1
|
Mugnai ML, Chakraborty D, Nguyen HT, Maksudov F, Kumar A, Zeno W, Stachowiak JC, Straub JE, Thirumalai D. Sizes, conformational fluctuations, and SAXS profiles for intrinsically disordered proteins. Protein Sci 2025; 34:e70067. [PMID: 40095314 PMCID: PMC11912445 DOI: 10.1002/pro.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/31/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
The preponderance of intrinsically disordered proteins (IDPs) in the eukaryotic proteome, and their ability to interact with each other, and with folded proteins, RNA, and DNA for functional purposes, have made it important to quantitatively characterize their biophysical properties. Toward this end, we developed the transferable self-organized polymer (SOP-IDP) model to calculate the properties of several IDPs. The values of the radius of gyration (R g $$ {R}_g $$ ) obtained from SOP-IDP simulations are in excellent agreement (correlation coefficient of 0.96) with those estimated from SAXS experiments. For AP180 and Epsin, the predicted values of the hydrodynamic radii (R h s $$ {R}_h\mathrm{s} $$ ) are in nearly quantitative agreement with those from fluorescence correlation spectroscopy (FCS) experiments. Strikingly, the calculated SAXS profiles for 36 IDPs are also nearly superimposable on the experimental profiles. The dependence ofR g $$ {R}_g $$ and the mean end-to-end distance (R ee $$ {R}_{ee} $$ ) on chain length,N $$ N $$ , follows Flory's scaling law,R α ≈ a α N 0.588 $$ {R}_{\alpha}\approx {a}_{\alpha }{N}^{0.588} $$ (α = g , $$ \alpha =g, $$ ande $$ e $$ ), suggesting that globally IDPs behave as synthetic polymers in a good solvent. This finding depends on the solvent quality, which can be altered by changing variables such as pH and salt concentration. The values ofa g $$ {a}_g $$ anda e $$ {a}_e $$ are 0.20 and 0.48 nm, respectively. Surprisingly, finite size corrections to scaling, expected on theoretical grounds, are negligible forR g $$ {R}_g $$ andR ee $$ {R}_{ee} $$ . In contrast, only by accounting for the finite sizes of the IDPs, the dependence of experimentally measurableR h $$ {R}_h $$ onN $$ N $$ can be quantitatively explained usingν = 0.588 $$ \nu =0.588 $$ . Although Flory scaling law captures the estimates forR g $$ {R}_g $$ ,R ee $$ {R}_{ee} $$ , andR h $$ {R}_h $$ accurately, the spread of the simulated data around the theoretical curve is suggestive of of sequence-specific features that emerge through a fine-grained analysis of the conformational ensembles using hierarchical clustering. Typically, the ensemble of conformations partitions into three distinct clusters, having different equilibrium populations and structural properties. Without any further readjustments to the parameters of the SOP-IDP model, we also obtained nearly quantitative agreement with paramagnetic relaxation enhancement (PRE) measurements for α-synuclein. The transferable SOP-IDP model sets the stage for several applications, including the study of phase separation in IDPs and interactions with nucleic acids.
Collapse
Affiliation(s)
- Mauro L. Mugnai
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Present address:
Institute of Soft Matter Synthesis and MetrologyGeorgetown UniversityWashington, DCUSA
| | - Debayan Chakraborty
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Present address:
The Institute of Mathematical SciencesChennaiIndia
| | - Hung T. Nguyen
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Present address:
Department of ChemistryUniversity at BuffaloBuffaloNew YorkUSA
| | - Farkhad Maksudov
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
| | - Abhinaw Kumar
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
| | - Wade Zeno
- Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jeanne C. Stachowiak
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTexasUSA
| | - John E. Straub
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| | - D. Thirumalai
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Department of PhysicsThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
2
|
Baidya L, Maity H, Reddy G. Salts Influence IDP Properties by Modulating the Population of Conformational Clusters. J Phys Chem B 2025. [PMID: 39977663 DOI: 10.1021/acs.jpcb.4c08248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Salts readily alter the physical properties of intrinsically disordered proteins (IDPs) rich in charged residues. Using a coarse-grained IDP model and computer simulations, we investigated how salts affect the heterogeneous conformational ensemble and segment-level structures of the IDP prothymosin-α, classified as a polyelectrolyte. We show that clusters of conformations with distinct structural features are present within the conformational ensemble of prothymosin-α by projecting it onto a two-dimensional latent space with the aid of autoencoders. Although prothymosin-α is inherently disordered, there are preferred transitions between these clusters of conformations. Changing the salt concentration led to the formation of new conformational clusters or/and the disappearance of existing conformational clusters, contributing to changes in IDP properties. Shuffling the Skopelitian domain (C-terminal sequence) of prothymosin-α, known for its anticancer activity, resulted in a different conformational cluster, indicating that clusters with specific structures are related to a particular IDP function. The multiple conformational clusters with distinct structural features could be correlated to different IDP functions, and salts aid or inhibit these functions by modulating the population of conformations in the clusters.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Hiranmay Maity
- Department of Chemistry, State University of New York, Buffalo, New York 14260, United States
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
3
|
Bergsma T, Steen A, Kamenz JL, Otto TA, Gallardo P, Veenhoff LM. Imaging-based quantitative assessment of biomolecular condensates in vitro and in cells. J Biol Chem 2025; 301:108130. [PMID: 39725032 PMCID: PMC11803855 DOI: 10.1016/j.jbc.2024.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The formation of biomolecular condensates contributes to intracellular compartmentalization and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains. To address this, we present PhaseMetrics, a semi-automated FIJI-based image analysis pipeline tailored for quantifying particle properties from microscopy data. Tested using the FG-domain of yeast nucleoporin Nup100, PhaseMetrics accurately assesses particle properties across diverse experimental setups, including particles formed in vitro in chemically defined buffers or Xenopus egg extracts and cellular systems. Comparing the results with biochemical assays, we conclude that PhaseMetrics reliably detects changes induced by various conditions, including the presence of polyethylene glycol, 1,6-hexanediol, or a salt gradient, as well as the activity of the molecular chaperone DNAJB6b and the protein disaggregase Hsp104. Given the flexibility in its analysis parameters, the pipeline should also apply to other condensate-forming systems, and we show its application in detecting TDP-43 particles. By enabling the accurate representation of the variability within the population and the detection of subtle changes at the single-condensate level, the method complements conventional biochemical assays. Combined, PhaseMetrics is an easily accessible, customizable pipeline that enables imaging-based quantitative assessment of biomolecular condensates in vitro and in cells, providing a valuable addition to the current toolbox.
Collapse
Affiliation(s)
- Tessa Bergsma
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Julia L Kamenz
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Tegan A Otto
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paola Gallardo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Baidya L, Kremer K, Reddy G. Intrinsic stiffness and Θ-solvent regime in intrinsically disordered proteins: Implications for liquid-liquid phase separation. PNAS NEXUS 2025; 4:pgaf039. [PMID: 39980654 PMCID: PMC11840863 DOI: 10.1093/pnasnexus/pgaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Liquid-liquid phase separation (LLPS) exhibited by intrinsically disordered proteins (IDPs) depends on the solvation state around the Θ-regime, which separates good from poor solvent. Experimentally, the Θ-solvent regime of the finite length (N) IDPs, as probed by small angle X-ray scattering (SAXS) and single molecular fluorescence resonance energy transfer (smFRET), is in disagreement. Using computer simulations of a coarse-grained IDP model, we address the effect of chain length on the Θ-regime of IDPs with polar side chains (polyglutamine) and hydrophobic side chains (polyleucine) subject to varying concentrations of cosolvents [ C ] , urea (denaturant) or trimethylamine N-oxide (protective osmolyte) in water. Due to their intrinsic stiffness, these IDPs are always expanded on short-length scales, independent of the solvent quality. As a result, for short IDP sequences ( ≈ 10 to 25 residues), their propensity to exhibit LLPS cannot be inferred from single-chain properties. Further, for finite-size IDPs, the cosolvent concentration to attain the Θ-regime ( [ C Θ ] ) extracted from the structure factor emulating SAXS and pair distances mimicking smFRET differs. They converge to the same cosolvent concentration only at large N, indicating that finite size corrections vary for different IDP properties. We show that the radius of gyration ( R g ) of the IDPs in the Θ-solvent regime satisfies the scaling relation R g 2 = N f ( c N ) , which can be exploited to accurately extract [ C Θ ] ( c = ( [ C ] / [ C Θ ] - 1 ) ). We demonstrate the importance of finite size aspects originating from the chain stiffness and thermal blob size in analyzing IDP properties to identify the Θ-solvent regime.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
Chau CCC, Weckman NE, Thomson EE, Actis P. Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity. ACS NANO 2025; 19:3839-3851. [PMID: 39814565 PMCID: PMC11781028 DOI: 10.1021/acsnano.4c15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged. This is due to the necessity of using higher salt conditions (e.g., 4 M LiCl) to improve the signal-to-noise ratio which completely abolish the activities of many biochemical reactions. We pioneered a polymer electrolyte solid-state nanopore approach that maintains a high signal-to-noise ratio even at a physiologically relevant salt concentration. Here, we report the monitoring of the restriction enzyme SwaI and CRISPR-Cas9 endonuclease activities under physiological salt conditions and in real time. We investigated the dsDNA cleavage activity of these enzymes in a range of digestion buffers and elucidated the off-target activity of CRISPR-Cas9 ribonucleoprotein endonuclease in the presence of single base pair mismatches. This approach enables the application of solid-state nanopores for the dynamic monitoring of biochemical reactions under physiological salt conditions.
Collapse
Affiliation(s)
- Chalmers C. C. Chau
- Bragg
Centre for Materials Research, School of Electronic and Electrical
Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nicole E. Weckman
- Institute
for Studies in Transdisciplinary Engineering Education & Practice,
Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto M5S 1A4, Canada
| | - Emma E. Thomson
- School
of Bioscience, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Paolo Actis
- Bragg
Centre for Materials Research, School of Electronic and Electrical
Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
6
|
Liu Z, Thirumalai D. Impact of Guanidinium Hydrochloride on the Shapes of Prothymosin-α and α-Synuclein Is Dramatically Different. Biochemistry 2025; 64:105-113. [PMID: 39718971 DOI: 10.1021/acs.biochem.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration (Rg) decreases sharply until about 1.0 M. Above 1.0 M, ProTα expands, caused by the swelling effect of GdmCl. In contrast, Rg of α-Synuclein (αSyn) swells as continuously as [GdmCl] increases, with most of the expansion occurring at concentrations less than 0.2 M. Strikingly, the amplitude of the small-angle X-ray scattering (SAXS) profiles for ProTα increases until [GdmCl] ≈ 1.0 M and decreases beyond 1.0 M. The [GdmCl]-dependent SAXS profiles for αSyn, which has a pronounced bump at small wave vector (q ∼ 0.5 nm-1) at low [GdmCl] (≤0.2 M), monotonically decrease at all values of [GdmCl]. The contrasting behavior predicted by the combination of MTM and SOP-IDP simulations may be qualitatively understood by modeling ProTα as a strongly charged polyelectrolyte with nearly uniform density of charges along the chain contour and αSyn as a nearly neutral polymer, except near the C-terminus, where the uncompensated negatively charged residues are located. The precise predictions for the SAXS profiles as a function of [GdmCl] can be readily tested.
Collapse
Affiliation(s)
- Zhenxing Liu
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Baratam K, Srivastava A. SOP-MULTI: A Self-Organized Polymer-Based Coarse-Grained Model for Multidomain and Intrinsically Disordered Proteins with Conformation Ensemble Consistent with Experimental Scattering Data. J Chem Theory Comput 2024; 20:10179-10198. [PMID: 39499823 DOI: 10.1021/acs.jctc.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Multidomain proteins with long flexible linkers and full-length intrinsically disordered proteins (IDPs) are best defined as an ensemble of conformations rather than a single structure. Determining high-resolution ensemble structures of such proteins poses various challenges by using tools from experimental structural biophysics. Integrative approaches combining available low-resolution ensemble-averaged experimental data and in silico biomolecular reconstructions are now often used for the purpose. However, extensive Boltzmann weighted conformation sampling for large proteins, especially for ones where both the folded and disordered domains exist in the same polypeptide chain, remains a challenge. In this work, we present a 2-site per amino-acid resolution SOP-MULTI force field for simulating coarse-grained models of multidomain proteins. SOP-MULTI combines two well-established self-organized polymer models─: (i) SOP-SC models for folded systems and (ii) SOP-IDP for IDPs. For the SOP-MULTI, we introduce cross-interaction terms between the beads belonging to the folded and disordered regions to generate conformation ensembles for full-length multidomain proteins such as hnRNP A1, TDP-43, G3BP1, hGHR-ECD, TIA1, HIV-1 Gag, polyubiquitin, and FUS. When back-mapped to all-atom resolution, SOP-MULTI trajectories faithfully recapitulate the scattering data over the range of the reciprocal space. We also show that individual folded domains preserve native contacts with respect to solved folded structures, and root-mean-square fluctuations of residues in folded domains match those obtained from all-atom molecular dynamics simulation trajectories of the same folded systems. SOP-MULTI force field is made available as a LAMMPS-compatible user package along with setup codes for generating the required files for any full-length protein with folded and disordered regions.
Collapse
Affiliation(s)
- Krishnakanth Baratam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
8
|
Li M, Li T, Han D, Wu S, Gong J. Elucidating the effects of hofmeister salts on the formation mechanism and biocompatibility of lysozyme-hyaluronic acid complexes. Int J Biol Macromol 2024; 281:136558. [PMID: 39401621 DOI: 10.1016/j.ijbiomac.2024.136558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to investigate the morphologies, biocompatibility, and formation mechanism of lysozyme-hyaluronic acid complexes in the presence of various Hofmeister salts. During the complexation of lysozyme (Lys) and hyaluronic acid (HA), salts can control the formation of colloidal nanoparticles, amyloid-like aggregates, and amorphous aggregates. Circular dichroism spectra revealed that the α-helix content of Lys involved in complexation significantly increased from 21.40 % to 34.19 %, whereas the β-sheet content significantly decreased from 38.65 % to 24.42 % with increasing salt concentration. The fluorescence spectra indicated that the number of binding sites for HA and Lys decreased from 2.19 to 0.63 as the salt concentration increased from 0 to 300 mM, which was consistent with the different anion-specific effects (NaCl < NaBr < NaI). Interestingly, in vitro experiment results demonstrated that colloidal nanoparticles and amorphous aggregates have good biocompatibility, with NCM460 cell viability exceeding 85.92 %, whereas amyloid like aggregates exhibit certain cytotoxicity, with cell viability significantly reduced to 50.47 %. Overall, these findings provide a better understanding of the conformational changes of Lys involved in complexation with HA in the presence of salts, expanding its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tong Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
| |
Collapse
|
9
|
Cao F, von Bülow S, Tesei G, Lindorff‐Larsen K. A coarse-grained model for disordered and multi-domain proteins. Protein Sci 2024; 33:e5172. [PMID: 39412378 PMCID: PMC11481261 DOI: 10.1002/pro.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 10/20/2024]
Abstract
Many proteins contain more than one folded domain, and such modular multi-domain proteins help expand the functional repertoire of proteins. Because of their larger size and often substantial dynamics, it may be difficult to characterize the conformational ensembles of multi-domain proteins by simulations. Here, we present a coarse-grained model for multi-domain proteins that is both fast and provides an accurate description of the global conformational properties in solution. We show that the accuracy of a one-bead-per-residue coarse-grained model depends on how the interaction sites in the folded domains are represented. Specifically, we find excessive domain-domain interactions if the interaction sites are located at the position of the Cα atoms. We also show that if the interaction sites are located at the center of mass of the residue, we obtain good agreement between simulations and experiments across a wide range of proteins. We then optimize our previously described CALVADOS model using this center-of-mass representation, and validate the resulting model using independent data. Finally, we use our revised model to simulate phase separation of both disordered and multi-domain proteins, and to examine how the stability of folded domains may differ between the dilute and dense phases. Our results provide a starting point for understanding interactions between folded and disordered regions in proteins, and how these regions affect the propensity of proteins to self-associate and undergo phase separation.
Collapse
Affiliation(s)
- Fan Cao
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sören von Bülow
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff‐Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Juniku B, Mignon J, Carême R, Genco A, Obeid AM, Mottet D, Monari A, Michaux C. Intrinsic disorder and salt-dependent conformational changes of the N-terminal region of TFIP11 splicing factor. Int J Biol Macromol 2024; 277:134291. [PMID: 39089542 DOI: 10.1016/j.ijbiomac.2024.134291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Tuftelin Interacting Protein 11 (TFIP11) was identified as a critical human spliceosome assembly regulator, interacting with multiple proteins and localising in membrane-less organelles. However, a lack of structural information on TFIP11 limits the rationalisation of its biological role. TFIP11 is predicted as an intrinsically disordered protein (IDP), and more specifically concerning its N-terminal (N-TER) region. IDPs lack a defined tertiary structure, existing as a dynamic conformational ensemble, favouring protein-protein and protein-RNA interactions. IDPs are involved in liquid-liquid phase separation (LLPS), driving the formation of subnuclear compartments. Combining disorder prediction, molecular dynamics, and spectroscopy methods, this contribution shows the first evidence TFIP11 N-TER is a polyampholytic IDP, exhibiting a structural duality with the coexistence of ordered and disordered assemblies, depending on the ionic strength. Increasing the salt concentration enhances the protein conformational flexibility, presenting a more globule-like shape, and a fuzzier unstructured arrangement that could favour LLPS and protein-RNA interaction. The most charged and hydrophilic regions are the most impacted, including the G-Patch domain essential to TFIP11 function. This study gives a better understanding of the salt-dependent conformational behaviour of the N-TER TFIP11, supporting the hypothesis of the formation of different types of protein assembly, in line with its multiple biological roles.
Collapse
Affiliation(s)
- Blinera Juniku
- Laboratory of Physical Chemistry of Biomolecules, UCPTS, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; GIGA-Molecular Biology of Diseases, Molecular Analysis of Gene Expression (MAGE) Laboratory, University of Liege, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Julien Mignon
- Laboratory of Physical Chemistry of Biomolecules, UCPTS, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Rachel Carême
- Laboratory of Physical Chemistry of Biomolecules, UCPTS, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Alexia Genco
- GIGA-Molecular Biology of Diseases, Molecular Analysis of Gene Expression (MAGE) Laboratory, University of Liege, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Anna Maria Obeid
- GIGA-Molecular Biology of Diseases, Molecular Analysis of Gene Expression (MAGE) Laboratory, University of Liege, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Denis Mottet
- GIGA-Molecular Biology of Diseases, Molecular Analysis of Gene Expression (MAGE) Laboratory, University of Liege, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium.
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006, Paris, France
| | - Catherine Michaux
- Laboratory of Physical Chemistry of Biomolecules, UCPTS, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium.
| |
Collapse
|
11
|
Prabhu J, Frigerio M, Petretto E, Campomanes P, Salentinig S, Vanni S. A Coarse-Grained SPICA Makeover for Solvated and Bare Sodium and Chloride Ions. J Chem Theory Comput 2024; 20:7624-7634. [PMID: 39160094 PMCID: PMC11391577 DOI: 10.1021/acs.jctc.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Aqueous ionic solutions are pivotal in various scientific domains due to their natural prevalence and vital roles in biological and chemical processes. Molecular dynamics has emerged as an effective methodology for studying the dynamic behavior of these systems. While all-atomistic models have made significant strides in accurately representing and simulating these ions, the challenge persists in achieving precise models for coarse-grained (CG) simulations. Our study introduces two optimized models for sodium and chloride ions within the nonpolarizable surface property fitting coarse-grained force field (SPICA-FF) framework. The two models represent solvated ions, such as the original FF model, and unsolvated or bare ions. The nonbonded Lennard-Jones interactions were reparameterized to faithfully reproduce bulk properties, including density and surface tension, in sodium chloride solutions at varying concentrations. Notably, these optimized models replicate experimental surface tensions at high ionic strengths, a property not well-captured by the ions of the original model in the SPICA-FF. The optimized unsolvated model also proved successful in reproducing experimental osmotic pressure. Additionally, the newly reparameterized ion models capture hydrophobic interactions within sodium chloride solutions and show qualitative agreement when modeling structural changes in phospholipid bilayers, aligning with experimental observations. For aqueous solutions, these optimized models promise a more precise representation of the ion behavior.
Collapse
Affiliation(s)
- Janak Prabhu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Matteo Frigerio
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | - Emanuele Petretto
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
- National Center of Competence in Research Bio-inspired Materials, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- National Center of Competence in Research Bio-inspired Materials, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
12
|
Oranges M, Jash C, Golani G, Seal M, Cohen SR, Rosenhek-Goldian I, Bogdanov A, Safran S, Goldfarb D. Core-shell model of the clusters of CPEB4 isoforms preceding liquid-liquid phase separation. Biophys J 2024; 123:2604-2622. [PMID: 38943248 PMCID: PMC11365225 DOI: 10.1016/j.bpj.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Protein solutions can undergo liquid-liquid phase separation (LLPS), where a dispersed phase with a low protein concentration coexists with coacervates with a high protein concentration. We focus on the low complexity N-terminal domain of cytoplasmic polyadenylation element binding-4 protein, CPEB4NTD, and its isoform depleted of the Exon4, CPEB4Δ4NTD. They both exhibit LLPS, but in contrast to most systems undergoing LLPS, the single-phase regime preceding LLPS consists mainly of soluble protein clusters. We combine experimental and theoretical approaches to resolve the internal structure of the clusters and the basis for their formation. Dynamic light scattering and atomic force microscopy show that both isoforms exhibit clusters with diameters ranging from 35 to 80 nm. Electron paramagnetic resonance spectroscopy of spin-labeled CPEB4NTD and CPEB4Δ4NTD revealed that these proteins have two distinct dynamical properties in both the clusters and coacervates. Based on the experimental results, we propose a core-shell structure for the clusters, which is supported by the agreement of the dynamic light scattering data on cluster size distribution with a statistical model developed to describe the structure of clusters. This model treats clusters as swollen micelles (microemulsions) where the core and the shell regions comprise different protein conformations, in agreement with the electron paramagnetic resonance detection of two protein populations. The effects of ionic strength and the addition of 1,6-hexanediol were used to probe the interactions responsible for cluster formation. While both CPEB4NTD and CPEB4Δ4NTD showed phase separation with increasing temperature and formed clusters, differences were found in the properties of the clusters and the coacervates. The data also suggested that the coacervates may consist of aggregates of clusters.
Collapse
Affiliation(s)
- Maria Oranges
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Chandrima Jash
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gonen Golani
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; Department of Physics, University of Haifa, Haifa, Israel
| | - Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Alexey Bogdanov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Baxa MC, Lin X, Mukinay CD, Chakravarthy S, Sachleben JR, Antilla S, Hartrampf N, Riback JA, Gagnon IA, Pentelute BL, Clark PL, Sosnick TR. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins. Protein Sci 2024; 33:e4986. [PMID: 38607226 PMCID: PMC11010952 DOI: 10.1002/pro.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Xiaoxuan Lin
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Cedrick D. Mukinay
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical SciencesIllinois Institute of TechnologyChicagoIllinoisUSA
- Present address:
Cytiva, Fast TrakMarlboroughMAUSA
| | | | - Sarah Antilla
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nina Hartrampf
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Present address:
Department of ChemistryUniversity of ZurichSwitzerland
| | - Joshua A. Riback
- Graduate Program in Biophysical ScienceUniversity of ChicagoChicagoIllinoisUSA
- Present address:
Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Patricia L. Clark
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
14
|
Ghosh C, Nagpal S, Muñoz V. Molecular simulations integrated with experiments for probing the interaction dynamics and binding mechanisms of intrinsically disordered proteins. Curr Opin Struct Biol 2024; 84:102756. [PMID: 38118365 PMCID: PMC11242915 DOI: 10.1016/j.sbi.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Intrinsically disordered proteins (IDPs) exploit their plasticity to deploy a rich panoply of soft interactions and binding phenomena. Advances in tailoring molecular simulations for IDPs combined with experimental cross-validation offer an atomistic view of the mechanisms that control IDP binding, function, and dysfunction. The emerging theme is that unbound IDPs autonomously form transient local structures and self-interactions that determine their binding behavior. Recent results have shed light on whether and how IDPs fold, stay disordered or drive condensation upon binding; how they achieve binding specificity and select among competing partners. The disorder-binding paradigm is now being proactively used by researchers to target IDPs for rational drug design and engineer molecular responsive elements for biosensing applications.
Collapse
Affiliation(s)
- Catherine Ghosh
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA. https://twitter.com/cat_ghosh
| | - Suhani Nagpal
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA; OpenEye, Cadence Molecular Sciences, Boston, 02114 MA, USA
| | - Victor Muñoz
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA.
| |
Collapse
|
15
|
Seth S, Stine B, Bhattacharya A. Fine structures of intrinsically disordered proteins. J Chem Phys 2024; 160:014902. [PMID: 38165099 DOI: 10.1063/5.0176306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
We report simulation studies of 33 single intrinsically disordered proteins (IDPs) using coarse-grained bead-spring models where interactions among different amino acids are introduced through a hydropathy matrix and additional screened Coulomb interaction for the charged amino acid beads. Our simulation studies of two different hydropathy scales (HPS1, HPS2) [Dignon et al., PLoS Comput. Biol. 14, e1005941 (2018); Tesei et al. Proc. Natl. Acad. Sci. U. S. A. 118, e2111696118 (2021)] and the comparison with the existing experimental data indicate an optimal interaction parameter ϵ = 0.1 and 0.2 kcal/mol for the HPS1 and HPS2 hydropathy scales. We use these best-fit parameters to investigate both the universal aspects as well as the fine structures of the individual IDPs by introducing additional characteristics. (i) First, we investigate the polymer-specific scaling relations of the IDPs in comparison to the universal scaling relations [Bair et al., J. Chem. Phys. 158, 204902 (2023)] for the homopolymers. By studying the scaled end-to-end distances ⟨RN2⟩/(2Lℓp) and the scaled transverse fluctuations l̃⊥2=⟨l⊥2⟩/L, we demonstrate that IDPs are broadly characterized with a Flory exponent of ν ≃ 0.56 with the conclusion that conformations of the IDPs interpolate between Gaussian and self-avoiding random walk chains. Then, we introduce (ii) Wilson charge index (W) that captures the essential features of charge interactions and distribution in the sequence space and (iii) a skewness index (S) that captures the finer shape variation of the gyration radii distributions as a function of the net charge per residue and charge asymmetry parameter. Finally, our study of the (iv) variation of ⟨Rg⟩ as a function of salt concentration provides another important metric to bring out finer characteristics of the IDPs, which may carry relevant information for the origin of life.
Collapse
Affiliation(s)
- Swarnadeep Seth
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Brandon Stine
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| |
Collapse
|
16
|
Wu X, Sun Y, Yu J, Miserez A. Tuning the viscoelastic properties of peptide coacervates by single amino acid mutations and salt kosmotropicity. Commun Chem 2024; 7:5. [PMID: 38177438 PMCID: PMC10766971 DOI: 10.1038/s42004-023-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Coacervation, or liquid-liquid phase separation (LLPS) of biomacromolecules, is increasingly recognized to play an important role both intracellularly and in the extracellular space. Central questions that remain to be addressed are the links between the material properties of coacervates (condensates) and both the primary and the secondary structures of their constitutive building blocks. Short LLPS-prone peptides, such as GY23 variants explored in this study, are ideal model systems to investigate these links because simple sequence modifications and the chemical environment strongly affect the viscoelastic properties of coacervates. Herein, a systematic investigation of the structure/property relationships of peptide coacervates was conducted using GY23 variants, combining biophysical characterization (plate rheology and surface force apparatus, SFA) with secondary structure investigations by infrared (IR) and circular dichroism (CD) spectroscopy. Mutating specific residues into either more hydrophobic or more hydrophilic residues strongly regulates the viscoelastic properties of GY23 coacervates. Furthermore, the ionic strength and kosmotropic characteristics (Hofmeister series) of the buffer in which LLPS is induced also significantly impact the properties of formed coacervates. Structural investigations by CD and IR indicate a direct correlation between variations in properties induced by endogenous (peptide sequence) or exogenous (ionic strength, kosmotropic characteristics, aging) factors and the β-sheet content within coacervates. These findings provide valuable insights to rationally design short peptide coacervates with programmable materials properties that are increasingly used in biomedical applications.
Collapse
Affiliation(s)
- Xi Wu
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Yue Sun
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 637553, Singapore.
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.
- School of Biological Sciences, 60 Nanyang Drive, NTU, Singapore, 636921, Singapore.
| |
Collapse
|
17
|
Hovanová V, Hovan A, Humenik M, Sedlák E. Only kosmotrope anions trigger fibrillization of the recombinant core spidroin eADF4(C16) from Araneus diadematus. Protein Sci 2023; 32:e4832. [PMID: 37937854 PMCID: PMC10661072 DOI: 10.1002/pro.4832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Recombinant core spidroin eADF4(C16) has received increasing attention due to its ability to form micro- and nano-structured scaffolds, which are based on nanofibrils with great potential for biomedical and biotechnological applications. Phosphate anions have been demonstrated to trigger the eADF4(C16) self-assembly into cross-beta fibrils. In the present work, we systematically addressed the effect of nine sodium anions, namely SO4 2- , HPO4 2- (Pi), F- , Cl- , Br- , NO3 - , I- , SCN- , and ClO4 - from the Hofmeister series on the in vitro self-assembly kinetics of eADF4(C16). We show that besides the phosphate anions, only kosmotropic anions such as sulfate and fluoride can initiate the eADF4(C16) fibril formation. Global analysis of the self-assembly kinetics, utilizing the platform AmyloFit, showed the nucleation-based mechanism with a major role of secondary nucleation, surprisingly independent of the type of the kosmotropic anion. The rate constant of the fibril elongation in mixtures of phosphate anions with other studied anions correlated with their kosmotropic or chaotropic position in the Hofmeister series. Our findings suggest an important role of anion hydration in the eADF4(C16) fibrillization process.
Collapse
Affiliation(s)
- Veronika Hovanová
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Andrej Hovan
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Martin Humenik
- Department of Biomaterials, Faculty of Engineering ScienceUniversity BayreuthBayreuthGermany
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| |
Collapse
|
18
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
19
|
Nepal S, Holmstrom ED. Single-molecule-binding studies of antivirals targeting the hepatitis C virus core protein. J Virol 2023; 97:e0089223. [PMID: 37772835 PMCID: PMC10617558 DOI: 10.1128/jvi.00892-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.
Collapse
Affiliation(s)
- Sudip Nepal
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Erik D. Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
20
|
Truong HP, Koren G, Avinery R, Beck R, Saleh OA. Pincus blob elasticity in an intrinsically disordered protein. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:100. [PMID: 37847354 DOI: 10.1140/epje/s10189-023-00360-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Understanding the dynamic structure of intrinsically disordered proteins (IDPs) is important to deciphering their biological functions. Here, we exploit precision entropic elasticity measurements to infer the conformational behavior of a model IDP construct formed from the disordered tail of the neurofilament low molecular weight protein. The IDP construct notably displays a low-force power-law elastic regime, consistent with the Pincus blob model, which allows direct extraction of the Flory exponent, [Formula: see text], from the force-extension relationship. We find [Formula: see text] increases with added denaturant, transitioning from a nearly ideal chain to a swollen chain in a manner quantitatively consistent with measurements of IDP dimensions from other experimental techniques. We suggest that measurements of entropic elasticity could be broadly useful in the study of IDP structure.
Collapse
Affiliation(s)
- Hoang P Truong
- Materials Department, University of California, Santa Barbara, USA
| | - Gil Koren
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ram Avinery
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Omar A Saleh
- Materials Department, University of California, Santa Barbara, USA.
- Biomolecular Sciences and Engineering Department, University of California, Santa Barbara, USA.
- Physics Department, University of California, Santa Barbara, USA.
| |
Collapse
|
21
|
Robb C, Dao TP, Ujma J, Castañeda CA, Beveridge R. Ion Mobility Mass Spectrometry Unveils Global Protein Conformations in Response to Conditions that Promote and Reverse Liquid-Liquid Phase Separation. J Am Chem Soc 2023; 145:12541-12549. [PMID: 37276246 PMCID: PMC10273310 DOI: 10.1021/jacs.3c00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 06/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) is a process by which biomacromolecules, particularly proteins, condense into a dense phase that resembles liquid droplets. Dysregulation of LLPS is implicated in disease, yet the relationship between protein conformational changes and LLPS remains difficult to discern. This is due to the high flexibility and disordered nature of many proteins that phase separate under physiological conditions and their tendency to oligomerize. Here, we demonstrate that ion mobility mass spectrometry (IM-MS) overcomes these limitations. We used IM-MS to investigate the conformational states of full-length ubiquilin-2 (UBQLN2) protein, LLPS of which is driven by high-salt concentration and reversed by noncovalent interactions with ubiquitin (Ub). IM-MS revealed that UBQLN2 exists as a mixture of monomers and dimers and that increasing salt concentration causes the UBQLN2 dimers to undergo a subtle shift toward extended conformations. UBQLN2 binds to Ub in 2:1 and 2:2 UBQLN2/Ub complexes, which have compact geometries compared to free UBQLN2 dimers. Together, these results suggest that extended conformations of UBQLN2 are correlated with UBQLN2's ability to phase separate. Overall, delineating protein conformations that are implicit in LLPS will greatly increase understanding of the phase separation process, both in normal cell physiology and disease states.
Collapse
Affiliation(s)
- Christina
Glen Robb
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Thuy P. Dao
- Departments
of Biology and Chemistry, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Jakub Ujma
- Waters
Corporation, Stamford
Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K.
| | - Carlos A. Castañeda
- Departments
of Biology and Chemistry, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Rebecca Beveridge
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
22
|
Dong W, Tang C, Chu WT, Wang E, Wang J. Effects of Mass Change on Liquid–Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma. Biomolecules 2023; 13:biom13040625. [PMID: 37189373 DOI: 10.3390/biom13040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
In recent years, many experimental and theoretical studies of protein liquid–liquid phase separation (LLPS) have shown its important role in the processes of physiology and pathology. However, there is a lack of definite information on the regulation mechanism of LLPS in vital activities. Recently, we found that the intrinsically disordered proteins with the insertion/deletion of a non-interacting peptide segment or upon isotope replacement could form droplets, and the LLPS states are different from the proteins without those. We believed that there is an opportunity to decipher the LLPS mechanism with the mass change perspective. To investigate the effect of molecular mass on LLPS, we developed a coarse-grained model with different bead masses, including mass 1.0, mass 1.1, mass 1.2, mass 1.3, and mass 1.5 in atomic units or with the insertion of a non-interacting peptide (10 aa) and performed molecular dynamic simulations. Consequently, we found that the mass increase promotes the LLPS stability, which is based on decreasing the z motion rate and increasing the density and the inter-chain interaction of droplets. This insight into LLPS by mass change paves the way for the regulation and relevant diseases on LLPS.
Collapse
|
23
|
Baidya L, Reddy G. pH Induced Switch in the Conformational Ensemble of Intrinsically Disordered Protein Prothymosin-α and Its Implications for Amyloid Fibril Formation. J Phys Chem Lett 2022; 13:9589-9598. [PMID: 36206480 DOI: 10.1021/acs.jpclett.2c01972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aggregation of intrinsically disordered proteins (IDPs) can lead to neurodegenerative diseases. Although there is experimental evidence that acidic pH promotes IDP monomer compaction leading to aggregation, the general mechanism is unclear. We studied the pH effect on the conformational ensemble of prothymosin-α (proTα), which is involved in multiple essential functions, and probed its role in aggregation using computer simulations. We show that compaction in the proTα dimension at low pH is due to the protein's collapse in the intermediate region (E41-D80) rich in glutamic acid residues, enhancing its β-sheet content. We observed by performing dimer simulations that the conformations with high β-sheet content could act as aggregation-prone (N*) states and nucleate the aggregation process. The simulations initiated using N* states form dimers within a microsecond time scale, whereas the non-N* states do not form dimers within this time scale. This study contributes to understanding the general principles of pH-induced IDP aggregation.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| |
Collapse
|