1
|
Ran XY, Wei YF, Wu YL, Dai LR, Xia WL, Zhou PZ, Li K. Xanthene-based NIR organic phototheranostics agents: design strategies and biomedical applications. J Mater Chem B 2025; 13:2952-2977. [PMID: 39898613 DOI: 10.1039/d4tb02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Fluorescence imaging and phototherapy in the near-infrared window (NIR, 650-1700 nm) have attracted great attention for biomedical applications due to their minimal invasiveness, ultra-low photon scattering and high spatial-temporal precision. Among NIR emitting/absorbing organic dyes, xanthene derivatives with controllable molecular structures and optical properties, excellent fluorescence quantum yields, high molar absorption coefficients and remarkable chemical stability have been extensively studied and explored in the field of biological theranostics. The present study was aimed at providing a comprehensive summary of the progress in the development and design strategies of xanthene derivative fluorophores for advanced biological phototheranostics. This study elucidated several representative controllable strategies, including electronic programming strategies, extension of conjugated backbones, and strategic establishment of activatable fluorophores, which enhance the NIR fluorescence of xanthene backbones. Subsequently, the development of xanthene nanoplatforms based on NIR fluorescence for biological applications was detailed. Overall, this work outlines future efforts and directions for improving NIR xanthene derivatives to meet evolving clinical needs. It is anticipated that this contribution could provide a viable reference for the strategic design of organic NIR fluorophores, thereby enhancing their potential clinical practice in future.
Collapse
Affiliation(s)
- Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yuan-Feng Wei
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Ling Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Li-Rui Dai
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wen-Li Xia
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Pei-Zhi Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
2
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
3
|
Gao X, Wang JY, Qin Y, Zhu Y, Liu YJ, Zhou K, Cui M. Design, Synthesis, and In Vivo Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm. Anal Chem 2025; 97:1827-1836. [PMID: 39813602 DOI: 10.1021/acs.analchem.4c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior in vivo imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named VIX-1250 and VIX-1450 were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively. Among them, VIX-1450 demonstrated superior chemo- and photostability even at such long wavelengths. Fluorescent angiography using VIX-1450 micelles enabled high-clarity blood vessel imaging with a remarkable signal-to-noise ratio (SNR), underscoring that the dye's large Stokes shift (352 nm), good brightness (13 M-1 cm-1), and long wavelength served as key factors for high-quality in vivo biosensing. Additionally, VIX-1450 combined with ICG for dual-color imaging achieved near-zero optical cross talk, enabling different organ labeling. This study provides a new direction for the design of long-wavelength organic dyes.
Collapse
Affiliation(s)
- Xi Gao
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin-Yu Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yufei Qin
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yiling Zhu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Ya-Jun Liu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Kaixiang Zhou
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Mengchao Cui
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
4
|
Li S, Dong W, Yang H, Sun P, Luo J, Kong F, Liu K. Xylan-based near-infrared fluorescent probes for monitoring viscosity abnormalities in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8419-8426. [PMID: 39552364 DOI: 10.1039/d4ay01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Viscosity is a crucial indicator of the flow state of proteins, lipids, and polysaccharides in the cell microenvironment and plays a vital role in maintaining normal cellular activities. Abnormal viscosity in any part of the cell constituents can lead to various diseases in the organism. For instance, abnormal mitochondrial viscosity can lead to diseases, such as diabetes and Parkinson's disease. Therefore, real-time monitoring of changes in mitochondrial viscosity in both pathological and physiological environments is relevant. This study describes a water-soluble xylan-based near-infrared fluorescence probe that can detect changes in cellular viscosity. The designed mitochondria-targeting near-infrared fluorophores were introduced into modified xylan to form a viscosity-sensing fluorescent probe (NI-XylV). The fluorescence intensity of NI-XylV at 590 and 670 nm gradually increases with an increase in viscosity caused by environmental changes, enabling the sensitive detection of viscosity changes in mitochondria within living cells. NI-XylV exhibits good photostability, biocompatibility, excellent mitochondrial targeting, and broad application prospects as a bio-based fluorescence probe.
Collapse
Affiliation(s)
- Shen Li
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Wenchan Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - HongKun Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Pengfei Sun
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250109, China
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
5
|
Cron RR, South J, Fortenberry RC. Quantum Chemical Determination of Molecular Dye Candidates for Non-Invasive Bioimaging. Molecules 2024; 29:5860. [PMID: 39769949 PMCID: PMC11677789 DOI: 10.3390/molecules29245860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Molecular dyes containing carbazole-based π bridges and/or julolidine-based donors should be promising molecules for intense SWIR emission with potential application to molecular bioimaging. This study stochastically analyzes the combinations of more than 250 organic dyes constructed within the D-π-D (or equivalently D-B-D) motif. These dyes are built from 22 donors (D) and 14 π bridges (B) and are computationally examined using density functional theory (DFT). The DFT computations provide optimized geometries from which the excited state transition wavelengths and associated oscillator strengths and orbital overlaps are computed. While absorption is used as a stand-in for emission, the longer the absorption wavelength, the longer the emission should be as well for molecules of this type. Nearly 100 novel dyes reported in this work have electronic absorptions at or beyond 1200 nm, opening the possibility for future synthesis and experimental characterization of new molecular dyes with promising properties for bioimaging.
Collapse
Affiliation(s)
- Remy R. Cron
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham, Birmingham, AL 35294, USA;
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA;
| | - Jordan South
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA;
| | - Ryan C. Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
6
|
Yuan Q, Wang M, Ma M, Sun P, Zeng C, Chi W. Computational chemistry facilitates the development of second near-infrared xanthene-based dyes. J Mol Model 2024; 30:385. [PMID: 39467901 DOI: 10.1007/s00894-024-06179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
CONTEXT The dyes in the second near-infrared (NIR-II) region play a crucial role in advancing imaging technology. However, developing small-molecule dyes in NIR-II poses a significant bottleneck to meet the substantial demands in biological fields, which may be attributed to the lack of a rational design strategy. Herein, we designed a series of rhodamine analogs with more red-shifted emission by replacing the oxygen-bridge atom in xanthene-based dyes with -C(CH3)2, -Si(CH3)2, -SO2, and -P(O)Ph. We investigated the frontier molecular orbital, electrostatic potential surfaces, the interaction region indicator, electron-hole distribution, and absorption and emission spectrum of xanthene-based dyes using (time-dependent) density functional theory. Our results demonstrated that these designed small molecular dyes exhibit long emission wavelengths covering 1377-1809 nm. We expected these findings to enable the targeted design of long-wavelength rhodamines. METHOD Geometry optimization of dyes in the ground and excited states was carried out at ω-B97XD/Def2SVP level using Gaussian 16 A03. The absorption and emission wavelengths were evaluated using 13 functional, including TPSSH, O3LYP, B3LYP*, B3LYP, PBE0, MPW1B95, PBE-1/3, PBE38, MPWB1K, MN15, BHandHLYP, ω-B97XD, and CAM-B3LYP.
Collapse
Affiliation(s)
- Qinlin Yuan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Mingyu Wang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Mingyue Ma
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Pingping Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Das S, Rout Y, Poddar M, Alsaleh AZ, Misra R, D'Souza F. Novel Benzothiadiazole-based Donor-Acceptor Systems: Synthesis, Ultrafast Charge Transfer and Separation Dynamics. Chemistry 2024; 30:e202401959. [PMID: 38975973 DOI: 10.1002/chem.202401959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000 nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs. While electrochemical studies identify the moieties involved in these photo-events, orbital delocalization and consequent evidence for the low-energy CT transitions have been achieved from theoretical calculations. Finally, the spectral and temporal responses of different photoproducts are obtained from femtosecond transient absorption studies, which, coupled with spectroelectrochemical data, identify broad NIR signals as CS states of the compounds. All the systems are found to be susceptible to ultrafast (~ps) CT and CS before carrier recombination to the ground state, which is, however, significantly facilitated after incorporation of the secondary TCBD/DCNQ acceptors, leading to faster and thus efficient CT processes, particularly in polar solvents. These findings, including facile CT/CS and broad and intense panchromatic absorption over a wide window of the electromagnetic spectrum, are likely to expand the horizons of BTD-based multimodular CT systems to revolutionize the realm of solar energy conversion and associated photonic applications.
Collapse
Affiliation(s)
- Somnath Das
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Madhurima Poddar
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Ajyal Z Alsaleh
- Chemistry Department, Science College, Imam Abdulrahman bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| |
Collapse
|
8
|
Meador WE, Saucier MA, Tucker MR, Kruse NA, Mobley AJ, Brower CR, Parkin SR, Clark KM, Hammer NI, Tschumper GS, Delcamp JH. Extended shortwave infrared absorbing antiaromatic fluorenium-indolizine chromophores. Chem Sci 2024; 15:12349-12360. [PMID: 39118622 PMCID: PMC11304523 DOI: 10.1039/d4sc00733f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024] Open
Abstract
Shortwave infrared (SWIR, 1000-1700 nm) and extended SWIR (ESWIR, 1700-2700 nm) absorbing materials are valuable for applications including fluorescence based biological imaging, photodetectors, and light emitting diodes. Currently, ESWIR absorbing materials are largely dominated by inorganic semiconductors which are often costly both in raw materials and manufacturing processes used to produce them. The development of ESWIR absorbing organic molecules is thus of interest due to the tunability, solution processability, and low cost of organic materials compared to their inorganic counterparts. Herein, through the combination of heterocyclic indolizine donors and an antiaromatic fluorene core, a series of organic chromophores with absorption maxima ranging from 1470-2088 nm (0.84-0.59 eV) and absorption onsets ranging from 1693-2596 nm (0.73-0.48 eV) are designed and synthesized. The photophysical and electrochemical properties of these chromophores, referred to as FluIndz herein, are described via absorption spectroscopy in 17 solvents, cyclic voltammetry, solution photostability, and transient absorption spectroscopy. Molecular orbital energies, predicted electronic transitions, and antiaromaticity are compared to higher energy absorbing chromophores using density functional theory. The presence of thermally accessible diradical states is demonstrated using density functional theory and EPR spectroscopy, while XRD crystallography confirms structural connectivity and existence as a single molecule. Overall, the FluIndz chromophore scaffold exhibits a rational means to access organic chromophores with extremely narrow optical gaps.
Collapse
Affiliation(s)
- William E Meador
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Matthew A Saucier
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Max R Tucker
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Nicholas A Kruse
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Alexander J Mobley
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Connor R Brower
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Sean R Parkin
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Kensha M Clark
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Nathan I Hammer
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Gregory S Tschumper
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Jared H Delcamp
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| |
Collapse
|
9
|
Duan J, Ouyang X, Jiang Z, Liu Z, Wang X. Near-infrared fluorescent indolizine-dicyanomethylene-4H-pyran hybrids for viscosity imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124330. [PMID: 38685160 DOI: 10.1016/j.saa.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The development of near-infrared organic fluorescent dyes with tunable emission profiles is highly required in the field of biological sensing and imaging. In this paper, we designed and synthesized two organic fluorescent dyes, DCM-1 and DCM-2, through the hybridization of indolizine and dicyanomethylene-4H-pyran skeleton. These two compounds show near-infrared fluorescence with emission maximum approximately at 640 and 680 nm, respectively. Notably, both DCM-1 and DCM-2 have specific responses to viscosity without being interfered by biological relevant species. Cell experiments demonstrate that DCM-1 and DCM-2 can detect dynamic changes in viscosity within living cells, suggesting their potential applications in chemical biology research.
Collapse
Affiliation(s)
- Jinyu Duan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Ouyang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhipeng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Brøndsted F, Stains CI. Xanthene-Based Dyes for Photoacoustic Imaging and their Use as Analyte-Responsive Probes. Chemistry 2024; 30:e202400598. [PMID: 38662806 PMCID: PMC11219268 DOI: 10.1002/chem.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 06/15/2024]
Abstract
Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
11
|
Meador WE, Lin EY, Lim I, Friedman HC, Ndaleh D, Shaik AK, Hammer NI, Yang B, Caram JR, Sletten EM, Delcamp JH. Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imaging. Nat Chem 2024; 16:970-978. [PMID: 38528102 PMCID: PMC11298278 DOI: 10.1038/s41557-024-01464-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/29/2024] [Indexed: 03/27/2024]
Abstract
In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000-1,700 nm) and extended SWIR (ESWIR, 1,700-2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300-1,700 nm and emission onsets of 1,800-2,200 nm. We characterize the fluorophores photophysically (both steady-state and time-resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.
Collapse
Affiliation(s)
- William E Meador
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | - Eric Y Lin
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - Irene Lim
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - Hannah C Friedman
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - David Ndaleh
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | - Abdul K Shaik
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | - Nathan I Hammer
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | | | - Justin R Caram
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - Ellen M Sletten
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA.
| | - Jared H Delcamp
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA.
- Air Force Research Laboratory, Materials and Manufacturing Directorate (RXNC), Wright-Patterson AFB, Dayton, OH, USA.
| |
Collapse
|
12
|
Zeng Y, Qu J, Wu G, Zhao Y, Hao J, Dong Y, Li Z, Shi J, Francisco JS, Zheng X. Two Key Descriptors for Designing Second Near-Infrared Dyes and Experimental Validation. J Am Chem Soc 2024; 146:9888-9896. [PMID: 38546165 DOI: 10.1021/jacs.3c14805] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Second near-infrared (NIR-II) optical imaging technology has emerged as a powerful tool for diagnostic and image-guided surgery due to its higher imaging contrast. However, a general strategy for efficiently designing NIR-II organic molecules is still lacking, because NIR-II dyes are usually difficult to synthesize, which has impeded the rapid development of NIR-II bioprobes. Herein, based on the theoretical calculations on 62 multiaryl-pyrrole (MAP) systems with spectra ranging from the visible to the NIR-II region, a continuous red shift of the spectra toward the NIR-II region could be achieved by adjusting the type and site of substituents on the MAPs. Two descriptors (ΔEgs and μgs) were identified as exhibiting strong correlations with the maximum absorption/emission wavelengths, and the descriptors could be used to predict the emission spectrum in the NIR-II region only if ΔEgs ≤ 2.5 eV and μgs ≤ 22.55 D. The experimental absorption and emission spectra of ten MAPs fully confirmed the theoretical predictions, and biological imaging in vivo of newly designed MAP23-BBT showed high spatial resolution in the NIR-II region in deep tissue angiography. More importantly, both descriptors of ΔEgs and μgs have shown general applicability to most of the reported donor-acceptor-donor-type non-MAP NIR-II dyes. These results have broad implications for the efficient design of NIR-II dyes.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guanghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yeyun Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaman Hao
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Yin R, Brøndsted F, Li L, McAfee JL, Fang Y, Sykes JS, He Y, Grant S, He J, Stains CI. Azaphosphinate Dyes: A Low Molecular Weight Near-Infrared Scaffold for Development of Photoacoustic or Fluorescence Imaging Probes. Chemistry 2024; 30:e202303331. [PMID: 38206848 PMCID: PMC10957303 DOI: 10.1002/chem.202303331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Near-infrared (NIR) dyes are desirable for biological imaging applications including photoacoustic (PA) and fluorescence imaging. Nonetheless, current NIR dyes are often plagued by relatively large molecular weights, poor water solubility, and limited photostability. Herein, we provide the first examples of azaphosphinate dyes which display desirable properties such as low molecular weight, absorption/emission above 750 nm, and remarkable water solubility. In PA imaging, an azaphosphinate dye exhibited a 4.1-fold enhancement in intensity compared to commonly used standards, the ability to multiplex with existing dyes in whole blood, imaging depths of 2.75 cm in a tissue model, and contrast in mice. An improved derivative for fluorescence imaging displayed a >10-fold reduction in photobleaching in water compared to the FDA-approved indocyanine green dye and could be visualized in mice. This new dye class provides a robust scaffold for the development of photoacoustic or NIR fluorescence imaging agents.
Collapse
Affiliation(s)
- Ruwen Yin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Julia L McAfee
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Joshua S Sykes
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Yuchen He
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiang He
- Department of Radioalogy and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Virginia Drug, Discovery Consortium, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Meador WE, Lewis TA, Shaik AK, Wijesinghe KH, Yang B, Dass A, Hammer NI, Delcamp JH. Molecular Engineering of Stabilized Silicon-Rosindolizine Shortwave Infrared Fluorophores. J Org Chem 2024; 89:2825-2839. [PMID: 38334085 DOI: 10.1021/acs.joc.3c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fluorescence-based biological imaging in the shortwave infrared (SWIR, 1000-1700 nm) is an attractive replacement for modern in vivo imaging techniques currently employed in both medical and research settings. Xanthene-based fluorophores containing heterocycle donors have recently emerged as a way to access deep SWIR emitting fluorophores. A concern for xanthene-based SWIR fluorophores though is chemical stability toward ambient nucleophiles due to the high electrophilicity of the cationic fluorophore core. Herein, a series of SWIR emitting silicon-rosindolizine (SiRos) fluorophores with emission maxima >1300 nm (up to 1550 nm) are synthesized. The SiRos fluorophore photophysical properties and chemical stability toward nucleophiles are examined through systematic derivatization of the silicon-core alkyl groups, indolizine donor substitution, and the use of o-tolyl or o-xylyl groups appended to the fluorophore core. The dyes are studied via absorption spectroscopy, steady-state emission spectroscopy, solution-based cyclic voltammetry, time-dependent density functional theory (TD-DFT) computational analysis, X-ray diffraction crystallography, and relative chemical stability over time. Optimal chemical stability is observed via the incorporation of the 2-ethylhexyl silicon substituent and the o-xylyl group to protect the core of the fluorophore.
Collapse
Affiliation(s)
- William E Meador
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Timothy A Lewis
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Abdul K Shaik
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Kalpani Hirunika Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Boqian Yang
- HORIBA Scientific, 20 Knightsbridge Rd, Piscataway, New Jersey 08854, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
- Materials and Manufacturing Directorate (RXNC), Air Force Research Laboratory, 2230 Tenth Street B655, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
15
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
16
|
Yang Y, Liu D, He Z, Zhang X, Liu H, Li X, Ma H, Shi W. Specific Spleen-Accumulated NIR-II Fluorescent Probe for Imaging-Guided Splenic Operation. Adv Healthc Mater 2023; 12:e2300434. [PMID: 36975845 DOI: 10.1002/adhm.202300434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Spleen is a large immune organ in the body. Splenic operations such as splenectomy and intrasplenic injection are of paramount importance for immunological research and splenic diseases. Fluorescence imaging can vastly simplify these operations, but a specific spleen-targeting probe is still unavailable. Herein, the first specific spleen-accumulated fluorescent probe, VIX-S is reported, which fluoresces at 1064 nm and is highly stable. Systematic studies reveal the superior targeting and imaging performance of VIX-S for the spleen in both nude and haired mice. In vivo imaging indicates that the probe can image the morphology of spleen with a signal-background ratio of at least two-fold higher than that of the liver. Moreover, the application of VIX-S in imaging-guided splenic operation, including splenic injury and intrasplenic injection, is demonstrated, which may provide a practice tool for spleen research in the animal model.
Collapse
Affiliation(s)
- Yiqing Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Rajapaksha IN, Wang J, Leszczynski J, Scott CN. Investigating the Effects of Donors and Alkyne Spacer on the Properties of Donor-Acceptor-Donor Xanthene-Based Dyes. Molecules 2023; 28:4929. [PMID: 37446594 DOI: 10.3390/molecules28134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
NIR dyes have become popular for many applications, including biosensing and imaging. For this reason, the molecular switch mechanism of the xanthene dyes makes them useful for in vivo detection and imaging of bioanalytes. Our group has been designing NIR xanthene-based dyes by the donor-acceptor-donor approach; however, the equilibrium between their opened and closed forms varies depending on the donors and spacer. We synthesized donor-acceptor-donor NIR xanthene-based dyes with an alkyne spacer via the Sonogashira coupling reaction to investigate the effects of the alkyne spacer and the donors on the maximum absorption wavelength and the molecular switching (ring opening) process of the dyes. We evaluated the strength and nature of the donors and the presence and absence of the alkyne spacer on the properties of the dyes. It was shown that the alkyne spacer extended the conjugation of the dyes, leading to absorption wavelengths of longer values compared with the dyes without the alkyne group. In addition, strong charge transfer donors shifted the absorption wavelength towards the NIR region, while donors with strong π-donation resulted in xanthene dyes with a smaller equilibrium constant. DFT/TDDFT calculations corroborated the experimental data in most of the cases. Dye 2 containing the N,N-dimethylaniline group gave contrary results and is being further investigated.
Collapse
Affiliation(s)
- Ishanka N Rajapaksha
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jing Wang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jerzy Leszczynski
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
18
|
Wei R, Dong Y, Wang X, Li J, Lei Z, Hu Z, Chen J, Sun H, Chen H, Luo X, Qian X, Yang Y. Rigid and Photostable Shortwave Infrared Dye Absorbing/Emitting beyond 1200 nm for High-Contrast Multiplexed Imaging. J Am Chem Soc 2023. [PMID: 37216464 DOI: 10.1021/jacs.3c00594] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The shortwave infrared (SWIR) spectral region beyond 1200 nm offers optimal tissue penetration depth and has broad potential in diagnosis, therapy, and surgery. Here, we devised a novel class of fluorochromic scaffold, i.e., a tetra-benzannulated xanthenoid (EC7). EC7 absorbs/emits maximally at 1204/1290 nm in CH2Cl2 and exhibits an unparalleled molar absorptivity of 3.91 × 105 cm-1 M-1 and high transparency to light at 400-900 nm. It also exhibited high resistance toward both photobleaching and symmetry breaking due to its unique structural rigidity. It is feasible for in vivo bioimaging and particularly suitable to couple with the shorter-wavelength analogues for high-contrast multiplexing. High-contrast dual-channel intraoperative imaging of the hepatobiliary system and three-channel in vivo imaging of the intestine, the stomach, and the vasculature were showcased. EC7 is a benchmark fluorochrome for facile biomedical exploitation of the SWIR region beyond 1200 nm.
Collapse
Affiliation(s)
- Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Dong
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Kamino S, Uchiyama M. Xanthene-based functional dyes: towards new molecules operating in the near-infrared region. Org Biomol Chem 2023; 21:2458-2471. [PMID: 36661341 DOI: 10.1039/d2ob02208g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Xanthene-based functional dyes have diverse applications in life science and materials science. A current challenge is to develop new dyes with suitable physicochemical properties, including near-infrared (NIR) operation, for advanced biological applications such as medical diagnostics and molecular imaging. In this review, we first present an overview of xanthene-based functional dyes and then focus on synthetic strategies for modulating the absorption and fluorescence of dyes that operate in the NIR wavelength region with bright emission and good photostability. We also introduce our work on aminobenzopyranoxanthenes (ABPXs) and bridged tetra-aryl-p-quinodimethanes (BTAQs) as new xanthene-based far-red (FR)/NIR absorbing/emitting molecules whose absorption/fluorescence wavelengths change in response to external stimuli.
Collapse
Affiliation(s)
- Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokita, Ueda, Japan
| |
Collapse
|
20
|
Rathnamalala CSL, Hernandez S, Lucero MY, Swartchick CB, Kalam Shaik A, Hammer NI, East AK, Gwaltney SR, Chan J, Scott CN. Xanthene-Based Nitric Oxide-Responsive Nanosensor for Photoacoustic Imaging in the SWIR Window. Angew Chem Int Ed Engl 2023; 62:e202214855. [PMID: 36722146 PMCID: PMC10088865 DOI: 10.1002/anie.202214855] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
Collapse
Affiliation(s)
| | - Selena Hernandez
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Chelsea B Swartchick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | | | | | - Amanda K East
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| |
Collapse
|
21
|
Khan Z, Sekar N. Deep Red to NIR Emitting Xanthene Hybrids: Xanthene‐Hemicyanine Hybrids and Xanthene‐Coumarin Hybrids. ChemistrySelect 2023. [DOI: 10.1002/slct.202203377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zeba Khan
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| | - Nagaiyan Sekar
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| |
Collapse
|
22
|
Saucier MA, Smith C, Kruse NA, Hammer NI, Delcamp JH. Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes. Molecules 2023; 28:molecules28031287. [PMID: 36770954 PMCID: PMC9919721 DOI: 10.3390/molecules28031287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700-1000 nm) and shortwave infrared (SWIR, 1000-1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR.
Collapse
Affiliation(s)
- Matthew A. Saucier
- Department of Chemistry and Biochemistry, University of Mississippi, University, MI 38677, USA
| | - Cameron Smith
- Department of Chemistry and Biochemistry, University of Mississippi, University, MI 38677, USA
| | - Nicholas A. Kruse
- Department of Chemistry and Biochemistry, University of Mississippi, University, MI 38677, USA
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MI 38677, USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MI 38677, USA
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2230 Tenth Street Area B Building 655, Wright-Patterson AFB, Dayton, OH 45433, USA
- UES, Inc., 4401 Dayton Xenia Rd, Dayton, OH 45432, USA
- Correspondence: or
| |
Collapse
|
23
|
Priyanka, Rani P, Kiran, Sindhu J. Indolizine: A Promising Framework for Developing a Diverse Array of C−H Functionalized Hybrids. ChemistrySelect 2023. [DOI: 10.1002/slct.202203531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Priyanka
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Payal Rani
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Kiran
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| |
Collapse
|
24
|
Jiang Z, Ding Y, Lovell JF, Zhang Y. Design and application of organic contrast agents for molecular imaging in the second near infrared (NIR-II) window. PHOTOACOUSTICS 2022; 28:100426. [PMID: 36419744 PMCID: PMC9676394 DOI: 10.1016/j.pacs.2022.100426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Optical imaging in the second near-infrared (NIR-II) window has attracted interest in recent years because of the merits of reduced light scattering, minimal autofluorescence from biological tissues and deeper penetration depth in this wavelength range. In this review, we summarize NIR-II organic contrast agents reported in the past decade for photoacoustic and fluorescence imaging including members of the cyanine family, D-A-D structure dyes, phthalocyanines and semiconducting polymers. Improved imaging contrast and higher resolution could be favorably achieved by rational design of NIR-II fluorophores by tuning their properties including molar extinction coefficient, fluorescence quantum yield, emission wavelength and others. A wide variety of applications using NIR-II dyes has been realized including imaging of tumors, lymphatics, brains, intestines and others. Emerging applications such as targeted imaging and activable imaging with improved resolution and sensitivity have been demonstrated by innovative chemical modification of NIR-II dyes. Looking forward, rational design of improved NIR-II dyes for advanced bioimaging is likely to remain an area of interest for next-generation potential approaches to disease diagnosis.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| | - Yuanmeng Ding
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| |
Collapse
|
25
|
The pursuit of xanthenoid fluorophores with near-infrared-II emission for in vivo applications. Anal Bioanal Chem 2022:10.1007/s00216-022-04463-z. [PMID: 36445453 DOI: 10.1007/s00216-022-04463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
As fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) has gained increasing attention, it is inevitable that NIR-II fluorophores, the cornerstone of NIR-II imaging, have come to the middle of the stage. NIR-II xanthenoid fluorophores with good stability, high brightness, and fluorescence adjustability are becoming popular. We here reviewed the recent progress of xanthenoid fluorophores with NIR-II emission for in vivo applications. Especially, we focus on the strategies used for longer wavelength and fluorescence regulation to construct OFF-ON or ratiometric NIR-II fluorescent probes.
Collapse
|
26
|
Chatterjee S, Shaik AK, Wijesinghe KH, Ndaleh D, Dass A, Hammer NI, Delcamp JH. Design and Synthesis of RhodIndolizine Dyes with Improved Stability and Shortwave Infrared Emission up to 1250 nm. J Org Chem 2022; 87:11319-11328. [PMID: 35984405 DOI: 10.1021/acs.joc.2c00678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of shortwave infrared (SWIR) emissive small molecules with good stability in water remains an important challenge for fluorescence biological imaging applications. A series of four SWIR emissive rhodindolizine (RI) dyes were rationally designed and synthesized to probe the effects of nonconjugated substituents, conjugated donor groups, and nanoencapsulation in a water-soluble polymer on the stability and optical properties of the dyes. Steric protecting groups were added at the site of a significant LUMO presence to probe the effects on stability. Indolizine donor groups with added dimethylaniline groups were added to reduce the electrophilicity of the dyes toward nucleophiles such as water. All of the dyes were found to absorb (920-1096 nm peak values) and emit (1082-1256 nm peak values) within the SWIR region. Among xanthene-based emissive dyes, emission values >1200 nm are exceptional with 1256 nm peak emission being a longer emission than the recent record setting VIX-4 xanthene-based dye. Half-lives were improved from ∼5 to >24 h through the incorporation of either steric-based core protection groups or donors with increased donation strength. Importantly, the nanoencapsulation of the dyes in a water-soluble surfactant (Triton-X) allows for the use of these dyes in biological imaging applications.
Collapse
Affiliation(s)
- Satadru Chatterjee
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Abdul Kalam Shaik
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Kalpani Hirunika Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - David Ndaleh
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| |
Collapse
|
27
|
Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022; 51:7692-7714. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical fluorescence imaging in the second near-infrared (NIR-II, 100-1700 nm) window provides great potential for visualizing physiological and pathological processes, owing to the reduced tissue absorption, scattering, and autofluorescence. Various types of NIR-II probes have been reported in the past decade. Among them, NIR-II organic/inorganic nanohybrids have attracted widespread attention due to their unique properties by integrating the advantages of both organic and inorganic species. Versatile organic/inorganic nanohybrids provide the possibility of realizing a combination of functions, controllable size, and multiple optical features. This tutorial review summarizes the reported organic and inorganic species in nanohybrids, and their biomedical applications in NIR-II fluorescence and lifetime imaging. Finally, the challenges and outlook of organic/inorganic nanohybrids in biomedical applications are discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China. .,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
28
|
Zhang C, Wu J, Liu W, Zhang W, Lee CS, Wang P. New Xanthene Dyes with NIR-II Emission Beyond 1200 nm for Efficient Tumor Angiography and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202078. [PMID: 35730913 DOI: 10.1002/smll.202202078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Indexed: 05/25/2023]
Abstract
Fluorescence (FL) bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides improved imaging quality and high resolution for diagnosis of deep-seated tumors. However, integrating FL bioimaging and photothermal therapy (PTT) in a single photoactive molecule exhibits a great challenge because a dramatic increase of PTT in the NIR-II window benefitting from the nonradiative decay will sacrifice the fluorescence brightness that is unfavorable for FL bioimaging. Therefore, balancing the radiative decay and nonradiative decay is an effective and rational design strategy. Herein, four NIR-II xanthene dyes (CL1-CL4) are synthesized with maximal emission beyond 1200 nm under 1064 nm excitation. CL4 exhibits the largest fluorescence quantum yield and a significant fluorescence enhancement after complexation with fetal bovine serum (FBS). As-prepared CL4/FBS has a maximal emission of 1235 nm and a high photothermal conversion efficiency of 36% under 1064 nm excitation. Bright and refined tumor vessels with a fine resolution of 0.23 mm can be clearly distinguished by CL4/FBS. In vivo studies show that a balanced utilization of fluorescence and photothermy in the NIR-II window is successfully achieved with superior biocompatibility. This efficient strategy provides promising avenue for precise theranostics of deep tumors.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Li Q, Liu Y, Zhao B, Lei J, Lu S, Gong W, Liang K, Wu J, Hong X, Xiao Y. A single-molecular ruthenium(II) complex-based NIR-II fluorophore for enhanced chemo-photothermal therapy. Chem Commun (Camb) 2022; 58:6546-6549. [PMID: 35579558 DOI: 10.1039/d2cc00082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel NIR-II Ru(II) polypyridyl fluorophore Ru-1 dots for synergistic chemo-photothermal therapy against 4T1 tumors were designed and synthesized. Guided by in vivo NIR-II fluorescence imaging, the synergistic therapeutic efficacy, intracellular delivery, and biodistribution of the Ru-1 dots were precisely tracked in real-time.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. .,Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, China
| | - Yishen Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Bingshan Zhao
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, China
| | - Jiapeng Lei
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| | - Siyu Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Wanxia Gong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ke Liang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Junzhu Wu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. .,State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
30
|
Brøndsted F, Stains CI. Heteroatom-Substituted Xanthene Fluorophores Enter the Shortwave-Infrared Region. Photochem Photobiol 2022; 98:400-403. [PMID: 34953073 PMCID: PMC8930474 DOI: 10.1111/php.13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022]
Abstract
This article is a highlight of the paper by Ivanic and Schnermann et al. in this issue of Photochemistry and Photobiology (Daly et al. Photochem. Photobiol. 2022). The collaborative team utilized computational approaches to investigate the influence of electron-withdrawing groups at the 10' position of tetramethylrhodamine (TMR). Leveraging this information, the team was able to extend the emission of the TMR scaffold into the shortwave-infrared region (SWIR, 1000-2500 nm) by incorporation of a ketone functional group at the 10' position (Daly et al. Photochem. Photobiol. 2022). This work provides the first example of a TMR derivative with peak SWIR emission (λabs : 862 nm, λem : 1058 nm). The authors utilize the ketone rhodamine scaffold to generate fluorogenic, pH-responsive reporters. This work demonstrates the potential of the classic xanthene scaffold for use as a SWIR reporter, an important step in the ultimate expansion of the repertoire of small-molecule organic fluorophore scaffolds available for deep-tissue imaging applications.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA,Corresponding author: (Cliff I. Stains)
| |
Collapse
|
31
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR‐II Window. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing Mu
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Ming Xiao
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Yu Shi
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xuewen Geng
- Department of Biology University of Rochester Rochester NY 14627 USA
| | - Hui Li
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yuxin Yin
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
32
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR-II Window. Angew Chem Int Ed Engl 2021; 61:e202114722. [PMID: 34873810 DOI: 10.1002/anie.202114722] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/08/2022]
Abstract
Optical imaging, especially fluorescence and photoacoustic imaging, possesses non-invasiveness, high spatial and temporal resolution, and high sensitivity, etc., compared to positron emission tomography (PET) or magnetic resonance imaging (MRI). Due to the merits from the second near infrared (NIR-II) window imaging, like deeper penetration depth, high signal-to-noise ratio, high resolution, and low tissue damage, researchers devote great efforts to develop contrast agents with NIR-II absorption or emission. In this review, we summarized recently developed organic luminescent and photoacoustic materials, ranging from small molecules to conjugated polymers. Then, we systematically introduced engineering strategies and their imaging performance, classified by the skeleton cores. Finally, we elucidated the challenges and prospective of these NIR-II organic dyes for potential clinical applications. We hope our summary can inspire further development of NIR-II contrast agents.
Collapse
Affiliation(s)
- Jing Mu
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Ming Xiao
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yu Shi
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xuewen Geng
- University of Rochester, Department of Biology, UNITED STATES
| | - Hui Li
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yuxin Yin
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xiaoyuan Chen
- National University of Singapore, School of Medicine and Faculty of Engineering, 10 Medical Dr, 117597, Singapore, SINGAPORE
| |
Collapse
|
33
|
Li D, Pan J, Xu S, Fu S, Chu C, Liu G. Activatable Second Near-Infrared Fluorescent Probes: A New Accurate Diagnosis Strategy for Diseases. BIOSENSORS 2021; 11:436. [PMID: 34821652 PMCID: PMC8615551 DOI: 10.3390/bios11110436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 05/12/2023]
Abstract
Recently, second near-infrared (NIR-II) fluorescent imaging has been widely applied in biomedical diagnosis, due to its high spatiotemporal resolution and deep tissue penetration. In contrast to the "always on" NIR-II fluorescent probes, the activatable NIR-II fluorescent probes have specific targeting to biological tissues, showing a higher imaging signal-to-background ratio and a lower detection limit. Therefore, it is of great significance to utilize disease-associated endogenous stimuli (such as pH values, enzyme existence, hypoxia condition and so on) to activate the NIR-II probes and achieve switchable fluorescent signals for specific deep bioimaging. This review introduces recent strategies and mechanisms for activatable NIR-II fluorescent probes and their applications in biosensing and bioimaging. Moreover, the potential challenges and perspectives of activatable NIR-II fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Dong Li
- Correspondence: (D.L.); (G.L.)
| | | | | | | | | | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging, Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China; (J.P.); (S.X.); (S.F.); (C.C.)
| |
Collapse
|
34
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Liu D, He Z, Zhao Y, Yang Y, Shi W, Li X, Ma H. Xanthene-Based NIR-II Dyes for In Vivo Dynamic Imaging of Blood Circulation. J Am Chem Soc 2021; 143:17136-17143. [PMID: 34632770 DOI: 10.1021/jacs.1c07711] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence bioimaging through the second near-infrared window (NIR-II, 1000-1700 nm) has attracted much attention due to its deep penetration and high contrast. However, exploring new fluorescent materials, especially small molecular fluorophores with long wavelength and high brightness, is still quite challenging. By expanding π-conjugation and enhancing the intramolecular charge transfer effect, herein we report a series of new xanthene-based NIR-II dyes, named VIXs. Among these dyes, VIX-4 exhibits the best performance with fluorescence emission at 1210 nm and high brightness and has been used for dynamically imaging the blood flow of mice at 200 fps. By virtue of high spatiotemporal resolution of the dynamic imaging, we can distinguish directly the artery and vein through the blood flow direction and measure the blood flow volume by the videos. This study provides not only an effective tool for high spatial and temporal resolution bioimaging but also a new and promising conjugated skeleton for NIR-II dyes.
Collapse
Affiliation(s)
- Diankai Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuantao Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
He L, Guo Y, Kloo L. The dynamics of light-induced interfacial charge transfer of different dyes in dye-sensitized solar cells studied by ab initio molecular dynamics. Phys Chem Chem Phys 2021; 23:27171-27184. [PMID: 34635889 DOI: 10.1039/d1cp02412d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge-transport dynamics at the dye-TiO2 interface plays a vital role for the resulting power conversion efficiency (PCE) of dye sensitized solar cells (DSSCs). In this work, we have investigated the charge-exchange dynamics for a series of organic dyes, of different complexity, and a small model of the semiconductor substrate TiO2. The dyes studied involve L1, D35 and LEG4, all well-known organic dyes commonly used in DSSCs. The computational studies have been based on ab initio molecular dynamics (aiMD) simulations, from which structural snapshots have been collected. Estimates of the charge-transfer rate constants of the central exchange processes in the systems have been computed. All dyes show similar properties, and differences are mainly of quantitative character. The processes studied were the electron injection from the photoexcited dye, the hole transfer from TiO2 to the dye and the recombination loss from TiO2 to the dye. It is notable that the electronic coupling/transfer rates differ significantly between the snapshot configurations harvested from the aiMD simulations. The differences are significant and indicate that a single geometrically optimized conformation normally obtained from static quantum-chemistry calculations may provide arbitrary results. Both protonated and deprotonated dye systems were studied. The differences mainly appear in the rate constant of recombination loss between the protonated and the deprotonated dyes, where recombination losses take place at significantly higher rates. The inclusion of lithium ions close to the deprotonated dye carboxylate anchoring group mitigates recombination in a similar way as when protons are retained at the carboxylate group. This may give insight into the performance-enchancing effects of added salts of polarizing cations to the DSSC electrolyte. In addition, solvent effects can retard charge recombination by about two orders of magnitude, which demonstrates that the presence of a solvent will increase the lifetime of injected electrons and thus contribute to a higher PCE of DSSCs. It is also notable that no simple correlation can be identified between high/low transfer rate constants and specific structural arrangements in terms of atom-atom distances, angles or dihedral arrangements of dye sub-units.
Collapse
Affiliation(s)
- Lanlan He
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
| | - Yu Guo
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
| | - Lars Kloo
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
| |
Collapse
|
37
|
Rathnamalala CSL, Pino NW, Herring BS, Hooper M, Gwaltney SR, Chan J, Scott CN. Thienylpiperidine Donor NIR Xanthene-Based Dye for Photoacoustic Imaging. Org Lett 2021; 23:7640-7644. [PMID: 34550707 DOI: 10.1021/acs.orglett.1c02862] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Few xanthene-based near-infrared (NIR) photoacoustic (PA) dyes with absorbance >800 nm exist. As accessibility to these dyes requires long and tedious synthetic steps, we designed a NIR dye (XanthCR-880) with thienylpiperidine donors and a xanthene acceptor that is accessible in 3-4 synthetic steps. The dye boasts a strong PA signal at 880 nm with good biological compatibility and photostability, yields multiplexed imaging with an aza-BODIPY reference dye, and is detected at a depth of 4 cm.
Collapse
Affiliation(s)
| | - Nicholas W Pino
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bailey S Herring
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Mattea Hooper
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
38
|
Chatterjee S, Meador WE, Smith C, Chandrasiri I, Zia MF, Nguyen J, Dorris A, Flynt A, Watkins DL, Hammer NI, Delcamp JH. SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers. RSC Adv 2021; 11:27832-27836. [PMID: 35480767 PMCID: PMC9037842 DOI: 10.1039/d1ra05479a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Shortwave infrared (SWIR) emission has great potential for deep-tissue in vivo biological imaging with high resolution. In this article, the synthesis and characterization of two new xanthene-based RosIndolizine dyes coded PhRosIndz and tolRosIndz is presented. The dyes are characterized via femtosecond transient absorption spectroscopy as well as steady-state absorption and emission spectroscopies. The emission of these dyes is shown in the SWIR region with peak emission at 1097 nm. TolRosIndz was encapsulated with an amphiphilic linear dendritic block co-polymer (LDBC) coded 10-PhPCL-G3 with high uptake yield. Further, cellular toxicity was examined in vitro using HEK (human embryonic kidney) cells where a >90% cell viability was observed at practical concentrations of the encapsulated dye which indicates low toxicity and reasonable biocompatibility.
Collapse
Affiliation(s)
- Satadru Chatterjee
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| | - William E Meador
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| | - Cameron Smith
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| | - Indika Chandrasiri
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| | - Mohammad Farid Zia
- Department of Biological Sciences, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Jay Nguyen
- Department of Biological Sciences, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Austin Dorris
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| | - Alex Flynt
- Department of Biological Sciences, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Davita L Watkins
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University MS 38677 USA
| |
Collapse
|
39
|
J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat Commun 2021; 12:2376. [PMID: 33888714 PMCID: PMC8062432 DOI: 10.1038/s41467-021-22686-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
J-aggregation is an efficient strategy for the development of fluorescent imaging agents in the second near-infrared window. However, the design of the second near-infrared fluorescent J-aggregates is challenging due to the lack of suitable J-aggregation dyes. Herein, we report meso-[2.2]paracyclophanyl-3,5-bis-N,N-dimethylaminostyrl BODIPY (PCP-BDP2) as an example of BODIPY dye with J-aggregation induced the second near-infrared fluorescence. PCP-BDP2 shows an emission maximum at 1010 nm in the J-aggregation state. Mechanism studies reveal that the steric and conjugation effect of the PCP group on the BODIPY play key roles in the J-aggregation behavior and photophysical properties tuning. Notably, PCP-BDP2 J-aggregates can be utilized for lymph node imaging and fluorescence-guided surgery in the nude mouse, which demonstrates their potential clinical application. This study demonstrates BODIPY dye as an alternate J-aggregation platform for developing the second near-infrared imaging agents. J-aggregation has been proved to be an efficient strategy for the development of fluorescent imaging agents in the NIR-II spectral region but the design of appropriate J-aggregates is challenging. Here, the authors demonstrate J-aggregation of a BODIPY dye with NIR-II emission and demonstrate lymph node imaging for fluorescence guided surgery.
Collapse
|
40
|
Nan J, Zhang J, Hu Y, Wang C, Wang T, Wang W, Ma Y, Szostak M. Cu II-Catalyzed Coupling with Two Ynone Units by Selective Triple and Sigma C-C and C-H Bond Cleavages. Org Lett 2021; 23:1928-1933. [PMID: 33570962 DOI: 10.1021/acs.orglett.1c00371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a new copper-catalyzed [2 + 2 + 1] annulation process through the selective cleavage of sigma and triple C-C and C-H bonds using two ynone units. This new methodology involves breaking multiple chemical bonds in a single operation, including C≡C, C-C, C-H, and N-O. These high-value adducts lead to a diverse collection of synthetically challenging trisubstituted indolizines by the simultaneous engagement of different bond-breaking events and show excellent fluorescence in green aqueous solutions.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiawen Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingting Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
41
|
Li B, Ali AI, Ge H. Recent Advances in Using Transition-Metal-Catalyzed C–H Functionalization to Build Fluorescent Materials. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Li S, Cheng T, Yin C, Zhou S, Fan Q, Wu W, Jiang X. Phenothiazine versus Phenoxazine: Structural Effects on the Photophysical Properties of NIR-II AIE Fluorophores. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43466-43473. [PMID: 32907323 DOI: 10.1021/acsami.0c12773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aggregation-induced emission (AIE) fluorophores with second near-infrared window (NIR-II) fluorescence are very promising for in vivo imaging because they emit fluorescence in an aggregated state and provide desirable imaging resolution and depth. Up to now, only a limited number of NIR-II AIE fluorophores have been developed. Therefore, synthesizing novel NIR-II AIE fluorophores and investigating structural effects on their photophysical properties are very important for the development of AIE probes. In this work, we synthesized two donor-acceptor-donor-type NIR fluorophores with emissions extending into the NIR-II window named DPTQ-PhPTZ and DPTQ-PhPXZ with phenothiazine (PTZ) and phenoxazine (PXZ) derivatives as the electron donors, respectively, and studied their photophysical properties via theoretical and experimental approaches as well as the properties in NIR-II in vivo imaging. The PTZ and PXZ moieties provided typical AIE characteristics. Despite the very similar chemical structures of PTZ and PXZ, DPTQ-PhPTZ and DPTQ-PhPXZ exhibited rather different photophysical properties, for example, compared to DPTQ-PhPTZ, DPTQ-PhPXZ had higher quantum yield (QY) both in solution and in the aggregated state and its QY was less sensitive to solvent polarity. After being coated with an amphiphilic copolymer F-127, the fluorophores maintained fluorescence, and the formed fluorescent polymer nanoparticles (NPs) had satisfactory tumor accumulation and biocompatibility, implying that they are applicable for in vivo tumor detection.
Collapse
Affiliation(s)
- Shun Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianyuan Cheng
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Changfeng Yin
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Sensen Zhou
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Quli Fan
- Key Lab Organ Elect & Informat Displays, Nanjing University Posts & Telecommun, Nanjing 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
43
|
Rajapaksha I, Chang H, Xiong Y, Marder S, Gwaltney SR, Scott CN. New Design Strategy Toward NIR I Xanthene-Based Dyes. J Org Chem 2020; 85:12108-12116. [PMID: 32829632 DOI: 10.1021/acs.joc.0c01242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An effective design strategy with an efficient synthetic route to xanthene-based far-red to near-infrared dyes is reported. The dyes were prepared by the Suzuki cross-coupling of the electron-poor fluorescein ditriflate with the electron-rich boronic acid/ester-functionalized pyrrole (2C/3C) and indole (2D/3D) moieties. Upon treatment with trifluoroacetic acid, the closed nonfluorescent forms of the dyes (2C and 2D) ring-opened to their fluorescent forms (3C and 3D). The absorption maxima were 665 and 704 nm, while the emission maxima were 717 and 719 nm for 3C and 3D, respectively. The closed forms of the dyes were soluble in chloroform and acetonitrile. To test the efficacy of the dyes as probes, a turn-off fluoride ion probe was prepared from 3C, which consisted of a silyl ester receptor. The probe responded strongly to low concentrations of fluoride, carbonate, and acetate ions, weakly to phosphate ions, but not to the other halogens. Moreover, the probe can detect the minimum concentration of F- in water.
Collapse
Affiliation(s)
- Ishanka Rajapaksha
- Department of Chemistry, Mississippi State University, Hand Lab 1115, Mississippi State, Mississippi 39762, United States
| | - Hao Chang
- Department of Chemistry, Mississippi State University, Hand Lab 1115, Mississippi State, Mississippi 39762, United States
| | - Yao Xiong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Seth Marder
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Hand Lab 1115, Mississippi State, Mississippi 39762, United States
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, Hand Lab 1115, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
44
|
Ellman JA, Ackermann L, Shi BF. The Breadth and Depth of C-H Functionalization. J Org Chem 2020; 84:12701-12704. [PMID: 31623443 DOI: 10.1021/acs.joc.9b02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen
| | | |
Collapse
|
45
|
Silva TS, Zeoly LA, Coelho F. Catalyst-Free Conjugate Addition of Indolizines to In Situ-Generated Oxidized Morita-Baylis-Hillman Adducts. J Org Chem 2020; 85:5438-5448. [PMID: 32192330 DOI: 10.1021/acs.joc.0c00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequential one-pot 2-iodoxybenzoic acid (IBX) oxidation of Morita-Baylis-Hillman (MBH) adducts followed by catalyst-free indolizine conjugate addition was developed. The wide scopes of MBH adducts and indolizines were investigated, and densely functionalized adducts were obtained in yields of up to 94%. The conjugate addition step occurred in less than a minute at room temperature with total regioselectivity toward indolizine C3 carbon. Less nucleophilic C1 carbon was also alkylated when C3-substituted indolizines were employed as the substrate.
Collapse
Affiliation(s)
- Thiago S Silva
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Lucas A Zeoly
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
46
|
Meador WE, Autry SA, Bessetti RN, Gayton JN, Flynt AS, Hammer NI, Delcamp JH. Water-Soluble NIR Absorbing and Emitting Indolizine Cyanine and Indolizine Squaraine Dyes for Biological Imaging. J Org Chem 2020; 85:4089-4095. [PMID: 32037825 PMCID: PMC7163162 DOI: 10.1021/acs.joc.9b03108] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organic dyes that absorb and emit in the near-infrared (NIR) region are potentially noninvasive, high-resolution, and rapid biological imaging materials. Indolizine donor-based cyanine and squaraine dyes with water-solubilizing sulfonate groups were targeted in this study due to strong absorptions and emissions in the NIR region. As previously observed for nonwater-soluble derivatives, the indolizine group with water-solubilizing groups retains a substantial shift toward longer wavelengths for both absorption and emission with squaraines and cyanines relative to classically researched indoline donor analogues. Very high quantum yields (as much as 58%) have been observed with absorption and emission >700 nm in fetal bovine serum. Photostability studies, cell culture cytotoxicity, and cell uptake specificity profiles were all studied for these dyes, demonstrating exceptional biological imaging suitability.
Collapse
Affiliation(s)
- William E Meador
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Shane A Autry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Riley N Bessetti
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jacqueline N Gayton
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Alex S Flynt
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|