1
|
Villegas-Menares A, Hansmann YS, Bayas M, Verdugo C, Erazo I, Zuñiga C, Gonzalez I, Galdámez A, Villa L, Natali M, Cabrera AR. Exploring catalytic activity modulations: photoredox catalysis with substituted copper(I)-dipyridylamine derivatives. Dalton Trans 2025; 54:7306-7314. [PMID: 40202459 DOI: 10.1039/d4dt03337j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
In this work, we have successfully synthesized five new heteroleptic copper(I) complexes (C1-5), bearing N,N ligands derived from dipyridylamine and S-BINAP as the P,P auxiliary ligand. All complexes were structurally characterized using NMR, FT-IR, and elemental analysis. Furthermore, the molecular structures of C1, C4, and C5 were determined via X-ray diffraction analysis. The photophysical properties of all complexes were assessed using UV-Vis spectroscopy and spectrofluorometric measurements in dichloromethane solution and the solid state. All complexes displayed absorption bands at lower energies, attributed to spin-allowed MLCT transitions. In degassed dichloromethane solution at room temperature, all complexes exhibited broad luminescence in the visible spectrum, mainly assigned to MLCT/LLCT phosphorescence, with excited state lifetimes in the μs time regime. Besides, all complexes were assessed as photoredox catalysts in chlorosulfonylation and bromonitromethylation reactions of styrene, showing remarkable performances, thus highlighting the privileged role of the dpa ligand for the design of Earth-abundant metal photocatalysts.
Collapse
Affiliation(s)
- Alondra Villegas-Menares
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Yannik Sebastian Hansmann
- Institute for Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Max Bayas
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Camilo Verdugo
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Ignacio Erazo
- Departamento de Ingeniería Mecánica y Metalúrgica, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Cesar Zuñiga
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Iván Gonzalez
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Antonio Galdámez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7500008, Chile
| | - Lucrezia Villa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Alan R Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| |
Collapse
|
2
|
Sekine K, Yue G, Kajiwara J, Wu D, Shiozuka A, Kuninobu Y. Photoinduced Carbamoylarylation of Alkynes with N-Aryl Oxamic Acids. Org Lett 2025; 27:3947-3951. [PMID: 40176465 DOI: 10.1021/acs.orglett.5c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
1,2-Difunctionalization of alkynes is an attractive synthetic protocol, because it can achieve a high step economy and provide various complex organic molecules. This study demonstrates the visible-light-induced carbamoylarylation of terminal alkynes using N-aryl oxamic acids as bifunctional reagents. The transformation involves the addition of carbamoyl radicals to alkenes, resulting in 1,4-aryl migration via C(aryl)-N bond cleavage to afford the corresponding arylacrylamides in moderate to good yields.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Gaofan Yue
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - June Kajiwara
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Di Wu
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Akira Shiozuka
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
3
|
Arora R, Samokhin P, Lautens M. Photoexcited Transition-Metal Catalyzed Carbon-Halogen Bond Formation. Angew Chem Int Ed Engl 2025; 64:e202500929. [PMID: 39984313 DOI: 10.1002/anie.202500929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Transition-metal catalysis has proven useful in facilitating carbon-halogen (C-X) bond formation. Despite the vast number of methodologies reported to furnish these bonds, limitations have remained, warranting continued development. The recent surge of metallaphotoredox-based transformations has provided a novel gateway to bypass these limitations. Through the use of photoexcited species, the formation of C-X bonds arise through new mechanistic pathways, finding alternatives to high reaction temperatures and stoichiometric additives. The discovery of this novel strategy has provided access to molecular space that has not been previously attainable. Herein, we report the recent advances on transition-metal photocatalyzed C-X bond formation, in hopes of easing the synthetic endeavours for chemists in industrial and academic laboratories.
Collapse
Affiliation(s)
- Ramon Arora
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - Philip Samokhin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
4
|
Petek N, Zorko T, Škrinjar M, Grošelj U, Svete J, Kočar D, Štefane B. Copper(I)-Photocatalyzed Addition of Trichloromethanesulfenyl Chloride to Olefinic Compounds. Molecules 2025; 30:661. [PMID: 39942765 PMCID: PMC11821038 DOI: 10.3390/molecules30030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Atom transfer radical addition (ATRA) reactions are essential transformations in organic synthetic chemistry that enable the atom-economic difunctionalization of abundant olefin feedstocks. In this way, a rich chemical space can be opened up by well-planned combinations of simple starting materials. To build an efficient photocatalytic transformation, the reactivity of trichloromethanesulfenyl chloride toward alkenes and alkynes was investigated under photocatalytic Cu(I) reaction conditions. In this study, we found that trichloromethanesulfenyl chloride can be added to a series of olefins (such as styrenes and electron-rich and -poor olefins) in the presence of 1 mol% [Cu(dmp)2]BF4 photocatalyst and blue LED irradiation, producing α-chloro trichloromethylthioethers in good yields. Experimental and theoretical (DFT) mechanistic studies are consistent with the proposed radical chain mechanism of transformation. This study may serve as a valuable reference for the development of new coupling reactions that are economical and highly efficient processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Drago Kočar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Murugesan V, Syam A, Anantharaj GV, Rasappan R. Alkenylation of unactivated alkanes: synthesis of Z-alkenes via dual Co-TBADT catalysis. Chem Commun (Camb) 2024; 60:14049-14052. [PMID: 39526920 DOI: 10.1039/d4cc04651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydroalkylation of terminal alkynes via C-H activation is the most atom-economical and straightforward method for synthesizing alkenes. They remain confined to using C(sp2)-H or activated C(sp3)-H bonds. A chelating group enabled the alkenylation of C(sp3)-H bonds, resulting in E alkenes. Protocols by which alkenylation of unactivated C(sp3)-H bonds occurs without a chelating group via metal-hydride or radical pathways remain unknown. Our cobalt-HAT catalysis achieves the desired Z alkene with excellent regio- and diastereoselectivity via C-H activation.
Collapse
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Anagha Syam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
6
|
Duan MF, Xiao M, Ogundipe OO, Wu XX, Zou JP. Copper-Catalyzed Vicinal Thiocyanosulfonylation of Alkenes and Alkynes. J Org Chem 2024; 89:11558-11566. [PMID: 39082143 DOI: 10.1021/acs.joc.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Efficient copper-catalyzed radical thiocyanosulfonylation of alkenes and alkynes with potassium thiocyanate and sodium phenylsulfinate is described. The reactions provide general and convenient methods toward the synthesis of β-thiocyanoalkyl sulfones and β-thiocyanoalkenyl sulfones, respectively, in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving oxidative generation of sulfonyl radicals and subsequent addition to alkenes followed by Cu-assisted thiocyanation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.
Collapse
Affiliation(s)
- Meng-Fan Duan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Mei Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Olukayode Olamiji Ogundipe
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Xin-Xin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
8
|
Chen P, Tian L, Ji X, Deng GJ, Huang H. Copper-Catalyzed 1,2-Sulfonyletherification of 1,3-Dienes. Org Lett 2024; 26:2939-2944. [PMID: 38602425 DOI: 10.1021/acs.orglett.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A selective three-component 1,2-sulfonyl etherification of aryl 1,3-dienes enabled by copper catalysis to afford biologically interesting alkenyl 1,2-sulfone ether derivatives through C-S and C-O bond formation is described. The protocol proceeds with the sulfonyl chloride and alcohols under simple, mild, and base-free conditions, providing a straightforward route to sulfonylated allyl ether compounds with broad functional group tolerance and excellent chemo- and regioselectivity. Mechanistic studies indicate that the selective alkene difunctionalization includes a key copper-mediated single-electron transfer process.
Collapse
Affiliation(s)
- Pu Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lin Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
9
|
Millward F, Zysman-Colman E. Mechanophotocatalysis: A Generalizable Approach to Solvent-minimized Photocatalytic Reactions for Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202316169. [PMID: 38263796 DOI: 10.1002/anie.202316169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
This proof-of-concept study cements the viability and generality of mechanophotocatalysis, merging mechanochemistry and photocatalysis to enable solvent-minimized photocatalytic reactions. We demonstrate the transmutation of four archetypal solution-state photocatalysis reactions to a solvent-minimized environment driven by the combined actions of milling, light, and photocatalysts. The chlorosulfonylation of alkenes and the pinacol coupling of aldehydes and ketones were conducted under solvent-free conditions with competitive or superior efficiencies to their solution-state analogues. Furthermore, decarboxylative alkylations are shown to function efficiently under solvent-minimized conditions, while the photoinduced energy transfer promoted [2+2] cycloaddition of chalcone experiences a significant initial rate enhancement over its solution-state variant. This work serves as a platform for future discoveries in an underexplored field: validating that solvent-minimized photocatalysis is not only generalizable and competitive with solution-state photocatalysis, but can also offer valuable advantages.
Collapse
Affiliation(s)
- Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
10
|
Glace M, Armstrong C, Puryear N, Bailey C, Moazeni-Pourasil RS, Scott D, Abdelwahed S, Roper TD. An Automated Continuous Synthesis and Isolation for the Scalable Production of Aryl Sulfonyl Chlorides. Molecules 2023; 28:molecules28104213. [PMID: 37241953 DOI: 10.3390/molecules28104213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, a continuous system to produce multi-hundred-gram quantities of aryl sulfonyl chlorides is described. The scheme employs multiple continuous stirred-tank reactors (CSTRs) and a continuous filtration system and incorporates an automated process control scheme. The experimental process outlined is intended to safely produce the desired sulfonyl chloride at laboratory scale. Suitable reaction conditions were first determined using a batch-chemistry design of experiments (DOE) and several isolation methods. The hazards and incompatibilities of the heated chlorosulfonic acid reaction mixture were addressed by careful equipment selection, process monitoring, and automation. The approximations of the CSTR fill levels and pumping performance were measured by real-time data from gravimetric balances, ultimately leading to the incorporation of feedback controllers. The introduction of process automation demonstrated in this work resulted in significant improvements in process setpoint consistency, reliability, and spacetime yield, as demonstrated in medium- and large-scale continuous manufacturing runs.
Collapse
Affiliation(s)
- Matthew Glace
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Cameron Armstrong
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nathan Puryear
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Colin Bailey
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | - Drew Scott
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sherif Abdelwahed
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Thomas D Roper
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
11
|
Renzi P, Azzi E, Ascensio S, Parisotto S, Sordello F, Pellegrino F, Ghigo G, Deagostino A. Inexpensive and bench stable diarylmethylium tetrafluoroborates as organocatalysts in the light mediated hydrosulfonylation of unactivated alkenes. Chem Sci 2023; 14:2721-2734. [PMID: 36908942 PMCID: PMC9993860 DOI: 10.1039/d3sc00182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023] Open
Abstract
In this paper, we present the synthetic potential of diarylmethylium tetrafluoroborates as catalysts for the visible light promoted hydrosulfonylation of unactivated alkenes. For the first time, these salts, which are bench stable and easily preparable on a multi-gram scale, were employed as organocatalysts. Interestingly, a catalyst loading of only 1 mol% allowed sulfone products to be efficiently obtained from good-to-excellent yields with high functional-group tolerance and scalability up to 15 mmol of alkene. The mechanistic study, both experimental and computational, presented here, revealed an alternative mechanism for the formation of the key sulfonyl radical. Indeed, the photoactive species was proved not to be the diarylcarbenium salt itself, but two intermediates, a stable S-C adduct and an ion couple, that were formed after its interaction with sodium benzenesulfinate. Upon absorbing light, the ion couple could reach an excited state with a charge-transfer character which gave the fundamental sulfonyl radical. A PCET (proton-coupled electron transfer) closes the catalytic cycle reforming the diarylcarbenium salt.
Collapse
Affiliation(s)
- Polyssena Renzi
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Emanuele Azzi
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Sylvain Ascensio
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Stefano Parisotto
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Fabrizio Sordello
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Francesco Pellegrino
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Giovanni Ghigo
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| |
Collapse
|
12
|
Hu D, Zhang Y, Li J, Liang K, Xia C. Water-mediated radical C-H tosylation of alkenes with tosyl cyanide. Chem Commun (Camb) 2023; 59:462-465. [PMID: 36519429 DOI: 10.1039/d2cc06101e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The water-mediated tosylation of alkenes with tosyl cyanide was discovered. Experimental investigations revealed that the reaction was initiated by the in situ formation of sulfinyl sulfone in the presence of water. The sulfinyl sulfone species decomposed to a sulfonyl radical and a sulfinyl radical through homolytic fission. The vinyl sulfone was afforded via sequential addition of the alkene to the sulfonyl radical and the sulfinyl radical, followed by β-elimination of a sulfinyl moiety.
Collapse
Affiliation(s)
- Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Jianwei Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| |
Collapse
|
13
|
Petek N, Brodnik H, Reiser O, Štefane B. Copper- and Photoredox-Catalyzed Cascade to Trifluoromethylated Divinyl Sulfones. J Org Chem 2022; 88:6538-6547. [DOI: 10.1021/acs.joc.2c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
15
|
Ruan HL, Deng YX, Li ZJ, Zhao SY. Copper(I)-Catalyzed Three-Component Selenosulfonation of Maleimides with Sulfonyl Hydrazides and Diselenides via Radical Relay. J Org Chem 2022; 87:15661-15669. [PMID: 36317696 DOI: 10.1021/acs.joc.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By employing Cu(CH3CN)4PF6 as the catalyst and tert-butyl hydroperoxide as the oxidant, we realized a three-component radical selenosulfonation of substituted maleimides, sulfonyl hydrazides, and diphenyl diselenides, providing a series of 3,4-selenosulfonylated succinimides in moderate to good yields. This reaction features broad substrate scopes, high functional-group tolerability, and feasibility of gram-scale synthesis, enabling one-step construction of C-SO2 and C-Se bonds under mild reaction conditions. Preliminary mechanistic studies support the free-radical-induced pathway.
Collapse
Affiliation(s)
- Hong-Li Ruan
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Yun-Xia Deng
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zi-Jing Li
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| |
Collapse
|
16
|
Zhang P, Li W, Zhu X, Li Y, Zhao X, Shi S, Zhu F, Lin J, Gao X. Photoredox and Copper‐Catalyzed Sulfonylphosphorothiolation of Alkenes toward β‐Sulfonyl Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Ying Li
- Xinxiang Medical University CHINA
| | | | | | | | | | - Xia Gao
- Xinxiang Medical University CHINA
| |
Collapse
|
17
|
Zhang X, Wang L, Zhu Q. Magnetically recyclable Cu-BTC@Fe 3O 4-catalyzed chlorosulfonylation of vinylarenes. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xin Zhang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, P. R. China
| | - Liang Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, P. R. China
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, P. R. China
| | - Qiaoyong Zhu
- Changzhou Precision Testing Technology Co., LTD, Changzhou, P. R. China
| |
Collapse
|
18
|
Engl S, Reiser O. Copper-photocatalyzed ATRA reactions: concepts, applications, and opportunities. Chem Soc Rev 2022; 51:5287-5299. [PMID: 35703016 DOI: 10.1039/d2cs00303a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atom transfer radical addition (ATRA) reactions are linchpin transformations in synthetic chemistry enabling the atom-economic difunctionalization of alkenes. Thereby a rich chemical space can be accessed through smart combinations of simple starting materials. Originally, these reactions required toxic and hazardous radical initiators or harsh thermal activation and thus, the recent resurgence and dramatic evolution of photocatalysis appeared as an attractive complement to catalyze such transformations in a mild and energy-efficient manner. Initially, this technique relied primarily on complexes of precious metals, such as ruthenium or iridium, to absorb the visible light. Hence, copper photocatalysis rapidly developed into a powerful alternative, not just from an economic point of view. Originally considered to be disadvantageous as a pathway for deactivation by quenching their excited state, the dynamic nature of Cu-complexes enables them to undergo facile ligand exchange and thus opens up special opportunities for transformations utilizing their inner-coordination sphere. Moreover, the ability of Cu(II), representing a persistent radical, to capture incipient radicals offers the possibility to access heretofore elusive two-component, but also three-component, ATRA reactions, not feasible with ruthenium or iridium catalysts. In this regard, the idea of using Cu(I)-substrate assemblies as active photocatalysts is an emerging field to achieve such 3-component coupling reactions even under enantioselective control, which is reflected by an increasing number of reports being covered in this review.
Collapse
Affiliation(s)
- Sebastian Engl
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Oliver Reiser
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
19
|
Paderina A, Melnikov A, Slavova S, Sizov V, Gurzhiy V, Petrovskii S, Luginin M, Levin O, Koshevoy I, Grachova E. The Tail Wags the Dog: The Far Periphery of the Coordination Environment Manipulates the Photophysical Properties of Heteroleptic Cu(I) Complexes. Molecules 2022; 27:2250. [PMID: 35408648 PMCID: PMC9000333 DOI: 10.3390/molecules27072250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this work we show, using the example of a series of [Cu(Xantphos)(N^N)]+ complexes (N^N being substituted 5-phenyl-bipyridine) with different peripheral N^N ligands, that substituents distant from the main action zone can have a significant effect on the physicochemical properties of the system. By using the C≡C bond on the periphery of the coordination environment, three hybrid molecular systems with -Si(CH3)3, -Au(PR3), and -C2HN3(CH2)C10H7 fragments were produced. The Cu(I) complexes thus obtained demonstrate complicated emission behaviour, which was investigated by spectroscopic, electrochemical, and computational methods in order to understand the mechanism of energy transfer. It was found that the -Si(CH3)3 fragment connected to the peripheral C≡C bond changes luminescence to long-lived intra-ligand phosphorescence, in contrast to MLCT phosphorescence or TADF. The obtained results can be used for the design of new materials based on Cu(I) complexes with controlled optoelectronic properties on the molecular level, as well as for the production of hybrid systems.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Alexey Melnikov
- Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Sofia Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vladimir Sizov
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Vladislav Gurzhiy
- Institute of Earth Sciences, St. Petersburg University, 199034 St. Petersburg, Russia;
| | - Stanislav Petrovskii
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Maksim Luginin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Oleg Levin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Igor Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland;
| | - Elena Grachova
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| |
Collapse
|
20
|
Ruan HL, Ma YL, Man KX, Zhao SY. Transition-Metal-Free Radical-Triggered Hydrosulfonylation and Disulfonylation Reaction of Substituted Maleimides with Sulfonyl Hydrazides. J Org Chem 2022; 87:3762-3769. [PMID: 35168325 DOI: 10.1021/acs.joc.1c02816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A convenient and practical hydrosulfonylation and disulfonylation of substituted maleimides was realized using sulfonyl hydrazides as the sulfur reagent and tert-butyl hydroperoxide as the oxidant. The advantages of the reactions include mild and transition-metal-free reaction conditions, good functional group tolerance, and readily available starting materials. The radical species-induced pathway is also demonstrated by mechanistic studies.
Collapse
Affiliation(s)
- Hong-Li Ruan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Yi-Lin Ma
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Ke-Xin Man
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
21
|
Lv Y, Han W, Pu W, Xie J, Wang A, Zhang M, Wang J, Lai J. Copper-Catalyzed Regioselective 1,4-Sulfonylcyanation of 1,3-Enynes with Sulfonyl Chlorides and TMSCN. Org Chem Front 2022. [DOI: 10.1039/d2qo00486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and practical copper-catalyzed reaction for the 1,4-sulfonylcyanation of 1,3-enynes under mild conditions is described. This protocol provides efficient and straightforward access to a variety of 5-sulfonylpenta-2,3-dienenitrile derivatives with...
Collapse
|
22
|
Xia PJ, Liu F, Li SH, Xiao JA. Tunable photocatalytic oxysulfonylation and chlorosulfonylation of α-CF3 alkenes with sulfonyl chlorides. Org Chem Front 2022. [DOI: 10.1039/d1qo01686e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tunable photoredox-catalyzed chlorosulfonylation and oxysulfonylation of α-trifluoromethylstyrenes with sulfonyl chloride were facilely achieved by simply manipulating the photocatalyst and solvent.
Collapse
Affiliation(s)
- Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu Liu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shu-Hui Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, P. R. China
| |
Collapse
|
23
|
Liu L, Wang C. Allyl sulfones construction via copper catalysis from α-methylstyrene derivatives and sulfonyl chlorides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|
25
|
Takano H, You Y, Hayashi H, Harabuchi Y, Maeda S, Mita T. Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene. ACS OMEGA 2021; 6:33846-33854. [PMID: 34926931 PMCID: PMC8675046 DOI: 10.1021/acsomega.1c05102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 05/03/2023]
Abstract
Ethylene, of which about 170 million tons are produced annually worldwide, is a fundamental C2 feedstock that is widely used on an industrial scale for the synthesis of polyethylenes and polyvinylchlorides. Compared to other alkenes, however, the direct use of ethylene for the synthesis of fine chemicals such as pharmaceuticals and agrochemicals is limited, probably due to its small and gaseous character. We, herein, report a new radical difunctionalization strategy of ethylene, aided by quantum chemical calculations. Computationally proposed imidyl and sulfonyl radicals can be introduced into ethylene in the presence of an Ir photocatalyst under irradiation with blue light-emitting diodes (LEDs) (λmax = 440 nm). The present reaction systems led to the selective incorporation of two molecules of ethylene into the substrate, which could be rationally explained by computational analysis.
Collapse
Affiliation(s)
- Hideaki Takano
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yong You
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Harabuchi
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Research
and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Tsuyoshi Mita
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST,
ERATO Maeda Artificial Intelligence in Chemical Reaction Design and
Discovery Project, Kita
10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
26
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
27
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 654] [Impact Index Per Article: 163.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Pramanik M, Mathuri A, Sau S, Das M, Mal P. Chlorinative Cyclization of Aryl Alkynoates Using NCS and 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. Org Lett 2021; 23:8088-8092. [PMID: 34558906 DOI: 10.1021/acs.orglett.1c03100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a chlorinative cyclization, Mes-Acr-MeClO4 acted as a visible-light photocatalyst to obtain 3-chlorocoumarins from aryl alkynoates and N-chlorosuccinimide (NCS). The radical initiated reaction proceeded in a cascading manner via Cl- addition to alkynoates. Next, 5-exo-trig spirocyclization and subsequent 1,2-ester migration led to the formation of C-C and C-Cl bonds.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Monojit Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
29
|
Henriquez MA, Engl S, Jaque P, Gonzalez IA, Natali M, Reiser O, Cabrera AR. Phosphine Evaluation on a New Series of Heteroleptic Copper(I) Photocatalysts with dpa Ligand [Cu(dpa)(
P,P
)]BF
4. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marco A. Henriquez
- Departamento de Química Inorgánica Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Vicuña Mackenna 4860 Macul Santiago Chile
- Institut für Organische Chemie Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Sebastian Engl
- Institut für Organische Chemie Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica Facultad de Ciencias Químicas y Farmacéuticas Universidad de Chile Sergio Livingstone 1007 8380492 Santiago Chile
| | - Ivan A. Gonzalez
- Laboratorio de Química Aplicada Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud Universidad Central de Chile Lord Cochrane 418 Santiago Chile
- Departamento de Química Facultad de Ciencias Naturales, Matemática y del Medio Ambiente Universidad Tecnológica Metropolitana Las Palmeras 3360 Ñuñoa Santiago Chile
| | - Mirco Natali
- Department of Chemical Pharmaceutical and Agricultural Sciences (DOCPAS) University of Ferrara, Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM), sez di Ferrara Via L Borsari 46 44121 Ferrara Italy
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Alan R. Cabrera
- Departamento de Química Inorgánica Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Vicuña Mackenna 4860 Macul Santiago Chile
| |
Collapse
|
30
|
Zhang Y, Wang Q, Yan Z, Ma D, Zheng Y. Visible-light-mediated copper photocatalysis for organic syntheses. Beilstein J Org Chem 2021; 17:2520-2542. [PMID: 34760022 PMCID: PMC8551910 DOI: 10.3762/bjoc.17.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Photoredox catalysis has been applied to renewable energy and green chemistry for many years. Ruthenium and iridium, which can be used as photoredox catalysts, are expensive and scarce in nature. Thus, the further development of catalysts based on these transition metals is discouraged. Alternative photocatalysts based on copper complexes are widely investigated, because they are abundant and less expensive. This review discusses the scope and application of photoinduced copper-based catalysis along with recent progress in this field. The special features and mechanisms of copper photocatalysis and highlights of the applications of the copper complexes to photocatalysis are reported. Copper-photocatalyzed reactions, including alkene and alkyne functionalization, organic halide functionalization, and alkyl C-H functionalization that have been reported over the past 5 years, are included.
Collapse
Affiliation(s)
- Yajing Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Qian Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Zongsheng Yan
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Donglai Ma
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| |
Collapse
|
31
|
Zhang Y, Vessally E. Direct halosulfonylation of alkynes: an overview. RSC Adv 2021; 11:33447-33460. [PMID: 35497552 PMCID: PMC9042254 DOI: 10.1039/d1ra03443j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
The difunctionalization reactions of easily available and inexpensive alkynes have emerged as a reliable, powerful, and step-economical approach for the construction of highly substituted complex alkenes in a one-pot manner, without the need for isolation of intermediates. A wide variety of transformations based on this concept have been successfully achieved for the preparation of synthetically and biologically important β-halovinyl sulfone scaffolds. In this Review, we summarize the recent advances and developments in this field and present a comprehensive overview of halosulfonylation of alkyne substrates with emphasis on the mechanistic features of the reactions.
Collapse
Affiliation(s)
- Yujun Zhang
- School of Chemistry and Environmental Engineering, Hanshan Normal University Chaozhou 521041 Guangdong P. R. China
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
32
|
Lv Y, Luo J, Lin M, He L, Yue H, Liu R, Wei W. Metal‐Free Multi‐Component Sulfur Dioxide Insertion Reaction Leading to Quinoxalin‐2‐One‐Containing Vinyl Sulfones under Visible‐Light Photoredox Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165, Shandong People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences Qinghai 810008 People's Republic of China
| | - Ruisheng Liu
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165, Shandong People's Republic of China
| | - Wei Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences Qinghai 810008 People's Republic of China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165, Shandong People's Republic of China
| |
Collapse
|
33
|
Liu L, Xue P, Chen Q, Wang C. Copper-Catalyzed Heck-Type Couplings of Sulfonyl Chlorides with Olefins: Efficient and Rapid Access to Vinyl Sulfones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
35
|
Li Y, Shen L, Zhou M, Xiong B, Zhang X, Lian Z. Copper-Catalyzed Chloro-Arylsulfonylation of Styrene Derivatives via the Insertion of Sulfur Dioxide. Org Lett 2021; 23:5880-5884. [PMID: 34261319 DOI: 10.1021/acs.orglett.1c02001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-catalyzed four-component chloro-arylsulfonylation of styrene derivatives with aryldiazonium tetrafluoroborates, lithium chloride, and ex-situ generated sulfur dioxide (from SOgen) is presented. This sulfonylation features good functional group compatibility, mild reaction conditions, excellent regioselectivity, and good yields. The robustness and potential of this method have also been successfully demonstrated by a gram-scale reaction. Based on experimental study, a radical-involved mechanism is proposed for the transformation.
Collapse
Affiliation(s)
- Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Lin Shen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Mi Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
36
|
Cruché C, Neiderer W, Collins SK. Heteroleptic Copper-Based Complexes for Energy-Transfer Processes: E → Z Isomerization and Tandem Photocatalytic Sequences. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Corentin Cruché
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| | - William Neiderer
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| | - Shawn K. Collins
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| |
Collapse
|
37
|
Chen D, Lin L, Peng X, Yu X, Yang Z, Liu Y, Zhang X, Li J, Jiang H. Transition-metal-free NaI-mediated reaction of aryl sulfonyl chloride with alkynes: Synthesis of (E)-β-iodovinyl sulfones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Kim W, Kim HY, Oh K. Oxidation Potential-Guided Electrochemical Radical-Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. J Org Chem 2021; 86:15973-15991. [PMID: 34185997 DOI: 10.1021/acs.joc.1c00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation potential-guided electrochemical radical-radical cross-coupling reactions between N-heteroarenes and sodium sulfinates have been established. Thus, simple cyclic voltammetry measurement of substrates predicts the likelihood of successful radical-radical coupling reactions, allowing the simple and direct synthetic access to 3-sulfonylated imidazopyridines and indolizines. The developed electrochemical radical-radical cross-coupling reactions to sulfonylated N-heteroarenes boast the green synthetic nature of the reactions that are oxidant- and metal-free.
Collapse
Affiliation(s)
- Wansoo Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
39
|
Qu C, Song G, Ou J, Tang D, Xu Z, Chen Z. Visible
Light‐Mediated
Construction of Sulfonated Dibenzazepines. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuan‐Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Gui‐Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Jian‐Hua Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Dian‐Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhi‐Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhong‐Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| |
Collapse
|
40
|
Sandoval-Pauker C, Molina-Aguirre G, Pinter B. Status report on copper (I) complexes in photoredox catalysis; photophysical and electrochemical properties and future prospects. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Wang F, Qin J, Zhu S, Chu L. Organic-photoredox-catalyzed three-component sulfonylative pyridylation of styrenes. RSC Adv 2021; 11:142-146. [PMID: 35423008 PMCID: PMC8691066 DOI: 10.1039/d0ra10180j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
An efficient, metal-free protocol for the three-component sulfonylative pyridylation of styrenes via organic-photoredox catalysis is described. This metal-free process enables the direct and selective installation of sulfonyl and heteroaryl motifs and tolerates a wide array of functional groups as well as complex molecular scaffolds, that could complement previous methods and would be of interest in pharmaceutical research. An efficient, metal-free protocol for the three-component sulfonylative pyridylation of alkenes via organic-photoredox catalysis is described.![]()
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
42
|
Liu L, Wang C. Copper-catalyzed redox-neutral regioselective chlorosulfonylation of vinylarenes. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00188d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A simple Cu(OTf)2-catalyzed alkene chlorosulfonylation reaction is developed.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Chemistry
- Jinan University
- Guangzhou
- China
| | | |
Collapse
|
43
|
Peng Z, Yin H, Zhang H, Jia T. Regio- and Stereoselective Photoredox-Catalyzed Atom Transfer Radical Addition of Thiosulfonates to Aryl Alkynes. Org Lett 2020; 22:5885-5889. [DOI: 10.1021/acs.orglett.0c01982] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhiyuan Peng
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Haolin Yin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hui Zhang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Tiezheng Jia
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
44
|
Hell SM, Meyer CF, Misale A, Sap JBI, Christensen KE, Willis MC, Trabanco AA, Gouverneur V. Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angew Chem Int Ed Engl 2020; 59:11620-11626. [PMID: 32286720 PMCID: PMC7384135 DOI: 10.1002/anie.202004070] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Sulfonyl chlorides are inexpensive reactants extensively explored for functionalization, but never considered for radical hydrosulfonylation of alkenes. Herein, we report that tris(trimethylsilyl)silane is an ideal hydrogen atom donor enabling highly effective photoredox-catalyzed hydrosulfonylation of electron-deficient alkenes with sulfonyl chlorides. To increase the generality of this transformation, polarity-reversal catalysis (PRC) was successfully implemented for alkenes bearing alkyl substituents. This late-stage functionalization method tolerates a remarkably wide range of functional groups, is operationally simple, scalable, and allows access to building blocks which are important for medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Sandrine M. Hell
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Claudio F. Meyer
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
- Discovery ChemistryJanssen Research and DevelopmentJarama 75A45007ToledoSpain
| | - Antonio Misale
- Discovery ChemistryJanssen Research and DevelopmentJarama 75A45007ToledoSpain
| | - Jeroen B. I. Sap
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Michael C. Willis
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Andrés A. Trabanco
- Discovery ChemistryJanssen Research and DevelopmentJarama 75A45007ToledoSpain
| | - Véronique Gouverneur
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
45
|
Novel Convenient Approach to 6-, 7-, and 8-Numbered Nitrogen Heterocycles Incorporating Endocyclic Sulfonamide Fragment. Molecules 2020; 25:molecules25122887. [PMID: 32585918 PMCID: PMC7356088 DOI: 10.3390/molecules25122887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/02/2022] Open
Abstract
A new effective method for the construction of nitrogen heterocycles incorporating endocyclic pharmacophore sulfonamide fragment, based on the use of easy accessible N-(chlorosulfonyl)imidoyl chloride, CCl3C(Cl)=NSO2Cl (1), has been developed. Thus, a reaction of 1 as bielectrophilic 1,3-C–N–S reagent with benzylamines that act as 1,4-N–C–C-C binucleophiles, affords respective 1,2,4-benzothiadiazepine-1,1-dioxides. On the other hand, 1 reacts with alkenyl amines with the formation of respective N-alkenyl amidines undergoing Lewis acids initiated intramolecular cyclization to afford derivatives of 1,2,4-thiadiazines and 1,2,4-thiadiazocines bearing a halomethyl group able for further functionalization. The first examples of electrophilic heterocyclization of the chlorosulfonyl group onto an alkenyl or alkynyl group have been revealed.
Collapse
|
46
|
Mastandrea MM, Cañellas S, Caldentey X, Pericàs MA. Decarboxylative Hydroalkylation of Alkynes via Dual Copper-Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marco M. Mastandrea
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
- Departament de Quı́mica Analı́tica i Química Orgànica, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
| | - Xisco Caldentey
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franqués 1-11, 08028, Barcelona, Spain
| |
Collapse
|
47
|
Hell SM, Meyer CF, Misale A, Sap JBI, Christensen KE, Willis MC, Trabanco AA, Gouverneur V. Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sandrine M. Hell
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Claudio F. Meyer
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- Discovery Chemistry Janssen Research and Development Jarama 75A 45007 Toledo Spain
| | - Antonio Misale
- Discovery Chemistry Janssen Research and Development Jarama 75A 45007 Toledo Spain
| | - Jeroen B. I. Sap
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Michael C. Willis
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Andrés A. Trabanco
- Discovery Chemistry Janssen Research and Development Jarama 75A 45007 Toledo Spain
| | - Véronique Gouverneur
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
48
|
Zhong M, Pannecoucke X, Jubault P, Poisson T. Recent advances in photocatalyzed reactions using well-defined copper(I) complexes. Beilstein J Org Chem 2020; 16:451-481. [PMID: 32273907 PMCID: PMC7113551 DOI: 10.3762/bjoc.16.42] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
This review summarizes the recent advances in photocatalysis using copper complexes. Their applications in various reactions, such as ATRA, reduction, oxidation, proton-coupled electron transfer, and energy transfer reactions are discussed.
Collapse
Affiliation(s)
- Mingbing Zhong
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Xavier Pannecoucke
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Philippe Jubault
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Poisson
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
49
|
Liu L, Si M, Han S, Zhang Y, Li J. Copper-catalyzed regioselective sulfonylcyanations of vinylarenes. Org Chem Front 2020. [DOI: 10.1039/d0qo00415d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of copper-catalyzed sulfonylcyanations of vinylarenes with readily accessible arylsulfonyl chlorides and trimethyl cyanide was achieved, providing a streamlined route to various decorated β-sulfonyl nitriles with good regioselectivity and functional group tolerance.
Collapse
Affiliation(s)
- Lei Liu
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Mingran Si
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Shengnan Han
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Yan Zhang
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Jie Li
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
- Key Laboratory of Organic Synthesis of Jiangsu Province
| |
Collapse
|
50
|
Hell SM, Meyer CF, Laudadio G, Misale A, Willis MC, Noël T, Trabanco AA, Gouverneur V. Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. J Am Chem Soc 2019; 142:720-725. [DOI: 10.1021/jacs.9b13071] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandrine M. Hell
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Claudio F. Meyer
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Gabriele Laudadio
- Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14, Helix, 5600 MB Eindhoven, The Netherlands
| | - Antonio Misale
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Michael C. Willis
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Timothy Noël
- Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14, Helix, 5600 MB Eindhoven, The Netherlands
| | - Andrés A. Trabanco
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|