1
|
Jiang S, Ren Z, Yang Y, Liu Q, Zhou S, Xiao Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed Pharmacother 2023; 169:115874. [PMID: 37951027 DOI: 10.1016/j.biopha.2023.115874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
GPIHBP1 is a protein found in the endothelial cells of capillaries that is anchored by glycosylphosphatidylinositol and binds to high-density lipoproteins. GPIHBP1 attaches to lipoprotein lipase (LPL), subsequently carrying the enzyme and anchoring it to the capillary lumen. Enabling lipid metabolism is essential for the marginalization of lipoproteins alongside capillaries. Studies underscore the significance of GPIHBP1 in transporting, stabilizing, and aiding in the marginalization of LPL. The intricate interplay between GPIHBP1 and LPL has provided novel insights into chylomicronemia in recent years. Mutations hindering the formation or reducing the efficiency of the GPIHBP1-LPL complex are central to the onset of chylomicronemia. This review delves into the structural nuances of the GPIHBP1-LPL interaction, the consequences of mutations in the complex leading to chylomicronemia, and cutting-edge advancements in chylomicronemia treatment.
Collapse
Affiliation(s)
- Shali Jiang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhuoqun Ren
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yutao Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
2
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
3
|
Orientational Preferences of GPI-Anchored Ly6/uPAR Proteins. Int J Mol Sci 2022; 24:ijms24010011. [PMID: 36613456 PMCID: PMC9819746 DOI: 10.3390/ijms24010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ly6/uPAR proteins regulate many essential functions in the nervous and immune systems and epithelium. Most of these proteins contain single β-structural LU domains with three protruding loops and are glycosylphosphatidylinositol (GPI)-anchored to a membrane. The GPI-anchor role is currently poorly studied. Here, we investigated the positional and orientational preferences of six GPI-anchored proteins in the receptor-unbound state by molecular dynamics simulations. Regardless of the linker length between the LU domain and GPI-anchor, the proteins interacted with the membrane by polypeptide parts and N-/O-glycans. Lynx1, Lynx2, Lypd6B, and Ly6H contacted the membrane by the loop regions responsible for interactions with nicotinic acetylcholine receptors, while Lypd6 and CD59 demonstrated unique orientations with accessible receptor-binding sites. Thus, GPI-anchoring does not guarantee an optimal 'pre-orientation' of the LU domain for the receptor interaction.
Collapse
|
4
|
Pisapati AV, Cao W, Anderson KR, Jones G, Holick KH, Whiteaker P, Im W, Zhang XF, Miwa JM. Biophysical characterization of lynx-nicotinic receptor interactions using atomic force microscopy. FASEB Bioadv 2021; 3:1034-1042. [PMID: 34938964 PMCID: PMC8664008 DOI: 10.1096/fba.2021-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are broadly expressed in the central and peripheral nervous systems, playing essential roles in cholinergic neurotransmission. The lynx family proteins, a subset of the Ly6/uPAR superfamily expressed in multiple brain regions, have been shown to bind to nAChRs and modulate their function via allosteric regulation. The binding interactions between lynx and nAChRs, however, have not been systematically quantified and compared. In this work, we characterized the interactions between lynx1 or lynx2 and α3β4- or α7-nAChRs using single-molecule atomic force microscopy (AFM). The AFM technique allows the quantification of the off-rate of lynx-nAChR binding and of the energetic barrier width between the bound state and transition state, providing a biophysical means to compare the selectivity of lynx proteins for nAChR subtypes. Results indicate that lynx1 has a marginal preference for α7- over α3β4-nAChRs. Strikingly, lynx2 exhibits a two order of magnitude stronger affinity for α3β4- compared to α7-nAChRs. Together, the AFM assay serves as a valuable tool for the biophysical characterization of lynx-nAChR binding affinities. Revealing the differential affinities of lynx proteins for nAChR subtypes will help elucidate how lynx regulates nAChR-dependent functions in the brain, including nicotine addiction and other critical pathways.
Collapse
Affiliation(s)
- Avani V. Pisapati
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wenpeng Cao
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | | | - Griffin Jones
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | | | - Paul Whiteaker
- Division of NeurobiologyBarrow Neurological Institute, St. Joseph's Hospital and Medical CenterLehigh UniversityPhoenixArizonaUSA
| | - Wonpil Im
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - X. Frank Zhang
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Mechanical Engineering and MechanicsLehigh UniversityBethlehemPennsylvaniaUSA
| | - Julie M. Miwa
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
5
|
Sherafat Y, Chen E, Lallai V, Bautista M, Fowler JP, Chen YC, Miwa J, Fowler CD. Differential Expression Patterns of Lynx Proteins and Involvement of Lynx1 in Prepulse Inhibition. Front Behav Neurosci 2021; 15:703748. [PMID: 34803621 PMCID: PMC8595198 DOI: 10.3389/fnbeh.2021.703748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1–/– or lynx2–/– knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1–/– mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2–/– mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2–/– mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Edison Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Valeria Lallai
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - James P Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Julie Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Miwa JM. Lynx1 prototoxins: critical accessory proteins of neuronal nicotinic acetylcholine receptors. Curr Opin Pharmacol 2021; 56:46-51. [PMID: 33254061 PMCID: PMC8771676 DOI: 10.1016/j.coph.2020.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
Nicotinic receptors of the cholinergic system are ligand-gated ion channels, responding to the excitatory neurotransmitter, acetylcholine, and the addictive component of tobacco, nicotine. They help to transduce salient information in the environment by activating specific neural circuitry in normal and disease states. While nicotinic receptors are promising neurological and neuropsychiatric disorder targets, they have fallen out of favor after several late-stage clinical failures. Targeting the complex of the nicotinic receptor, including lynx1 accessory proteins, could be the key to unlocking the intractable nAChR for therapeutic development. Lynx1 binds to the extracellular face of the nAChR and acts as a critical modulator, suppressing memory, learning, and plasticity. Lynx1 removal in animal models leads to memory and plasticity enhancements, some of which have therapeutic relevance for neuropsychiatric and neurological disease. A review of the lynx1 accessory modulator and its role in modulating neuronal nAChRs will be discussed.
Collapse
Affiliation(s)
- Julie M Miwa
- Lehigh University, Department of Biological Sciences, 111 Research Drive, Bethlehem, PA, United States.
| |
Collapse
|
7
|
Anderson KR, Hoffman KM, Miwa JM. Modulation of cholinergic activity through lynx prototoxins: Implications for cognition and anxiety regulation. Neuropharmacology 2020; 174:108071. [PMID: 32298703 PMCID: PMC7785133 DOI: 10.1016/j.neuropharm.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, USA.
| |
Collapse
|