1
|
Shehzadi K, Kalsoom I, Yu MJ, Liang JH. Design and in-silico evaluation of PNA-based novel pronucleotide analogues targeting RNA-dependent RNA polymerase to combat COVID-19. J Biomol Struct Dyn 2025:1-23. [PMID: 39937582 DOI: 10.1080/07391102.2024.2335287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 02/13/2025]
Abstract
The emergence of highly contagious SARS-CoV-2 variants emphasizes the need for antiviral drugs that can adapt to evolving viral mutations. Despite widespread vaccination efforts, novel variants and recurrence cases raise concerns about COVID-19. Although repurposed drugs like Remdesivir, a nucleoside inhibitor, offer treatment, there is still a critical need for alternative drugs. Inhibiting viral RdRp function remains a key strategy. Structural analysis highlights the importance of pyrrolo-triazine and pyrimidine scaffolds in nucleoside inhibitors. Our study designed Peptide Nucleic Acid (PNA) antisense pronucleotides by combining these scaffolds using structure-guided drug design. Molecular modeling, including molecular docking, pharmacokinetics, molecular dynamics simulations, and MMPBSA binding energy calculations, predicts that modified PNAs can disrupt ribosome assembly at the RdRp translation start site. The neutral backbone of PNAs may enhance sequence-specific RNA binding. MD simulations revealed that complexes of Remdesivir and L14 remained stable throughout, with the phosphate tail of L14 stabilized by a positive amino acid pocket near the RdRp-RNA entry channel, similar to Remdesivir. Additionally, L14's guanine motif interacted with U20, A19, and U18 on the primer RNA strand. The lead PNA analog (L14) showed superior binding free energy to both RdRp (-47.26 kcal/mol) and RdRp-RNA (-85.66 kcal/mol), outperforming Remdesivir. Key amino acid residues critical for binding affinity were identified, providing valuable insights for drug development. This promising PNA-mimetic compound offers dual-target specificity, presenting a compelling avenue for developing potent anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Iqra Kalsoom
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ming-Jia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
2
|
Abdelsalam E, Ibrahim AM, El-Rashedy AA, Abdel-Aziz MS, Kutkat O, El-Hady FKA. Combating COVID-19 and its co-infection by Aspergillus tamarii SP73-EGY using in vitro and in silico Studies. Sci Rep 2025; 15:685. [PMID: 39753574 PMCID: PMC11698736 DOI: 10.1038/s41598-024-77854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/25/2024] [Indexed: 01/06/2025] Open
Abstract
The COVID-19 pandemic has caused significant mortality and morbidity for millions of people. Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) virus is capable of causing severe and fatal diseases. We evaluated the antiviral properties of Aspergillus tamarii SP73-EGY isolate extract against low pathogenic coronavirus (229E), Adeno-7- and Herpes-2 viruses. The extract showed a high selectivity index (SI = 43.4) and a significant inhibition of 229E (IC50 = 8.205 μg/ml). It was stronger than the drug control, remdesivir (IC50 = 38.2 μg/ml, SI = 7.29). However, the extract showed minimal efficacy against Adeno-7- and Herpes-2-Viruses (IC50 = 22.52, 47.79 μg/ml, and SI = 6.75, 5.08, respectively). It exhibited profound efficacy against the highly pathogenic SARS-CoV-2 (IC50 = 8.306 μg/ml, SI = 42.2). Kojic acid, the primary component of the extract, showed substantial antiviral activity against SARS-CoV-2 (IC50 = 23.4 μg/ml, SI = 5.6), Remdesivir (IC50 = 4.55 μg/ml, SI = 61.45). Therefore, the extract demonstrated the most notable antiviral characteristics against coronavirus infection. Co-infecting microorganisms may contribute to immune system deterioration and airway injury caused by SARS-CoV-2. The extract showed significant efficacy against E. coli and P. aeruginosa, with an inhibition range of 3.5-10 mm at a concentration of 200 mg/ml. A molecular docking study showed that hexadecanoic, Kojic, octanoic acids, and 4(4-Methylbenzylidene)cyclohexane-1,3-dione have stronger binding affinity to the SARS-CoV-2 Mpro than Remdesivir. Molecular dynamics simulations were employed to examine the structural stability and flexibility of these complexes. This confirmed the high binding affinities of Kojic acid and 4(4-Methylbenzylidene)cyclohexane-1,3-dione, thereby proving their potential as novel anti-SARS-CoV-2.
Collapse
Affiliation(s)
- Eman Abdelsalam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| | - Amal Mosad Ibrahim
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| | - Ahmed A El-Rashedy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| | | | - Omnia Kutkat
- Centre of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment Research and Climate Change Institute, National Research Centre, Giza, 12622, Egypt
| | - Faten K Abd El-Hady
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| |
Collapse
|
3
|
Nemčovičová I, Lopušná K, Štibrániová I, Benedetti F, Berti F, Felluga F, Drioli S, Vidali M, Katrlík J, Pažitná L, Holazová A, Blahutová J, Lenhartová S, Sláviková M, Klempa B, Ondrejovič M, Chmelová D, Legerská B, Miertuš S, Klacsová M, Uhríková D, Kerti L, Frecer V. Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. J Enzyme Inhib Med Chem 2024; 39:2301772. [PMID: 38221792 PMCID: PMC10791089 DOI: 10.1080/14756366.2024.2301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases Mpro and PLpro became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC) and identify potential antiviral compounds. Three compounds were found to be effective in reducing the SARS-CoV-2 load, with EC50 values in the low micromolar concentration range. However, these compounds also exhibited inhibitory activity IC50 against PLpro at approximately 10-fold higher micromolar concentrations. Although originally developed as PLpro inhibitors, the comparison between IC50 and EC50 of BBC indicates that the mechanism of their in vitro antiviral activity is probably not directly related to inhibition of viral cysteine proteases. In conclusion, our study has identified new potential noncytotoxic antiviral compounds suitable for in vivo testing and further improvement.
Collapse
Affiliation(s)
- Ivana Nemčovičová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mattia Vidali
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Blahutová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Lenhartová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Lukáš Kerti
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Gharui S, Sengupta D, Das A. Characterization of the Conformational Hotspots of the RNA-Dependent RNA Polymerase Complex Identifies a Unique Structural Malleability of nsp8. J Phys Chem B 2024; 128:9959-9975. [PMID: 39356135 DOI: 10.1021/acs.jpcb.4c03851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Several antiviral therapeutic approaches have been targeted toward the RNA-dependent RNA polymerase (RdRp) complex that is involved in viral genome replication. In SARS-CoV-2, although the RdRp is a multiprotein complex, the focus has been on the ligand binding catalytic core (nonstructural protein nsp12), and not the multiprotein functional dynamics. In this study, we focus on the conformational ensembles of the RdRp complex and their modulation by the presence of RNA, performing comprehensive microsecond-scale atomistic simulations of the apo- and RNA-bound complex. We delineate the differential impact of RNA on the constituent proteins, such as conformational polymorphisms, dominant segment-specific fluctuations, and the switch in dynamical crosstalk within the complex. We distinguish dynamical signatures of nsp7, nsp8, and nsp12 in the apo-state that are reduced in the presence of the RNA and appear to "prime" the complex for activity. Importantly, we identify a unique structural malleability of the nsp8 protein with high conformational heterogeneity in the apo state, especially at three sites (Y71 for nsp8A, and D52 and A66 for nsp8B). Our work highlights the functional implications of the polymorphism of nsp8 structures and reveals possibilities for the development of allosteric inhibitors.
Collapse
Affiliation(s)
- Sowmomita Gharui
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Durba Sengupta
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Cardoza S, Singh A, Sur S, Singh M, Dubey KD, Samanta SK, Mandal A, Tandon V. Computational investigation of novel synthetic analogs of C-1'β substituted remdesivir against RNA-dependent RNA-polymerase of SARS-CoV-2. Heliyon 2024; 10:e36786. [PMID: 39286185 PMCID: PMC11402944 DOI: 10.1016/j.heliyon.2024.e36786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Remdesivir, a C-nucleotide prodrug binds to the viral RNA-dependent-RNA polymerase (RdRp) and inhibits the viral replication by terminating RNA transcription prematurely. It is reported in literature that interaction between the C-1'β-CN moiety of Remdesivir (RDV) and the Ser861 residue in RdRp enzyme, causes a delayed chain termination during the RNA replication process and is one of the important aspect of its mechanism of action. In the pursuance of increasing the biological activity of RDV and enhancing the SAR studies, against RNA viruses, we have designed its fourteen C1'β substituted analogs, 10 -23 bearing 4/5-membered heterocyclic rings. The docking and 100 ns molecular dynamics (MD) simulations of 10-23 to the RdRp protein (PDB ID: 7L1F) revealed important interactions between 2',3'-diol, oxo group of phosphoramidate, nitrogen residues of heterocyclic rings of synthetic molecules with Arg555, Arg553, Ser759, Cys622, Asn691, Asp623 amino acid residues of protein. The docking score of 2-ethylbutyl ((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-3,4-dihydroxy-5-(1H-1,2,3-triazol-4-yl)tetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)-L-alaninate, 11 was found to be the higher than RDV among 14 new compounds i.e. -5.20 kcal/mol. Out of 3 compounds, 10, 12 and 13 submitted for MD simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis, trifluoro-oxadiazole derivative, 13 showed higher binding energy as compared to Remdesivir. The predicted ADMET properties of 14 compounds showed their potential for being drug candidates. The present study suggests that substitution at the C1'β position by 4/5-membered rings plays an important role in the interactions between nucleoside/tide and target protein.
Collapse
Affiliation(s)
- Savio Cardoza
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211012, Uttar Pradesh, India
| | - Souvik Sur
- Research and Development Center, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, 240001, India
| | - Mintu Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kshatresh D Dubey
- Department of Chemistry, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211012, Uttar Pradesh, India
| | - Ajay Mandal
- Symbol Discovery Ltd, ASPIRE-TBI, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
- CSIR- Indian Institute of Chemical Biology (IICB), 4, Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
6
|
Banerjee T, Gosai A, Yousefi N, Garibay OO, Seal S, Balasubramanian G. Examining sialic acid derivatives as potential inhibitors of SARS-CoV-2 spike protein receptor binding domain. J Biomol Struct Dyn 2024; 42:6342-6358. [PMID: 37424217 DOI: 10.1080/07391102.2023.2234044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has been the primary reason behind the COVID-19 global pandemic which has affected millions of lives worldwide. The fundamental cause of the infection is the molecular binding of the viral spike protein receptor binding domain (SP-RBD) with the human cell angiotensin-converting enzyme 2 (ACE2) receptor. The infection can be prevented if the binding of RBD-ACE2 is resisted by utilizing certain inhibitors or drugs that demonstrate strong binding affinity towards the SP RBD. Sialic acid based glycans found widely in human cells and tissues have notable propensity of binding to viral proteins of the coronaviridae family. Recent experimental literature have used N-acetyl neuraminic acid (Sialic acid) to create diagnostic sensors for SARS-CoV-2, but a detailed interrogation of the underlying molecular mechanisms is warranted. Here, we perform all atom molecular dynamics (MD) simulations for the complexes of certain Sialic acid-based molecules with that of SP RBD of SARS CoV-2. Our results indicate that Sialic acid not only reproduces a binding affinity comparable to the RBD-ACE2 interactions, it also assumes the longest time to dissociate completely from the protein binding pocket of SP RBD. Our predictions corroborate that a combination of electrostatic and van der Waals energies as well the polar hydrogen bond interactions between the RBD residues and the inhibitors influence free energy of binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanumoy Banerjee
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | | | - Niloofar Yousefi
- Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Ozlem Ozmen Garibay
- Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, Bionix Cluster, University of Central Florida, Orlando, FL, USA
- Advanced Materials Processing and Analysis Center, Dept. of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ganesh Balasubramanian
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
- Institute of Functional Materials & Devices and College of Health, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
7
|
Truong DT, Ho K, Pham DQH, Chwastyk M, Nguyen-Minh T, Nguyen MT. Treatment of flexibility of protein backbone in simulations of protein-ligand interactions using steered molecular dynamics. Sci Rep 2024; 14:10475. [PMID: 38714683 PMCID: PMC11076533 DOI: 10.1038/s41598-024-59899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/16/2024] [Indexed: 05/10/2024] Open
Abstract
To ensure that an external force can break the interaction between a protein and a ligand, the steered molecular dynamics simulation requires a harmonic restrained potential applied to the protein backbone. A usual practice is that all or a certain number of protein's heavy atoms or Cα atoms are fixed, being restrained by a small force. This present study reveals that while fixing both either all heavy atoms and or all Cα atoms is not a good approach, while fixing a too small number of few atoms sometimes cannot prevent the protein from rotating under the influence of the bulk water layer, and the pulled molecule may smack into the wall of the active site. We found that restraining the Cα atoms under certain conditions is more relevant. Thus, we would propose an alternative solution in which only the Cα atoms of the protein at a distance larger than 1.2 nm from the ligand are restrained. A more flexible, but not too flexible, protein will be expected to lead to a more natural release of the ligand.
Collapse
Affiliation(s)
- Duc Toan Truong
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Kiet Ho
- Institute for Computational Science and Technology (ICST), Quang Trung Software City, Ho Chi Minh City, 70000, Vietnam
| | | | - Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Thai Nguyen-Minh
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam.
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam.
| |
Collapse
|
8
|
Abbasi M, Mansourian M, Oskouie AA, Taheri S, Mahnam K. In-silico study MM/GBSA binding free energy and molecular dynamics simulation of some designed remdesivir derivatives as the inhibitory potential of SARS-CoV-2 main protease. Res Pharm Sci 2024; 19:29-41. [PMID: 39006973 PMCID: PMC11244705 DOI: 10.4103/1735-5362.394818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 01/17/2024] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Coronavirus disease (COVID-19) is one of the greatest challenges of the twentieth century. Recently, in silico tools help to predict new inhibitors of SARS-CoV-2. In this study, the new compounds based on the remdesivir structure (12 compounds) were designed. Experimental approach The main interactions of remdesivir and designed compounds were investigated in the 3CLpro active site. The binding free energy of compounds by the MM-GBSA method was calculated and the best compound (compound 12 with the value of -88.173 kcal/mol) was introduced to the molecular dynamics simulation study. Findings/Results The simulation results were compared with the results of protein simulation without the presence of an inhibitor and in the presence of remdesivir. Additionally, the RMSD results for the protein backbone showed that compound 12 in the second 50 nanoseconds has less fluctuation than the protein alone and in the presence of remdesivir, which indicates the stability of the compound in the active site of the Mpro protein. Furthermore, protein compactness was investigated in the absence of compounds and the presence of compound 12 and remdesivir. The Rg diagram shows a fluctuation of approximately 0.05 A, which indicates the compressibility of the protein in the presence and absence of compounds. The results of the RMSF plot also show the stability of essential amino acids during protein binding. Conclusion and implications Supported by the theoretical results, compound 12 could have the potential to inhibit the 3CLpro enzyme, which requires further in vitro studies and enzyme inhibition must also be confirmed at protein levels.
Collapse
Affiliation(s)
- Maryam Abbasi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
- Department of Pharmacology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Afsaneh Arefi Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Salman Taheri
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, I.R. Iran
| | - Karim Mahnam
- Faculty of Science, Department of Biology, Shahrekord University, Shahrekord, I.R. Iran
| |
Collapse
|
9
|
Ma Z, Xu J, Wang C, Liu Z, Zhu G. Molecular dynamics simulation study on the binding mechanism between carbon nanotubes and RNA-dependent RNA polymerase. J Biomol Struct Dyn 2024:1-10. [PMID: 38263694 DOI: 10.1080/07391102.2024.2308781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Carbon nanotubes (CNTs) have potential prospects in disease treatment, so it is of great significance to study CNTs as the possible inhibitors of RNA-dependent RNA polymerase (RdRp). Through the way of using the RdRp of SARS-COV-2 as a model, five armchair single-walled carbon nanotubes (SWCNTs) (namely Dn, which stands for CNTs (n, m = n), n = 3-7) and RdRp have been selected to study the interactions by means of molecular docking and molecular dynamics simulation. After five SWCNT-RdRp complex systems have been subjected to the molecular dynamics simulations of 100 ns, and Molecular Mechanics Poisson - Boltzmann Surface Area (MMPBSA) has been used to calculate the binding free energy, it is found that the binding free energy of the D6 system (-189.541 kJ/mol) is significantly higher than that of the other four systems, and most of the amino acids with strong positive effects on binding are usually basic amino acids. What's more, in the further investigation of the specific interaction mechanism between CNT (6,6) and RdRp, it is revealed that the three amino acid residues LYS545, ARG553 and ARG555 located in the nucleoside triphosphate (NTP) entry channel all have strong effects. In addition, it is also observed that when ARG555 has been inserted into SWCNT, a stable structure will be formed, which will break the original NTP entry channel structure and inhibit virus replication. Therefore, it can be concluded that certain specific types of SWCNT, such as CNT (6,6), could be potential small molecule inhibitors in the treatment of coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhaopeng Ma
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Jianqiang Xu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Chenchen Wang
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Zhicong Liu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Guanglai Zhu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| |
Collapse
|
10
|
Shehzadi K, Yu M, Liang J. De Novo Potent Peptide Nucleic Acid Antisense Oligomer Inhibitors Targeting SARS-CoV-2 RNA-Dependent RNA Polymerase via Structure-Guided Drug Design. Int J Mol Sci 2023; 24:17473. [PMID: 38139312 PMCID: PMC10744289 DOI: 10.3390/ijms242417473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Global reports of novel SARS-CoV-2 variants and recurrence cases continue despite substantial vaccination campaigns, raising severe concerns about COVID-19. While repurposed drugs offer some treatment options for COVID-19, notably, nucleoside inhibitors like Remdesivir stand out as curative therapies for COVID-19 that are approved by the US Food and Drug Administration (FDA). The emergence of highly contagious SARS-CoV-2 variants underscores the imperative for antiviral drugs adaptable to evolving viral mutations. RNA-dependent RNA polymerase (RdRp) plays a key role in viral genome replication. Currently, inhibiting viral RdRp function remains a pivotal strategy to tackle the notorious virus. Peptide nucleic acid (PNA) therapy shows promise by effectively targeting specific genome regions, reducing viral replication, and inhibiting infection. In our study, we designed PNA antisense oligomers conjugated with cell-penetrating peptides (CPP) aiming to evaluate their antiviral effects against RdRp target using structure-guided drug design, which involves molecular docking simulations, drug likeliness and pharmacokinetic evaluations, molecular dynamics simulations, and computing binding free energy. The in silico analysis predicts that chemically modified PNAs might act as antisense molecules in order to disrupt ribosome assembly at RdRp's translation start site, and their chemically stable and neutral backbone might enhance sequence-specific RNA binding interaction. Notably, our findings demonstrate that PNA-peptide conjugates might be the most promising inhibitors of SARS-CoV-2 RdRp, with superior binding free energy compared to Remdesivir in the current COVID-19 medication. Specifically, PNA-CPP-1 could bind simultaneously to the active site residues of RdRp protein and sequence-specific RdRp-RNA target in order to control viral replication.
Collapse
Affiliation(s)
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| |
Collapse
|
11
|
Silva RS, Souza LMP, Costa RKM, Souza FR, Pimentel AS. Absolute binding free energies of the antiviral peptide ATN-161 with protein targets of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:10546-10557. [PMID: 36476274 DOI: 10.1080/07391102.2022.2154848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The interactions of the antiviral pentapeptide ATN-161 with the closed and open conformations of the α5β1 integrin, the SARS-CoV-2 major protease, and the omicron variant spike protein complexed with hACE2 were studied using molecular docking and molecular dynamics simulation. Molecular docking was performed to obtain ATN-161 binding poses with these studied protein targets. Subsequently, molecular dynamics simulations were performed to verify the ligand stability at the binding site of each protein target. Pulling simulations, umbrella sampling, and weighted histogram analysis method were used to obtain the potential of mean force of each system and calculate the Gibbs free energy of binding for the ATN-161 peptide in each binding site of these protein targets. The results showed that ATN-161 binds to α5β1 integrin in its active and inactive form, binds weakly to the omicron variant spike protein complexed with hACE2, and strongly binds to the main protease target.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rudielson Santos Silva
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Chan LC, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, Abu Bakar AMS. Inhibition of SARS-CoV-2 3CL protease by the anti-viral chimeric protein RetroMAD1. Sci Rep 2023; 13:20178. [PMID: 37978223 PMCID: PMC10656507 DOI: 10.1038/s41598-023-47511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
COVID-19 results from SARS-CoV-2, which mutates frequently, challenging current treatments. Therefore, it is critical to develop new therapeutic drugs against this disease. This study explores the interaction between SARS-CoV-2 3CLpro and RetroMAD1, a well-characterized coronavirus protein and potential drug target, using in-silico methods. The analysis through the HDOCK server showed stable complex formation with a binding energy of -12.3, the lowest among reference drugs. The RetroMAD1-3CLpro complex underwent a 100 ns molecular dynamics simulation (MDS) in an explicit solvation system, generating various trajectories, including RMSD, RMSF, hydrogen bonding, radius of gyration, and ligand binding energy. MDS results confirmed intact interactions within the RetroMAD1-3CLpro complex during simulations. In vitro experiments validated RetroMAD1's ability to inhibit 3CLpro enzyme activity and prevent SARS-CoV-2 infection in human bronchial cells. RetroMAD1 exhibited antiviral efficacy comparable to Remdesivir without cytotoxicity at effective concentrations. These results suggest RetroMAD1 as a potential drug candidate against SARS-CoV-2, warranting further in vivo and clinical studies to assess its efficiency.
Collapse
Affiliation(s)
- Lee-Chin Chan
- Biovalence Sdn. Bhd., 22, Jalan SS 25/34, Taman Mayang, 47301, Petaling Jaya, Selangor, Malaysia
- Biovalence Technologies Pte. Ltd., #06-307 The Plaza, 7500A Beach Road, Singapore, 199591, Singapore
| | - Aini Syahida Mat Yassim
- Biovalence Sdn. Bhd., 22, Jalan SS 25/34, Taman Mayang, 47301, Petaling Jaya, Selangor, Malaysia.
- Biovalence Technologies Pte. Ltd., #06-307 The Plaza, 7500A Beach Road, Singapore, 199591, Singapore.
- School of Health Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Abdullah Al Hadi Ahmad Fuaad
- Centre of Fundamental and Frontier Sciences in Self-Assembly (FSSA), Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thean Chor Leow
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Radin Shafierul Radin Yahaya
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Awang Muhammad Sagaf Abu Bakar
- Jabatan Perkhidmatan Veterinar Sabah, Aras 3, Blok B, Wisma Pertanian Sabah, Jalan Tasik, Luyang (Off Jln Maktab Gaya), Beg Berkunci 2051, 88999, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
14
|
Murali M, Nair B, Vishnu VR, Aneesh TP, Nath LR. 2,4-Dihydroxycinnamic acid as spike ACE2 inhibitor and apigenin as RdRp inhibitor in Nimbamritadi Panchatiktam Kashayam against COVID-19: an in silico and in vitro approach. Mol Divers 2023; 27:2353-2363. [PMID: 36357813 PMCID: PMC9648999 DOI: 10.1007/s11030-022-10552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
Nimbamritadi Panchatiktam Kashayam (NPK) is an ayurvedic formulation composed of ingredients with potent anti-viral activities. We studied the interaction energy of 144 phytoconstituents present in NPK against spike receptor-binding domain (RBD) complexed with ACE2 protein (PDB ID: 6LZG) and RNA-dependent RNA polymerase protein (PDB ID: 7BTF) using Biovia Drug Discovery studio. The result indicated that 2,4-hydroxycinnamic acid exerts more significant binding affinities (28.43 kcal/mol) than Umifenovir (21.24 kcal/mol) against spike ACE2. Apigenin exhibited the highest binding affinities (54.63 kcal/mol) compared with Remdesivir (24.52 kcal/mol) against RdRp. An in vitro analysis showed a reduction in the number of lentiviral particles on transfected HEK293T-hACE2 cells as assessed by pseudovirus inhibition assay. At the same time, the tested compounds showed non-toxic up to 100 µg/ml in normal cells by MTT assay. The study highlights the plausible clinical utility of this traditional medicine against SARS CoV2.
Collapse
Affiliation(s)
- Maneesha Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India
| | - V R Vishnu
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
15
|
Nguyen HL, Thai NQ, Li MS. Identifying inhibitors of NSP16-NSP10 of SARS-CoV-2 from large databases. J Biomol Struct Dyn 2023; 41:7045-7054. [PMID: 36002258 DOI: 10.1080/07391102.2022.2114941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic, which has already claimed millions of lives, continues to pose a serious threat to human health, requiring the development of new effective drugs. Non-structural proteins of SARS-CoV-2 play an important role in viral replication and infection. Among them, NSP16 (non-structured protein 16) and its cofactor NSP10 (non-structured protein 10) perform C2'-O methylation at the 5' end of the viral RNA, which promotes efficient virus replication. Therefore, the NSP16-NSP10 complex becomes an attractive target for drug development. Using a multi-step virtual screening protocol which includes Lipinski's rule, docking, steered molecular dynamics and umbrella sampling, we searched for potential inhibitors from the PubChem and anti-HIV databases. It has been shown that CID 135566620 compound from PubChem is the best candidate with an inhibition constant in the sub-μM range. The Van der Waals interaction was found to be more important than the electrostatic interaction in the binding affinity of this compound to NSP16-NSP10. Further in vitro and in vivo studies are needed to test the activity of the identified compound against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung, Software City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Jamir E, Sarma H, Priyadarsinee L, Kiewhuo K, Nagamani S, Sastry GN. Polypharmacology guided drug repositioning approach for SARS-CoV2. PLoS One 2023; 18:e0289890. [PMID: 37556478 PMCID: PMC10411734 DOI: 10.1371/journal.pone.0289890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Drug repurposing has emerged as an important strategy and it has a great potential in identifying therapeutic applications for COVID-19. An extensive virtual screening of 4193 FDA approved drugs has been carried out against 24 proteins of SARS-CoV2 (NSP1-10 and NSP12-16, envelope, membrane, nucleoprotein, spike, ORF3a, ORF6, ORF7a, ORF8, and ORF9b). The drugs were classified into top 10 and bottom 10 drugs based on the docking scores followed by the distribution of their therapeutic indications. As a result, the top 10 drugs were found to have therapeutic indications for cancer, pain, neurological disorders, and viral and bacterial diseases. As drug resistance is one of the major challenges in antiviral drug discovery, polypharmacology and network pharmacology approaches were employed in the study to identify drugs interacting with multiple targets and drugs such as dihydroergotamine, ergotamine, bisdequalinium chloride, midostaurin, temoporfin, tirilazad, and venetoclax were identified among the multi-targeting drugs. Further, a pathway analysis of the genes related to the multi-targeting drugs was carried which provides insight into the mechanism of drugs and identifying targetable genes and biological pathways involved in SARS-CoV2.
Collapse
Affiliation(s)
- Esther Jamir
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kikrusenuo Kiewhuo
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - G. Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Ansari WA, Rab SO, Saquib M, Sarfraz A, Hussain MK, Akhtar MS, Ahmad I, Khan MF. Pentafuhalol-B, a Phlorotannin from Brown Algae, Strongly Inhibits the PLK-1 Overexpression in Cancer Cells as Revealed by Computational Analysis. Molecules 2023; 28:5853. [PMID: 37570823 PMCID: PMC10421442 DOI: 10.3390/molecules28155853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Polo-like kinase-1 (PLK-1) is an essential mitotic serine/threonine (Ser/Thr) kinase that belongs to the Polo-like kinase (PLK) family and is overexpressed in non-small cell lung cancer (NSCLC) via promotion of cell division. Therefore, PLK-1 may act as a promising target for the therapeutic cure of various cancers. Although a variety of anti-cancer drugs, both synthetic and naturally occurring, such as volasertib, onvansertib, thymoquinone, and quercetin, are available either alone or in combination with other therapies, they have limited efficacy, especially in the advanced stages of cancer. To the best of our knowledge, no anticancer agent has been reported from marine algae or microorganisms to date. Thus, the aim of the present study is a high-throughput virtual screening of phlorotannins, obtained from edible brown algae, using molecular docking and molecular dynamic simulation analysis. Among these, Pentafuhalol-B (PtB) showed the lowest binding energy (best of triplicate runs) against the target protein PLK-1 as compared to the reference drug volasertib. Further, in MD simulation (best of triplicate runs), the PtB-PLK-1 complex displayed stability in an implicit water system through the formation of strong molecular interactions. Additionally, MMGBSA calculation (best of triplicate runs) was also performed to validate the PtB-PLK-1 complex binding affinities and stability. Moreover, the chemical reactivity of PtB towards the PLK-1 target was also optimised using density functional theory (DFT) calculations, which exhibited a lower HOMO-LUMO energy gap. Overall, these studies suggest that PtB binds strongly within the pocket sites of PLK-1 through the formation of a stable complex, and also shows higher chemical reactivity than the reference drug volasertib. The present study demonstrated the inhibitory nature of PtB against the PLK-1 protein, establishing its potential usefulness as a small molecule inhibitor for the treatment of different types of cancer.
Collapse
Affiliation(s)
- Waseem Ahmad Ansari
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India; (W.A.A.)
- Department of Chemistry, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (S.O.R.)
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India;
| | - Aqib Sarfraz
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India; (W.A.A.)
| | - Mohd Kamil Hussain
- Department of Chemistry, Government Raza P.G. College, Rampur, M. J. P. Rohilkhand University, Bareilly 244901, India;
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (S.O.R.)
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India; (W.A.A.)
- Department of Chemistry, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, India
| |
Collapse
|
18
|
Cardoza S, Shrivash MK, Riva L, Chatterjee AK, Mandal A, Tandon V. Multistep Synthesis of Analogues of Remdesivir: Incorporating Heterocycles at the C-1' Position. J Org Chem 2023; 88:9105-9122. [PMID: 37276453 DOI: 10.1021/acs.joc.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies suggest that the 1'β-CN moiety in remdesivir sterically clashes with the Ser861 residue of the RNA-dependent-RNA polymerase (RdRp), causing a delayed chain termination in the RNA replication process. Replacing C1'β-CN with 5-membered heterocycles such as tetrazoles, oxadiazoles, and triazoles can augment the inhibitory activity and pharmacokinetic profile of C-nucleotides. Synthesis of tetrazole-, triazole-, and oxadiazole-integrated C1' analogues of remdesivir was attempted using general synthetic routes. The final compounds 26, 28, and 29 did not inhibit viral replication; however, the synthetic intermediates, i.e., 27 and 50, exhibited an IC90 = 14.1 μM each. The trifluoromethyl-substituted 1,2,4-oxadiazole 59 showed an IC90 of 33.5 μM. This work adds to the growing evidence of the beneficial medicinal impact of C1,1'-disubstituted C-nucleotides.
Collapse
Affiliation(s)
- Savio Cardoza
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Kumar Shrivash
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Laura Riva
- Calibr, Scripps Research, La Jolla, 11119 North Torrey Pines Road Suite 100, California 92037, United States
| | - Arnab K Chatterjee
- Calibr, Scripps Research, La Jolla, 11119 North Torrey Pines Road Suite 100, California 92037, United States
| | - Ajay Mandal
- Symbol Discovery Ltd, ASPIRE-TBI, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
19
|
Suhandi C, Alfathonah SS, Hasanah AN. Potency of Xanthone Derivatives from Garcinia mangostana L. for COVID-19 Treatment through Angiotensin-Converting Enzyme 2 and Main Protease Blockade: A Computational Study. Molecules 2023; 28:5187. [PMID: 37446849 DOI: 10.3390/molecules28135187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
ACE2 and Mpro in the pathology of SARS-CoV-2 show great potential in developing COVID-19 drugs as therapeutic targets, due to their roles as the "gate" of viral entry and viral reproduction. Of the many potential compounds for ACE2 and Mpro inhibition, α-mangostin is a promising candidate. Unfortunately, the potential of α-mangostin as a secondary metabolite with the anti-SARS-CoV-2 activity is hindered due to its low solubility in water. Other xanthone isolates, which also possess the xanthone core structure like α-mangostin, are predicted to be potential alternatives to α-mangostin in COVID-19 treatment, addressing the low drug-likeness of α-mangostin. This study aims to assess the potential of xanthone derivative compounds in the pericarp of mangosteen (Garcinia mangostana L.) through computational study. The study was conducted through screening activity using molecular docking study, drug-likeness prediction using Lipinski's rule of five filtration, pharmacokinetic and toxicity prediction to evaluate the safety profile, and molecular dynamic study to evaluate the stability of formed interactions. The research results showed that there were 11 compounds with high potential to inhibit ACE2 and 12 compounds to inhibit Mpro. However, only garcinone B, in addition to being indicated as active, also possesses a drug-likeness, pharmacokinetic, and toxicity profile that was suitable. The molecular dynamic study exhibited proper stability interaction between garcinone B with ACE2 and Mpro. Therefore, garcinone B, as a xanthone derivative isolate compound, has promising potential for further study as a COVID-19 treatment as an ACE2 and Mpro inhibitor.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Siti Sarah Alfathonah
- Department Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
20
|
Molecular modeling and simulations of some antiviral drugs, benzylisoquinoline alkaloid, and coumarin molecules to investigate the effects on Mpro main viral protease inhibition. Biochem Biophys Rep 2023; 34:101459. [PMID: 36987522 PMCID: PMC10037929 DOI: 10.1016/j.bbrep.2023.101459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Background SARS-CoV-2 is a deadly viral disease and uncounted deaths occurs since its first appearance in the year 2019. The antiviral drugs, benzylisoquinoline alkaloids, and coumarin molecules were searched using different online engines for drug repurposing with SARS-CoV-2 and to investigate the effects on main viral protease (Mpro) upon their bindings. Methods A database composed of antiviral drugs, benzylisoquinoline alkaloids, and Coumarin molecules was screened through a molecular docking strategy to uncover the interactions of collected molecules with SARS-CoV-2 Mpro. Further, molecular dynamics simulations (MDS) were implemented for 100 ns to calculate the stability of the best complexed molecular scaffold with Mpro. The conformations of the simulated complexes were investigated by using principal component analysis (PCA) and Gibbs energy landscape (FEL) and DSSP together. Next, free binding energy (ΔGbind) was calculated using the mmpbsa method. Results Molecular docking simulations demonstrate 17 molecules exhibited better binding affinity out of 99 molecules present in the database with the viral protease Mpro, followed ADMET properties and were documented. The Coumarin-EM04 molecular scaffold exhibited interactions with catalytical dyad HIS41, CYS145, and neighboring amino acids SER165 and GLN189 in the catalytical site. The crucial factor RMSD was calculated to determine the orientations of Coumarin-EM04. The Coumarin-EM04 complexed with Mpro was found stable in the binding site during MDS. Furthermore, the free energy binding ΔGbind of Coumarin-EM04 was found to be −187.471 ± 2.230 kJ/mol, and for Remdesivir ΔGbind was −171.926 ± 2.237 kJ/mol with SARS-CoV-2 Mpro. Conclusion In this study, we identify potent molecules that exhibit interactions with catalytical dyad HIS41 and CYS145 amino acids and unravel Coumarin-EM04 exhibited ΔGbind higher than Remdesivir against Mpro and thus may serve better antiviral agent against SARS-CoV-2.
Collapse
|
21
|
Samanta PN, Majumdar D, Leszczynski J. Elucidating Atomistic Insight into the Dynamical Responses of the SARS-CoV-2 Main Protease for the Binding of Remdesivir Analogues: Leveraging Molecular Mechanics To Decode the Inhibition Mechanism. J Chem Inf Model 2023; 63:3404-3422. [PMID: 37216421 DOI: 10.1021/acs.jcim.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To combat mischievous coronavirus disease followed by continuous upgrading of therapeutic strategy against the antibody-resistant variants, the molecular mechanistic understanding of protein-drug interactions is a prerequisite in the context of target-specific rational drug development. Herein, we attempt to decipher the structural basis for the inhibition of SARS-CoV-2 main protease (Mpro) through the elemental analysis of potential energy landscape and the associated thermodynamic and kinetic properties of the enzyme-inhibitor complexes using automated molecular docking calculations in conjunction with classical force field-based molecular dynamics (MD) simulations. The crux of the scalable all-atom MD simulations consummated in explicit solvent media is to capture the structural plasticity of the viral enzyme due to the binding of remdesivir analogues and ascertain the subtle interplay of noncovalent interactions in stabilizing specific conformational states of the receptor that controls the biomolecular processes related to the ligand binding and dissociation kinetics. To unravel the critical role of modulation of the ligand scaffold, we place further emphasis on the estimation of binding free energy as well as the energy decomposition analysis by employing the generalized Born and Poisson-Boltzmann models. The estimated binding affinities are found to vary between -25.5 and -61.2 kcal/mol. Furthermore, the augmentation of inhibitory efficacy of the remdesivir analogue crucially stems from the van der Waals interactions with the active site residues of the protease. The polar solvation energy contributes unfavorably to the binding free energy and annihilates the contribution of electrostatic interactions as derived from the molecular mechanical energies.
Collapse
Affiliation(s)
- Pabitra Narayan Samanta
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Devashis Majumdar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
22
|
Cho J, Shin Y, Yang JS, Kim JW, Kim KC, Lee JY. Evaluation of antiviral drugs against newly emerged SARS-CoV-2 Omicron subvariants. Antiviral Res 2023; 214:105609. [PMID: 37086978 PMCID: PMC10118056 DOI: 10.1016/j.antiviral.2023.105609] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Ongoing emergence of SARS-CoV-2 Omicron subvariants and their rapid worldwide spread pose a threat to public health. From November 2022 to February 2023, newly emerged Omicron subvariants, including BQ.1.1, BF.7, BA.5.2, XBB.1, XBB.1.5, and BN.1.9, became prevalent global strains (>5% global prevalence). These Omicron subvariants are resistant to several therapeutic antibodies. Thus, the antiviral activity of current drugs such as remdesivir, molnupiravir, and nirmatrelvir, which target highly conserved regions of SARS-CoV-2, against newly emerged Omicron subvariants need to be evaluated. We assessed the antiviral efficacy of the drugs using the half-maximal inhibitory concentration (IC50) against human isolates of 23 Omicron subvariants and four former SARS-CoV-2 variants of concern (VOCs) and compared it with the antiviral efficacy of these drugs against the SARS-CoV-2 reference strain (hCoV/Korea/KCDC03/2020). Maximal IC50-fold changes of remdesivir, molnupiravir, and nirmatrelvir were 1.9 (BA.2.75.2), 1.2 (B.1.627.2), and 1.4 (BA.2.3), respectively, compared to median IC50 values of the reference strain. Moreover, median IC50-fold changes of remdesivir, molnupiravir, and nirmatrelvir against the Omicron variants were 0.96, 0.4, and 0.62, respectively, similar to the 1.02, 0.88, and 0.67, respectively, median IC50-fold changes for previous VOCs. Although K90R and P132H in Nsp 5, and P323L, A529V, G671S, V405F, and ins823D in Nsp 12 mutations were identified, these amino acid substitutions did not affect drug antiviral activity. These results indicate that current antivirals retain antiviral efficacy against newly emerged Omicron subvariants. It is important to continue active surveillance and testing of new variants for drug resistance to enable early identification of drug-resistant strains.
Collapse
Affiliation(s)
- Junhyung Cho
- Division of Emerging Viral Diseases and Vector Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Younmin Shin
- Division of Emerging Viral Diseases and Vector Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Jeong-Sun Yang
- Division of Emerging Viral Diseases and Vector Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Jun Won Kim
- Division of Emerging Viral Diseases and Vector Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Kyung-Chang Kim
- Division of Emerging Viral Diseases and Vector Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea.
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea.
| |
Collapse
|
23
|
Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2023; 20:254-283. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of fast-spreading SARS-CoV-2 mutants has sparked a new phase of COVID-19 pandemic. There is a dire necessity for antivirals targeting highly conserved genomic domains on SARS-CoV-2 that are less prone to mutation. The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), the core component of 'SARS-CoV-2 replication-transcription complex', is a potential well-conserved druggable antiviral target. Several FDA-approved RdRp 'nucleotide analog inhibitors (NAIs)' such as remdesivir, have been repurposed to treat COVID-19 infections. The NAIs target RdRp protein translation and competitively block the nucleotide insertion into the RNA chain, resulting in the inhibition of viral replication. However, the replication proofreading function of nsp14-ExoN could provide resistance to SARS-CoV-2 against many NAIs. Conversely, the 'non-nucleoside analog inhibitors (NNAIs)' bind to allosteric sites on viral polymerase surface, change the redox state; thereby, exert antiviral activity by altering interactions between the enzyme substrate and active core catalytic site of the RdRp. NNAIs neither require metabolic activation (unlike NAIs) nor compete with intracellular pool of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAIs from phytonutrient origin are potential antiviral candidates compared to their synthetic counterparts. Several in-silico studies reported the antiviral spectrum of natural phytonutrient-NNAIs such as Suramin, Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein (5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bioflavonoid), Lycorine (pyrrolidine alkaloid), with superior redox characteristics (free binding energy, hydrogen-bonds, etc.) than antiviral drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAIs also exert anti-inflammatory, antioxidant, immunomodulatory and cardioprotective functions, with multifunctional therapeutic benefits in the clinical management of COVID-19.
Collapse
Affiliation(s)
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
24
|
Chaube U, Patel BD, Bhatt HG. A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2. 3 Biotech 2023; 13:12. [PMID: 36532857 PMCID: PMC9755803 DOI: 10.1007/s13205-022-03430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.
Collapse
Affiliation(s)
- Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
25
|
Gao S, Song L, Xu H, Fikatas A, Oeyen M, De Jonghe S, Zhao F, Jing L, Jochmans D, Vangeel L, Cheng Y, Kang D, Neyts J, Herdewijn P, Schols D, Zhan P, Liu X. Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010160. [PMID: 36615354 PMCID: PMC9822497 DOI: 10.3390/molecules28010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen 518057, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongtao Xu
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Merel Oeyen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| |
Collapse
|
26
|
The Potential of Stilbene Compounds to Inhibit M pro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Curr Issues Mol Biol 2022; 45:12-32. [PMID: 36661488 PMCID: PMC9857500 DOI: 10.3390/cimb45010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
COVID-19 disease has had a global impact on human health with increased levels of morbidity and mortality. There is an unmet need to design and produce effective antivirals to treat COVID-19. This study aimed to explore the potential ability of natural stilbenes to inhibit the Mpro protease, an acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enzyme involved in viral replication. The binding affinities of stilbene compounds against Mpro were scrutinized using molecular docking, prime molecular mechanics-generalized Born surface area (MM-GBSA) energy calculations, and molecular dynamic simulations. Seven stilbene molecules were docked with Mpro and compared with GC376 and N3, antivirals with demonstrated efficacy against Mpro. Ligand binding efficiencies and polar and non-polar interactions between stilbene compounds and Mpro were analyzed. The binding affinities of astringin, isorhapontin, and piceatannol were -9.319, -8.166, and -6.291 kcal/mol, respectively, and higher than either GC376 or N3 at -6.976 and -6.345 kcal/mol, respectively. Prime MM-GBSA revealed that these stilbene compounds exhibited useful ligand efficacy and binding affinity to Mpro. Molecular dynamic simulation studies of astringin, isorhapontin, and piceatannol showed their stability at 300 K throughout the simulation time. Collectively, these results suggest that stilbenes such as astringin, isorhapontin, and piceatannol could provide useful natural inhibitors of Mpro and thereby act as novel treatments to limit SARS-CoV-2 replication.
Collapse
|
27
|
Ngo ST, Nguyen TH, Tung NT, Vu VV, Pham MQ, Mai BK. Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro via physics- and knowledge-based approaches. Phys Chem Chem Phys 2022; 24:29266-29278. [PMID: 36449268 DOI: 10.1039/d2cp04476e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computational approaches, including physics- and knowledge-based methods, have commonly been used to determine the ligand-binding affinity toward SARS-CoV-2 main protease (Mpro or 3CLpro). Strong binding ligands can thus be suggested as potential inhibitors for blocking the biological activity of the protease. In this context, this paper aims to provide a short review of computational approaches that have recently been applied in the search for inhibitor candidates of Mpro. In particular, molecular docking and molecular dynamics (MD) simulations are usually combined to predict the binding affinity of thousands of compounds. Quantitative structure-activity relationship (QSAR) is the least computationally demanding and therefore can be used for large chemical collections of ligands. However, its accuracy may not be high. Moreover, the quantum mechanics/molecular mechanics (QM/MM) method is most commonly used for covalently binding inhibitors, which also play an important role in inhibiting the activity of SARS-CoV-2. Furthermore, machine learning (ML) models can significantly increase the searching space of ligands with high accuracy for binding affinity prediction. Physical insights into the binding process can then be confirmed via physics-based calculations. Integration of ML models into computational chemistry provides many more benefits and can lead to new therapies sooner.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
An Analysis of the Capturing and Passing Ability of a DNA Origami Nanocarrier with the Aid of Molecular Dynamics Simulation. Mol Biotechnol 2022:10.1007/s12033-022-00636-4. [DOI: 10.1007/s12033-022-00636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
|
29
|
La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022; 65:12500-12534. [PMID: 36169610 PMCID: PMC9528073 DOI: 10.1021/acs.jmedchem.2c01005] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.
Collapse
Affiliation(s)
| | | | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| |
Collapse
|
30
|
Garg P, Vanamamalai VK, Jali I, Sharma S. In silico prediction of the animal susceptibility and virtual screening of natural compounds against SARS-CoV-2: Molecular dynamics simulation based analysis. Front Genet 2022; 13:906955. [PMID: 36110222 PMCID: PMC9468858 DOI: 10.3389/fgene.2022.906955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. It has six open reading frames (orf1ab, orf3a, orf6, orf7a, orf8, and orf10), a spike protein, a membrane protein, an envelope small membrane protein, and a nucleocapsid protein, out of which, orf1ab is the largest ORF coding different important non-structural proteins. In this study, an effort was made to evaluate the susceptibility of different animals against SARS-CoV-2 by analyzing the interactions of Spike and ACE2 proteins of the animals and propose a list of potential natural compounds binding to orf1ab of SARS-CoV-2. Here, we analyzed structural interactions between spike proteins of SARS-CoV-2 and the ACE2 receptor of 16 different hosts. A simulation for 50 ns was performed on these complexes. Based on post-simulation analysis, Chelonia mydas was found to have a more stable complex, while Bubalus bubalis, Aquila chrysaetos chrysaetos, Crocodylus porosus, and Loxodonta africana were found to have the least stable complexes with more fluctuations than all other organisms. Apart from that, we performed domain assignment of orf1ab of SARS-CoV-2 and identified 14 distinct domains. Out of these, Domain 3 (DNA/RNA polymerases) was selected as a target, as it showed no similarities with host proteomes and was validated in silico. Then, the top 10 molecules were selected from the virtual screening of ∼1.8 lakh molecules from the ZINC database, based on binding energy, and validated for ADME and toxicological properties. Three molecules were selected and analyzed further. The structural analysis showed that these molecules were residing within the pocket of the receptor. Finally, a simulation for 200 ns was performed on complexes with three selected molecules. Based on post-simulation analysis (RMSD, RMSF, Rg, SASA, and energies), the molecule ZINC000103666966 was found as the most suitable inhibitory compound against Domain 3. As this is an in silico prediction, further experimental studies could unravel the potential of the proposed molecule against SARS-CoV-2.
Collapse
|
31
|
Souza FR, Moura PG, Costa RKM, Silva RS, Pimentel AS. Absolute binding free energies of mucroporin and its analog mucroporin-M1 with the heptad repeat 1 domain and RNA-dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 2022:1-12. [PMID: 35993479 DOI: 10.1080/07391102.2022.2114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The peptide Mucroporin and its analog Mucroporin-M1 were studied using the molecular docking and molecular dynamics simulation of their complexation with two protein targets, the Heptad Repeat 1 (HR1) domain and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The molecular docking of the peptide-protein complexes was performed using the glowworm swarm optimization algorithm. The lowest energy poses were submitted to molecular dynamics simulation. Then, the binding free energies of Mucroporin and its analog Mucroporin-M1 with these two protein targets were calculated using the Multistate Bennett Acceptance Ratio (MBAR) method. It was verified that the peptides/HR1 domain complex showed stability in the interaction site determined by molecular docking. It was also found that Mucroporin-M1 has a much higher affinity than Mucroporin to the HR1 protein target. The peptides showed similar stability and affinity at the NTP binding site in the RdRp protein. Additional experimental studies are needed to confirm the antiviral activity of Mucroporin-M1 and a possible mechanism of action against SARS-CoV-2. However, here we indicate that Mucroporin-M1 may have potential antiviral activity against the HR1 domain with the possibility for further peptide optimization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paloma Guimarães Moura
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Rudielson Santos Silva
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Arba M, Paradis N, Wahyudi ST, Brunt DJ, Hausman KR, Lakernick PM, Singh M, Wu C. Unraveling the binding mechanism of the active form of Remdesivir to RdRp of SARS-CoV-2 and designing new potential analogues: Insights from molecular dynamics simulations. Chem Phys Lett 2022; 799:139638. [PMID: 35475235 PMCID: PMC9020840 DOI: 10.1016/j.cplett.2022.139638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
The binding of the active form of Remdesivir (RTP) to RNA-dependent RNA Polymerase (RdRp) of SARS-CoV-2 was studied using molecular dynamics simulation. The RTP maintained the interactions observed in the experimental cryo-EM structure. Next, we designed new analogues of RTP, which not only binds to the RNA primer strand in a similar pose as that of RTP, but also binds more strongly than RTP does as predicted by MM-PBSA binding energy. This suggest that these analogues might be able to covalently link to the primer strand as RTP, but their 3' modification would terminate the primer strand growth.
Collapse
Affiliation(s)
- Muhammad Arba
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia
| | - Nicholas Paradis
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Setyanto T Wahyudi
- Department of Physics, Faculty of Mathematic and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Dylan J Brunt
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Katherine R Hausman
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Phillip M Lakernick
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Mursalin Singh
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| |
Collapse
|
33
|
Design, synthesis and docking study of Vortioxetine derivatives as a SARS-CoV-2 main protease inhibitor. DARU : JOURNAL OF FACULTY OF PHARMACY, TEHRAN UNIVERSITY OF MEDICAL SCIENCES 2022; 30:139-152. [PMID: 35508799 PMCID: PMC9067898 DOI: 10.1007/s40199-022-00441-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/09/2022] [Indexed: 12/02/2022]
Abstract
Purpose Vortioxetine an anti-depressant FDA-drug recently reported showing better in vitro efficacy against SARS-CoV-2. Methods In this study, we have synthesized ten new derivatives having alkenes, alkynes, benzyl, aryl, and mixed carbamate at the N-terminal of vortioxetine. Then the binding energy and interactions with the crucial amino acid residues in the binding pocket of main protease (Mpro) of SARS-CoV-2, of reported and ten newly synthesized vortioxetine derivatives (total thirty-one) in comparison with remdesivir are analyzed and presented in this paper. Results Based on the docking scores predicted by ADV and AD, most vortioxetine derivatives showed better binding efficiency towards Mpro of SARS-CoV-2 in comparison with remdesivir (an EUA approved drug against SARS-CoV-2 Mpro) and vortioxetine. Conclusion This study shows that some vortioxetine derivatives can be developed into promising drugs for COVID-19 treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s40199-022-00441-z.
Collapse
|
34
|
Zhang C, Yang M. Newly Emerged Antiviral Strategies for SARS-CoV-2: From Deciphering Viral Protein Structural Function to the Development of Vaccines, Antibodies, and Small Molecules. Int J Mol Sci 2022; 23:6083. [PMID: 35682761 PMCID: PMC9181103 DOI: 10.3390/ijms23116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the most severe health crisis, causing extraordinary economic disruption worldwide. SARS-CoV-2 is a single-stranded RNA-enveloped virus. The process of viral replication and particle packaging is finished in host cells. Viral proteins, including both structural and nonstructural proteins, play important roles in the viral life cycle, which also provides the targets of treatment. Therefore, a better understanding of the structural function of virus proteins is crucial to speed up the development of vaccines and therapeutic strategies. Currently, the structure and function of proteins encoded by the SARS-CoV-2 genome are reviewed by several studies. However, most of them are based on the analysis of SARS-CoV-1 particles, lacking a systematic review update for SARS-CoV-2. Here, we specifically focus on the structure and function of proteins encoded by SARS-CoV-2. Viral proteins that contribute to COVID-19 infection and disease pathogenesis are reviewed according to the most recent research findings. The structure-function correlation of viral proteins provides a fundamental rationale for vaccine development and targeted therapy. Then, current antiviral vaccines are updated, such as inactive viral vaccines and protein-based vaccines and DNA, mRNA, and circular RNA vaccines. A summary of other therapeutic options is also reviewed, including monoclonal antibodies such as a cross-neutralizer antibody, a constructed cobinding antibody, a dual functional monoclonal antibody, an antibody cocktail, and an engineered bispecific antibody, as well as peptide-based inhibitors, chemical compounds, and clustered regularly interspaced short palindromic repeats (CRISPR) exploration. Overall, viral proteins and their functions provide the basis for targeted therapy and vaccine development.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
35
|
Shahabi M, Raissi H. A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Adv 2022; 12:14167-14174. [PMID: 35558858 PMCID: PMC9092566 DOI: 10.1039/d2ra01420c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Currently, a preventive and curative treatment for COVID-19 is an urgent global issue. According to the fact that nanomaterial-based drug delivery systems as risk-free approaches for successful therapeutic strategies may led to immunization against COVID-19 pandemic, the delivery of Carmofur as a potential drug for the SARS-CoV-2 treatment via graphene oxide quantum dots (GOQDs) was investigated in silico using molecular dynamics (MD) simulation. MD simulation showed that π-π stacking together with hydrogen bonding played vital roles in the stability of the Carmofur-GOQD complex. Spontaneous attraction of GOQDs loaded with Carmofur toward the binding pocket of the main protease (Mpro) resulted in the penetration of Carmofur into the active catalytic region. It was found that the presence of GOQD as an effective carrier in the loading and delivery of Carmofur inhibitor affected the structural conformation of Mpro. Higher RMSF values of the key residues of the active site indicated their greater displacement to adopt Carmofur. These results suggested that the binding pocket of Mpro is not stable during the interaction with the Carmofur-GOQD complex. This study provided insights into the potential application of graphene oxide quantum dots as an effective Carmofur drug delivery system for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand Birjand Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran
| |
Collapse
|
36
|
Zhang C, Zhang C, Meng Y, Li T, Jin Z, Hou S, Hu C. Identification of natural compounds targeting SARS-CoV-2 Mpro by virtual screening and molecular dynamics simulations. MENDELEEV COMMUNICATIONS 2022. [PMCID: PMC9141681 DOI: 10.1016/j.mencom.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The SARS-CoV-2 main protease (Mpro) has been chosen as a conserved molecular target to develop broad-spectrum antiviral drugs. Using molecular docking and molecular dynamics (MD) simulations, a total of 5600 natural compounds available for virtual screening were tested to identify potential inhibitors of SARS-CoV-2 Mpro. As a result, three natural compounds (pentagalloylglucose, malonylawobanin and gnetin E dihydride) were found to be potential inhibitors of SARS-CoV-2, which confirms the theoretical and practical significance of this approach for the design of SARS-CoV-2 inhibitors.
Collapse
|
37
|
Niemeyer BF, Benam KH. Untapping host-targeting cross-protective efficacy of anticoagulants against SARS-CoV-2. Pharmacol Ther 2022; 233:108027. [PMID: 34718070 PMCID: PMC8552695 DOI: 10.1016/j.pharmthera.2021.108027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Responding quickly to emerging respiratory viruses, such as SARS-CoV-2 the causative agent of coronavirus disease 2019 (COVID-19) pandemic, is essential to stop uncontrolled spread of these pathogens and mitigate their socio-economic impact globally. This can be achieved through drug repurposing, which tackles inherent time- and resource-consuming processes associated with conventional drug discovery and development. In this review, we examine key preclinical and clinical therapeutic and prophylactic approaches that have been applied for treatment of SARS-CoV-2 infection. We break these strategies down into virus- versus host-targeting and discuss their reported efficacy, advantages, and disadvantages. Importantly, we highlight emerging evidence on application of host serine protease-inhibiting anticoagulants, such as nafamostat mesylate, as a potentially powerful therapy to inhibit virus activation and offer cross-protection against multiple strains of coronavirus, lower inflammatory response independent of its antiviral effect, and modulate clotting problems seen in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Brian F Niemeyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
38
|
Son J, Huang S, Zeng Q, Bricker TL, Case JB, Zhou J, Zang R, Liu Z, Chang X, Darling TL, Xu J, Harastani HH, Chen L, Gomez Castro MF, Zhao Y, Kohio HP, Hou G, Fan B, Niu B, Guo R, Rothlauf PW, Bailey AL, Wang X, Shi PY, Martinez ED, Brody SL, Whelan SPJ, Diamond MS, Boon ACM, Li B, Ding S. JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. mBio 2022; 13:e0337721. [PMID: 35038906 PMCID: PMC8764536 DOI: 10.1128/mbio.03377-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Pathogenic coronaviruses are a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified small-molecule inhibitors that potently block the replication of severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with a 50% effective concentration of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types, including primary human bronchial epithelial cells, against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens. IMPORTANCE The coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is an ongoing public health disaster worldwide. Although several vaccines are available as a preventive measure and the FDA approval of an orally bioavailable drug is on the horizon, there remains a need for developing antivirals against SARS-CoV-2 that could work on the early course of infection. By using infectious reporter viruses, we screened small-molecule inhibitors for antiviral activity against SARS-CoV-2. Among the top hits was JIB-04, a compound previously studied for its anticancer activity. Here, we showed that JIB-04 inhibits the replication of SARS-CoV-2 as well as different DNA and RNA viruses. Furthermore, JIB-04 conferred protection in a porcine model of coronavirus infection, although to a lesser extent when given as therapeutic rather than prophylactic doses. Our findings indicate a limited but still promising utility of JIB-04 as an antiviral agent in the combat against COVID-19 and potentially other viral diseases.
Collapse
Affiliation(s)
- Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Program in Molecular Cell Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shimeng Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James Brett Case
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Tamarand L. Darling
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Hinissan P. Kohio
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Beibei Niu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Abu-Melha S, Edrees MM, Said MA, Riyadh SM, Al-Kaff NS, Gomha SM. Potential COVID-19 Drug Candidates Based on Diazinyl-Thiazol-Imine Moieties: Synthesis and Greener Pastures Biological Study. Molecules 2022; 27:488. [PMID: 35056802 PMCID: PMC8777737 DOI: 10.3390/molecules27020488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a-f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of -7.7 to -8.7 kcal/mol for 3a-f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a-f ligands and the receptor's active amino acid residues. The main aim of using in silco molecular docking was to rank 3a-f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a-f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a-f.
Collapse
Affiliation(s)
- Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.A.-M.); (M.M.E.)
| | - Mastoura Mohamed Edrees
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.A.-M.); (M.M.E.)
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Musa A. Said
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nadia S. Al-Kaff
- Department of Biology, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| |
Collapse
|
40
|
Wang J, Yu Y, Leng T, Li Y, Lee ST. The Inhibition of SARS-CoV-2 3CL M pro by Graphene and Its Derivatives from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:191-200. [PMID: 34933561 PMCID: PMC8713398 DOI: 10.1021/acsami.1c18104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL Mpro and graphene-related materials (GRMs): IG, DG, and GO. The results show that Mpro can be absorbed onto the surfaces of investigated materials. DG and GO interacted with Mpro more intensely, causing the decisive part of Mpro to become more flexible. Further analysis shows that compared to IG and GO, DG can inactivate Mpro and inhibit its expression effectively by destroying the active pocket of Mpro. Our work not only provides detailed and reliable theoretical guidance for the application of GRMs in treating with SARS-CoV-2 but also helps in developing new graphene-based anti-COVID-19 materials.
Collapse
Affiliation(s)
- Jiawen Wang
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Yi Yu
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Tianle Leng
- Dougherty Valley High School,
10550 Albion Rd, San Ramon, California 94582, United States
| | - Youyong Li
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| |
Collapse
|
41
|
Ndagi U, Abdullahi M, Hamza AN, Magaji MG, Mhlongo NN, Babazhitsu M, Majiya H, Makun HA, Lawal MM. Impact of Drug Repurposing on SARS-Cov-2 Main Protease. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022; 96. [PMCID: PMC10036164 DOI: 10.1134/s0036024423030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The recent emergence of the severe acute respiratory disease caused by a novel coronavirus remains a concern posing many challenges to public health and the global economy. The resolved crystal structure of the main protease of SARS-CoV-2 or SCV2 (Mpro) has led to its identification as an attractive target for designing potent antiviral drugs. Herein, we provide a comparative molecular impact of hydroxychloroquine (HCQ), remdesivir, and β-D-N4-Hydroxycytidine (NHC) binding on SCV2 Mpro using various computational approaches like molecular docking and molecular dynamics (MD) simulation. Data analyses showed that HCQ, remdesivir, and NHC binding to SARS-CoV-2 Mpro decrease the protease loop capacity to fluctuate. These binding influences the drugs’ optimum orientation in the conformational space of SCV2 Mpro and produce noticeable steric effects on the interactive residues. An increased hydrogen bond formation was observed in SCV2 Mpro–NHC complex with a decreased receptor residence time during NHC binding. The binding mode of remdesivir to SCV2 Mpro differs from other drugs having van der Waals interaction as the force stabilizing protein–remdesivir complex. Electrostatic interaction dominates in the SCV2 Mpro−HCQ and SCV2 Mpro–NHC. Residue Glu166 was highly involved in the stability of remdesivir and NHC binding at the SCV2 Mpro active site, while Asp187 provides stability for HCQ binding.
Collapse
Affiliation(s)
- Umar Ndagi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Maryam Abdullahi
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Asmau N. Hamza
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohd G. Magaji
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ndumiso N. Mhlongo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, 4001 Durban, South Africa
| | - Makun Babazhitsu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usman Danfodio University, Sokoto, Nigeria
| | - Hussaini Majiya
- Department of Microbiology, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria
| | - Hussaini Anthony Makun
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Monsurat M. Lawal
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, 4001 Durban, South Africa
| |
Collapse
|
42
|
Reina M, Talavera-Contreras LG, Figueroa-DePaz Y, Ruiz-Azuara L, Hernández-Ayala LF. Casiopeinas® as SARS-CoV-2 main protease (M pro) inhibitors: a combined DFT, molecular docking and ONIOM approach. NEW J CHEM 2022. [DOI: 10.1039/d2nj01480g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational combined protocols suggest that Casiopeinas can block the active site of Mpro SARS-CoV-2 by binding to its main amino acids.
Collapse
Affiliation(s)
- Miguel Reina
- Laboratorio de Química Inorgánica Medicinal, Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP 04510, Mexico
| | - Luis Gabriel Talavera-Contreras
- Laboratorio de Química Inorgánica Medicinal, Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP 04510, Mexico
| | - Yeshenia Figueroa-DePaz
- Laboratorio de Química Inorgánica Medicinal, Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP 04510, Mexico
| | - Lena Ruiz-Azuara
- Laboratorio de Química Inorgánica Medicinal, Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP 04510, Mexico
| | - Luis Felipe Hernández-Ayala
- Laboratorio de Química Inorgánica Medicinal, Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP 04510, Mexico
| |
Collapse
|
43
|
Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Pharmacol Ther 2021; 228:107930. [PMID: 34174275 PMCID: PMC8220862 DOI: 10.1016/j.pharmthera.2021.107930] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Traditional drug development and discovery has not kept pace with threats from emerging and re-emerging diseases such as Ebola virus, MERS-CoV and more recently, SARS-CoV-2. Among other reasons, the exorbitant costs, high attrition rate and extensive periods of time from research to market approval are the primary contributing factors to the lag in recent traditional drug developmental activities. Due to these reasons, drug developers are starting to consider drug repurposing (or repositioning) as a viable alternative to the more traditional drug development process. Drug repurposing aims to find alternative uses of an approved or investigational drug outside of its original indication. The key advantages of this approach are that there is less developmental risk, and it is less time-consuming since the safety and pharmacological profile of the repurposed drug is already established. To that end, various approaches to drug repurposing are employed. Computational approaches make use of machine learning and algorithms to model disease and drug interaction, while experimental approaches involve a more traditional wet-lab experiments. This review would discuss in detail various ongoing drug repurposing strategies and approaches to combat the current COVID-19 pandemic, along with the advantages and the potential challenges.
Collapse
Affiliation(s)
- Yan Ling Ng
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, 117545, Singapore,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore
| | - Cyrill Kafi Salim
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, 117545, Singapore,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, 117545, Singapore,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore,Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore,Corresponding author at: Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
44
|
In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. COATINGS 2021. [DOI: 10.3390/coatings11111273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of computational models to identify new therapeutics and repurpose existing drugs has gained significance in recent times. The current ‘COVID-19’ pandemic caused by the new SARS CoV2 virus has affected over 200 million people and caused over 4 million deaths. The enormity and the consequences of this viral infection have fueled the research community to identify drugs or vaccines through a relatively expeditious process. The availability of high-throughput datasets has cultivated new strategies for drug development and can provide the foundation towards effective therapy options. Molecular modeling methods using structure-based or computer-aided virtual screening can potentially be employed as research guides to identify novel antiviral agents. This review focuses on in-silico modeling of the potential therapeutic candidates against SARS CoVs, in addition to strategies for vaccine design. Here, we particularly focus on the recently published SARS CoV main protease (Mpro) active site, the RNA-dependent RNA polymerase (RdRp) of SARS CoV2, and the spike S-protein as potential targets for vaccine development. This review can offer future perspectives for further research and the development of COVID-19 therapies via the design of new drug candidates and multi-epitopic vaccines and through the repurposing of either approved drugs or drugs under clinical trial.
Collapse
|
45
|
Ogunyemi OM, Gyebi GA, Ibrahim IM, Olaiya CO, Ocheje JO, Fabusiwa MM, Adebayo JO. Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: a structure-based screening. RSC Adv 2021; 11:33380-33398. [PMID: 35497510 PMCID: PMC9042289 DOI: 10.1039/d1ra05976a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the development of COVID-19 vaccines, at present, there is still no approved antiviral drug against the pandemic. The SARS-CoV-2 3-chymotrypsin-like proteases (S-3CLpro) and papain-like protease (S-PLpro) are essential for the viral proliferation cycle, hence attractive drug targets. Plant-based dietary components that have been extensively reported for antiviral activities may serve as cheap sources of preventive nutraceuticals and/or antiviral drugs. A custom-made library of 176 phytochemicals from five West African antiviral culinary herbs was screened for potential dual-target-directed inhibitors of S-3CLpro and S-PLpro in silico. The docking analysis revealed fifteen steroidal saponins (FSS) from Vernonia amygdalina with the highest binding tendency for the active sites of S-3CLpro and S-PLpro. In an optimized docking analysis, the FSS were further docked against four equilibrated conformers of the S-3CLpro and S-PLpro. Three stigmastane-type steroidal saponins (vernonioside A2, vernonioside A4 and vernonioside D2) were revealed as the lead compounds. These compounds interacted with the catalytic residues of both S-3CLpro and S-PLpro, thereby exhibiting dual inhibitory potential against these SARS-CoV-2 cysteine proteases. The binding free energy calculations further corroborated the static and optimized docking analysis. The complexed proteases with these promising phytochemicals were stable during a full atomistic MD simulation while the phytochemicals exhibited favourable physicochemical and ADMET properties, hence, recommended as promising inhibitors of SARS-CoV-2 cysteine proteases.
Collapse
Affiliation(s)
- Oludare M Ogunyemi
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University Lokoja Nigeria
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan Nigeria
| | - Gideon A Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University P.M.B 005, Karu Nasarawa Nigeria +234-7063983652
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University Giza Egypt
| | - Charles O Olaiya
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan Nigeria
| | - Joshua O Ocheje
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University Akwa Nigeria
| | - Modupe M Fabusiwa
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University Lokoja Nigeria
| | - Joseph O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin Ilorin Nigeria
| |
Collapse
|
46
|
Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. Phenothiazines as dual inhibitors of SARS-CoV-2 main protease and COVID-19 inflammation. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
COVID-19, caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2), currently has no treatment for acute infection. The main protease (Mpro) of SARS-CoV-2 is an essential enzyme for viral replication and an attractive target for disease intervention. The phenothiazine moiety has demonstrated drug versatility for biological systems, including inhibition of butyrylcholinesterase, a property important in the cholinesterase anti-inflammatory cascade. Nineteen phenothiazine drugs were investigated using in silico modelling techniques to predict binding energies and inhibition constants (Ki values) with SARS-CoV-2 Mpro. Because most side-effects of phenothiazines are due to interactions with various neurotransmitter receptors and transporters, phenothiazines with few such interactions were also investigated. All compounds were found to bind to the active site of SARS-CoV-2 Mpro and showed Ki values ranging from 1.30 to 52.4 µM in a rigid active site. Nine phenothiazines showed inhibition constants <10 µM. The compounds with limited interactions with neurotransmitter receptors and transporters showed micromolar (µM) Ki values. Docking results were compared with remdesivir and showed similar interactions with key residues Glu-166 and Gln-189 in the active site. This work has identified several phenothiazines with limited neurotransmitter receptor and transporter interactions and that may provide the dual action of inhibiting SARS-CoV-2 Mpro to prevent viral replication and promote the release of anti-inflammatory cytokines to curb viral-induced inflammation. These compounds are promising candidates for further investigation against SARS-CoV-2.
Collapse
Affiliation(s)
- Katrina L. Forrestall
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Darcy E. Burley
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Meghan K. Cash
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ian R. Pottie
- Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada
- Department of Chemistry, Faculty of Science, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada
- Department of Medicine (Neurology & Geriatric Medicine), Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
47
|
Fukuzawa K, Kato K, Watanabe C, Kawashima Y, Handa Y, Yamamoto A, Watanabe K, Ohyama T, Kamisaka K, Takaya D, Honma T. Special Features of COVID-19 in the FMODB: Fragment Molecular Orbital Calculations and Interaction Energy Analysis of SARS-CoV-2-Related Proteins. J Chem Inf Model 2021; 61:4594-4612. [PMID: 34506132 PMCID: PMC8457332 DOI: 10.1021/acs.jcim.1c00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of coronavirus (known as COVID-19), the virus causing the current pandemic. There are ongoing research studies to develop effective therapeutics and vaccines against COVID-19 using various methods and many results have been published. The structure-based drug design of SARS-CoV-2-related proteins is promising, however, reliable information regarding the structural and intra- and intermolecular interactions is required. We have conducted studies based on the fragment molecular orbital (FMO) method for calculating the electronic structures of protein complexes and analyzing their quantitative molecular interactions. This enables us to extensively analyze the molecular interactions in residues or functional group units acting inside the protein complexes. Such precise interaction data are available in the FMO database (FMODB) (https://drugdesign.riken.jp/FMODB/). Since April 2020, we have performed several FMO calculations on the structures of SARS-CoV-2-related proteins registered in the Protein Data Bank. We have published the results of 681 structures, including three structural proteins and 11 nonstructural proteins, on the COVID-19 special page (as of June 8, 2021). In this paper, we describe the entire COVID-19 special page of the FMODB and discuss the calculation results for various proteins. These data not only aid the interpretation of experimentally determined structures but also the understanding of protein functions, which is useful for rational drug design for COVID-19.
Collapse
Affiliation(s)
- Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
- Department of Biomolecular Engineering, Graduate
School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki,
Aoba-ku, Sendai 980-8579, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka
819-0395, Japan
- Center for Molecular Systems (CMS),
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan
| | - Chiduru Watanabe
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
- JST PRESTO, 4-1-8, Honcho,
Kawaguchi, Saitama 332-0012, Japan
| | - Yusuke Kawashima
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuma Handa
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ami Yamamoto
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kazuki Watanabe
- Graduate School of Pharmaceutical Sciences,
Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871,
Japan
- Graduate School of Pharmaceutical Sciences,
Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675,
Japan
| | - Tatsuya Ohyama
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
- Frontier Institute for Biomolecular Engineering
Research (FIBER), Konan University, 7-1-20,
Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kikuko Kamisaka
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| | - Daisuke Takaya
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| |
Collapse
|
48
|
Shahabadi N, Zendehcheshm S, Mahdavi M, Khademi F. Inhibitory activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine on COVID-19 main protease and human ACE2 receptor: A comparative in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100745. [PMID: 34568544 PMCID: PMC8455240 DOI: 10.1016/j.imu.2021.100745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
By September 1, 2021, SARS-CoV-2, a respiratory virus that prompted Coronavirus Disease in 2019, had infected approximately 218,567,442 patients and claimed 4,534,151 lives. There are currently no specific treatments available for this lethal virus, although several drugs, including remdesivir and hydroxychloroquine, have been tested. The purpose of this study is to assess the activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine as potential SARS-CoV-2 main protease inhibitors. Additionally, this study aims to provide insight into the development of potential inhibitors that may inhibit ACE2, thereby preventing SARS-CoV-2 entry into the host cell and infection. To this end, remdesivir and hydroxychloroquine were used as comparator drugs. The calculations revealed that cetilistat, abiraterone, diiodohydroxyquinoline, and bexarotene inhibit main protease and ACE2 receptors more effectively than the well-known drug hydroxychloroquine when used against COVID-19. Meanwhile, bexarotene and cetilistat bind more tightly to the SARS-CoV-2 main protease and the ACE2 receptor, respectively, than remdesivir, a potential treatment for COVID-19 that is the first FDA-approved drug against this virus. As a result, the molecular dynamic simulations of these two drugs in the presence of proteins were investigated. The MD simulation results demonstrated that these drugs interact to stabilize the systems, allowing them to be used as effective inhibitors of these proteins. Meanwhile, bexarotene, abiraterone, cetilistat, and diiodohydroxyquinoline's systemic effects should be further investigated in suitable ex vivo human organ culture or organoids, animal models, or clinical trials.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
49
|
Tanimoto S, Itoh SG, Okumura H. "Bucket brigade" using lysine residues in RNA-dependent RNA polymerase of SARS-CoV-2. Biophys J 2021; 120:3615-3627. [PMID: 34339634 PMCID: PMC8324383 DOI: 10.1016/j.bpj.2021.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising drug target for coronavirus disease 2019 (COVID-19) because it plays the most important role in the replication of the RNA genome. Nucleotide analogs such as remdesivir and favipiravir are thought to interfere with the RNA replication by RdRp. More specifically, they are expected to compete with nucleoside triphosphates, such as ATP. However, the process in which these drug molecules and nucleoside triphosphates are taken up by RdRp remains unknown. In this study, we performed all-atom molecular dynamics simulations to clarify the recognition mechanism of RdRp for these drug molecules and ATP that were at a distance. The ligand recognition ability of RdRp decreased in the order of remdesivir, favipiravir, and ATP. We also identified six recognition paths. Three of them were commonly found in all ligands, and the remaining three paths were ligand-dependent ones. In the common two paths, it was observed that the multiple lysine residues of RdRp carried the ligands to the binding site like a "bucket brigade." In the remaining common path, the ligands directly reached the binding site. Our findings contribute to the understanding of the efficient ligand recognition by RdRp at the atomic level.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Satoru G Itoh
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
50
|
Padhi AK, Rath SL, Tripathi T. Accelerating COVID-19 Research Using Molecular Dynamics Simulation. J Phys Chem B 2021; 125:9078-9091. [PMID: 34319118 PMCID: PMC8340580 DOI: 10.1021/acs.jpcb.1c04556] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic has emerged as a global medico-socio-economic disaster. Given the lack of effective therapeutics against SARS-CoV-2, scientists are racing to disseminate suggestions for rapidly deployable therapeutic options, including drug repurposing and repositioning strategies. Molecular dynamics (MD) simulations have provided the opportunity to make rational scientific breakthroughs in a time of crisis. Advancements in these technologies in recent years have become an indispensable tool for scientists studying protein structure, function, dynamics, interactions, and drug discovery. Integrating the structural data obtained from high-resolution methods with MD simulations has helped in comprehending the process of infection and pathogenesis, as well as the SARS-CoV-2 maturation in host cells, in a short duration of time. It has also guided us to identify and prioritize drug targets and new chemical entities, and to repurpose drugs. Here, we discuss how MD simulation has been explored by the scientific community to accelerate and guide translational research on SARS-CoV-2 in the past year. We have also considered future research directions for researchers, where MD simulations can help fill the existing gaps in COVID-19 research.
Collapse
Affiliation(s)
- Aditya K. Padhi
- Laboratory for Structural Bioinformatics, Center for
Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi,
Yokohama, Kanagawa 230-0045, Japan
| | - Soumya Lipsa Rath
- Department of Biotechnology, National
Institute of Technology, Warangal, Telangana 506004,
India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory,
Department of Biochemistry, North-Eastern Hill University,
Shillong 793022, India
| |
Collapse
|