiency and functional-group compatibility. This Review aims to provide a comprehensive overview of this topic, including (1) C-F bond borylation, (2) C-O bond borylation, (3) C-S bond borylation, (4) C-N bond borylation, and (5) C-C bond borylation. Considerable attention is given to the strategies and mechanisms involved. We expect that this Review will inspire chemists to discover more efficient transformations to expand this field.
Collapse
Affiliation(s)
- Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
29
|
Photocatalyst-free visible light driven synthesis of (E)-vinyl sulfones from cinnamic acids and arylazo sulfones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Visible-light-promoted aerobic oxidative synthesis of β-ketosulfones under photocatalyst-free conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Ito M, Tanaka A, Hatakeyama K, Kano E, Higuchi K, Sugiyama S. One-pot generation of benzynes from 2-aminophenylboronates via a Rh(ii)-catalyzed N–H amination/oxidation/elimination cascade process. Org Chem Front 2020. [DOI: 10.1039/c9qo01115c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh(ii)-Nitrene-mediated N–H amination of 2-aminophenylboronates triggered a cascade of oxidation/elimination processes resulting in the generation of benzynes.
Collapse
Affiliation(s)
- Motoki Ito
- Meiji Pharmaceutical University
- Tokyo 204-8588
- Japan
| | - Arisa Tanaka
- Meiji Pharmaceutical University
- Tokyo 204-8588
- Japan
| | | | - Emi Kano
- Meiji Pharmaceutical University
- Tokyo 204-8588
- Japan
| | | | | |
Collapse
|
32
|
Lu K, Li Q, Xi X, Zhou T, Zhao X. Metal-Free Difluoromethylselenolation of Arylamines Under Visible-Light Photocatalysis. J Org Chem 2019; 85:1224-1231. [DOI: 10.1021/acs.joc.9b02535] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Quan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaolan Xi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ting Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
33
|
Huang C, Feng J, Ma R, Fang S, Lu T, Tang W, Du D, Gao J. Redox-Neutral Borylation of Aryl Sulfonium Salts via C-S Activation Enabled by Light. Org Lett 2019; 21:9688-9692. [PMID: 31755274 DOI: 10.1021/acs.orglett.9b03850] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reported here is a novel photoinduced strategy for the borylation of aryl sulfonium salts using bis(pinacolato)diboron as the boron source. This method exploits redox-neutral aryl sulfoniums to gain access to aryl radicals via C-S bond activation upon photoexcitation under transition-metal-free conditions. Therefore, it grants access to diverse arylboronate esters with good performance from easily available aryl sulfoniums accompanied by mild conditions, operational simplicity, and easy scalability.
Collapse
Affiliation(s)
- Chen Huang
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Jie Feng
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Rui Ma
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Shuaishuai Fang
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Tao Lu
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Weifang Tang
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Ding Du
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Jian Gao
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| |
Collapse
|
34
|
Liu Q, Liu F, Yue H, Zhao X, Li J, Wei W. Photocatalyst‐Free Visible Light‐Induced Synthesis of β‐Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900984] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qishun Liu
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165, Shandong People's Republic of China
| | - Fei Liu
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165, Shandong People's Republic of China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau BiologyChinese Academy of Sciences Qinghai 810008 People's Republic of China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau BiologyChinese Academy of Sciences Qinghai 810008 People's Republic of China
| | - Jiangsheng Li
- School of Chemistry and food EngineeringChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Wei Wei
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165, Shandong People's Republic of China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau BiologyChinese Academy of Sciences Qinghai 810008 People's Republic of China
| |
Collapse
|
35
|
Qiu D, Lian C, Mao J, Ding Y, Liu Z, Wei L, Fagnoni M, Protti S. Visible Light‐Driven, Photocatalyst‐Free Arbuzov‐Like Reaction via Arylazo Sulfones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Yi Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Zerong Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Liyan Wei
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia V. Le Taramelli 12 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia V. Le Taramelli 12 Pavia Italy
| |
Collapse
|
36
|
Friese FW, Studer A. New avenues for C-B bond formation via radical intermediates. Chem Sci 2019; 10:8503-8518. [PMID: 32015798 PMCID: PMC6977546 DOI: 10.1039/c9sc03765a] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
This perspective gives an overview on recent findings in the emerging area of C-radical borylation using diborons as radical trapping reagents. Aryl, vinyl and alkyl boronic esters can be accessed via such an approach under mild conditions. These processes are complementary to established transition metal catalysed cross coupling reactions. Radical borylations can be conducted in the absence of a transition metal but some processes require transition metals as catalysts. It will be shown that various readily available C-radical precursors can be used to run these borylations. For a better understanding of the chemistry, mechanistic discussions are also presented and an outlook on this topic will be provided at the end of the article.
Collapse
Affiliation(s)
- Florian W Friese
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstrasse 40 , 48149 Münster , Germany .
| | - Armido Studer
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstrasse 40 , 48149 Münster , Germany .
| |
Collapse
|
37
|
Cavedon C, Seeberger PH, Pieber B. Photochemical Strategies for Carbon–Heteroatom Bond Formation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901173] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Cristian Cavedon
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
38
|
Lian C, Yue G, Mao J, Liu D, Ding Y, Liu Z, Qiu D, Zhao X, Lu K, Fagnoni M, Protti S. Visible-Light-Driven Synthesis of Arylstannanes from Arylazo Sulfones. Org Lett 2019; 21:5187-5191. [DOI: 10.1021/acs.orglett.9b01788] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Guanglu Yue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Danyang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Yi Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zerong Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Xia Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Kui Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
39
|
Zhang L, Jiao L. Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J Am Chem Soc 2019; 141:9124-9128. [DOI: 10.1021/jacs.9b00917] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Li Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Lei Jiao
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
40
|
Ansari MA, Yadav D, Soni S, Srivastava A, Singh MS. Visible-Light-Mediated Synthesis of 1,2,4-Dithiazolidines from β-Ketothioamides through a Hydrogen-Atom-Transfer Photocatalytic Approach of Eosin Y. J Org Chem 2019; 84:5404-5412. [DOI: 10.1021/acs.joc.9b00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monish A. Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dhananjay Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sonam Soni
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhijeet Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
41
|
Gribanov PS, Chesnokov GA, Dzhevakov PB, Kirilenko NY, Rzhevskiy SA, Ageshina AA, Topchiy MA, Bermeshev MV, Asachenko AF, Nechaev MS. Solvent-free Suzuki and Stille cross-coupling reactions of 4- and 5-halo-1,2,3-triazoles. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Nitelet A, Thevenet D, Schiavi B, Hardouin C, Fournier J, Tamion R, Pannecoucke X, Jubault P, Poisson T. Copper-Photocatalyzed Borylation of Organic Halides under Batch and Continuous-Flow Conditions. Chemistry 2019; 25:3262-3266. [PMID: 30600852 DOI: 10.1002/chem.201806345] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/25/2022]
Abstract
The copper-photocatalyzed borylation of aryl, heteroaryl, vinyl and alkyl halides (I and Br) was reported. The reaction proceeded using a new heteroleptic Cu complex under irradiation with blue LEDs, giving the corresponding boronic-acid esters in good to excellent yields. The reaction was extended to continuous-flow conditions to allow an easy scale-up. The mechanism of the reaction was studied and a mechanism based on a reductive quenching (CuI /CuI */Cu0 ) was suggested.
Collapse
Affiliation(s)
- Antoine Nitelet
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Damien Thevenet
- Industrial Research Centre-, Oril Industrie, CS 60125, 76210, Bolbec, France
| | - Bruno Schiavi
- Industrial Research Centre-, Oril Industrie, CS 60125, 76210, Bolbec, France
| | - Christophe Hardouin
- Industrial Research Centre-, Oril Industrie, CS 60125, 76210, Bolbec, France
| | - Jean Fournier
- Industrial Research Centre-, Oril Industrie, CS 60125, 76210, Bolbec, France
| | - Rodolphe Tamion
- Industrial Research Centre-, Oril Industrie, CS 60125, 76210, Bolbec, France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Poisson
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
43
|
Ding S, Ma Q, Zhu M, Ren H, Tian S, Zhao Y, Miao Z. Direct Transformation from Arylamines to Aryl Naphthalene-1,8-diamino Boronamides: A Metal-Free Sandmeyer-Type Process. Molecules 2019; 24:molecules24030377. [PMID: 30678144 PMCID: PMC6384809 DOI: 10.3390/molecules24030377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/16/2022] Open
Abstract
A direct metal-free transformation from arylamines to aryl naphthalene-1,8-diamino boronamides, a type of masked boronic acid, has been developed based on Sandmeyer-type reactions. A nonsymmetrical diboron reagent, B(pin)-B(dan), was utilized as the borylating reagent, and the B(dan) moiety was transferred to the aim products selectively. This conversion tolerated a series of functional groups, including chloro, bromo, fluoro, ester, hydroxy, cyano and amide.
Collapse
Affiliation(s)
- Siyi Ding
- Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Qiang Ma
- Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Min Zhu
- Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Huaping Ren
- Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Shaopeng Tian
- Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Yuzhen Zhao
- Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Zongcheng Miao
- Key Laboratory of Organic Polymer Photoelectric Materials, School of Science, Xijing University, Xi'an 710123, Shaanxi, China.
| |
Collapse
|