1
|
Bubon T, Azizi K. Effects of Alkali-Metal Counterions on the Vibrational Dynamics of the DNA Hydration Shell. J Phys Chem B 2025; 129:28-40. [PMID: 39692183 DOI: 10.1021/acs.jpcb.4c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The effects of alkali-metal ions (Li+, Na+, K+, Rb+, and Cs+) on the vibrational dynamics of the DNA ion-hydration shell were studied through classical molecular dynamics simulations. As a result, the vibrational spectra of the DNA-water-salt systems were calculated within the framework of two approaches, using dipole-dipole and velocity-velocity autocorrelation functions. We dissect the effect of the individual compartments of the DNA double helix (minor groove, major groove, and phosphate groups) on the behavior of the systems. The obtained spectra have a different shape in the case of structure-making and structure-breaking ions. This difference becomes more prominent for the ions interacting with DNA, especially in the case of structure-breaking ions in the minor groove of the double helix. The obtained spectra of DNA do not show a significant effect of counterion type, except for Li+, which influences the vibrational modes of the DNA phosphates. The analysis of the spectra of water vibrations around ions revealed an isosbestic point at ∼70 cm-1, which appears as a response to the confinement induced by interaction with the DNA double helix and counterions. The obtained results are important for understanding the structural and dynamical organization of the DNA ion-hydration shell.
Collapse
Affiliation(s)
- Tetiana Bubon
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-b Metrolohichna Str., Kyiv 03143, Ukraine
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| | - Khatereh Azizi
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|
2
|
Llanos S, Di Geronimo B, Casajús E, Blanco-Romero E, Fernández-Leiro R, Méndez J. Interference of small compounds and Mg 2+ with dsRNA-binding fluorophores compromises the identification of SARS-CoV-2 RdRp inhibitors. Sci Rep 2024; 14:28250. [PMID: 39548173 PMCID: PMC11568178 DOI: 10.1038/s41598-024-78354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
The COVID-19 pandemic highlighted the need for the rapid development of antiviral therapies. Viral RNA-dependent RNA polymerases (RdRp) are promising targets, and numerous virtual screenings for potential inhibitors were conducted without validation of the identified hits. Here we have tested a set of presumed RdRp inhibitors in biochemical assays based on fluorometric detection of RdRp activity or on the electrophoretic separation or RdRp products. We find that fluorometric detection of RdRp activity is unreliable as a screening method because many small compounds interfere with fluorophore binding to dsRNA, and this effect is enhanced by the Mg2+ metal ions used by nucleic acid polymerases. The fact that fluorimetric detection of RdRp activity leads to false-positive hits underscores the requirement for independent validation methods. We also show that suramin, one of the proposed RdRp inhibitors that could be validated biochemically, is a multi-polymerase inhibitor. While this does not hinder its potential as an antiviral agent, it cannot be considered an specific inhibitor of SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Susana Llanos
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain.
| | - Bruno Di Geronimo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA
| | - Ester Casajús
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Rafael Fernández-Leiro
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Bizzarri AR. Molecular Dynamics Simulations of the miR-155 Duplex: Impact of Ionic Strength on Structure and Na + and Cl - Ion Distribution. Molecules 2024; 29:4246. [PMID: 39275094 PMCID: PMC11397720 DOI: 10.3390/molecules29174246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
MiR-155 is a multifunctional microRNA involved in many biological processes. Since miR-155 is overexpressed in several pathologies, its detection deserves high interest in clinical diagnostics. Biosensing approaches often exploit the hybridization of miR-155 with its complementary strand. Molecular Dynamics (MD) simulations were applied to investigate the complex formed by miR-155 and its complementary strand in aqueous solution with Na+ and Cl- ions at ionic strengths in the 100-400 mM range, conditions commonly used in biosensing experiments. We found that the main structural properties of the duplex are preserved at all the investigated ionic strengths. The radial distribution functions of both Na+ and Cl- ions around the duplex show deviation from those of bulk with peaks whose relative intensity depends on the ionic strength. The number of ions monitored as a function of the distance from the duplex reveals a behavior reminiscent of the counterion condensation near the duplex surface. The occurrence of such a phenomenon could affect the Debye length with possible effects on the sensitivity in biosensing experiments.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy; ; Tel.: +39-0761-357031
| |
Collapse
|
4
|
Madhanagopal B, Rodriguez A, Cordones M, Chandrasekaran AR. Barium Concentration-Dependent Anomalous Electrophoresis of Synthetic DNA Motifs. ACS APPLIED BIO MATERIALS 2024; 7:2704-2709. [PMID: 38635922 PMCID: PMC11110055 DOI: 10.1021/acsabm.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The structural integrity, assembly yield, and biostability of DNA nanostructures are influenced by the metal ions used to construct them. Although high (>10 mM) concentrations of divalent ions are often preferred for assembling DNA nanostructures, the range of ion concentrations and the composition of the assembly products vary for different assembly conditions. Here, we examined the unique ability of Ba2+ to retard double crossover DNA motifs by forming a low mobility species, whose mobility on the gel is determined by the concentration ratio of DNA and Ba2+. The formation of this electrophoretically retarded species is promoted by divalent ions such as Mg2+, Ca2+, and Sr2+ when combined with Ba2+ but not on their own, while monovalent ions such as Na+, K+, and Li+ do not have any effect on this phenomenon. Our results highlight the complex interplay between the metal ions and DNA self-assembly and could inform the design of DNA nanostructures for applications that expose them to multiple ions at high concentrations.
Collapse
Affiliation(s)
- Bharath
Raj Madhanagopal
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Arlin Rodriguez
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mireylin Cordones
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Arun Richard Chandrasekaran
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
5
|
Dong HL, Zhang C, Dai L, Zhang Y, Zhang XH, Tan ZJ. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations. Nucleic Acids Res 2024; 52:2519-2529. [PMID: 38321947 PMCID: PMC10954459 DOI: 10.1093/nar/gkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The subtle differences in the chemical structures of double-stranded (ds) RNA and DNA lead to significant variations in their biological roles and medical implications, largely due to their distinct biophysical properties, such as bending stiffness. Although it is well known that A-form dsRNA is stiffer than B-form dsDNA under physiological salt conditions, the underlying cause of this difference remains unclear. In this study, we employ high-precision magnetic-tweezer experiments along with molecular dynamics simulations and reveal that the relative bending stiffness between dsRNA and dsDNA is primarily determined by the structure- and salt-concentration-dependent ion distribution around their helical structures. At near-physiological salt conditions, dsRNA shows a sparser ion distribution surrounding its phosphate groups compared to dsDNA, causing its greater stiffness. However, at very high monovalent salt concentrations, phosphate groups in both dsRNA and dsDNA become fully neutralized by excess ions, resulting in a similar intrinsic bending persistence length of approximately 39 nm. This similarity in intrinsic bending stiffness of dsRNA and dsDNA is coupled to the analogous fluctuations in their total groove widths and further coupled to the similar fluctuation of base-pair inclination, despite their distinct A-form and B-form helical structures.
Collapse
Affiliation(s)
- Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Park J, Evangelopoulos M, Vasher MK, Kudruk S, Ramani N, Mayer V, Solivan AC, Lee A, Mirkin CA. Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306902. [PMID: 37932003 PMCID: PMC10947971 DOI: 10.1002/smll.202306902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Indexed: 11/08/2023]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) is limited by their poor stability and low cellular uptake. When formulated as spherical nucleic acids (SNAs), siRNAs are resistant to nuclease degradation and enter cells without transfection agents with enhanced activity compared to their linear counterparts; however, the gene silencing activity of SNAs is limited by endosomal entrapment, a problem that impacts many siRNA-based nanoparticle constructs. To increase cytosolic delivery, SNAs are formulated using calcium chloride (CaCl2 ) instead of the conventionally used sodium chloride (NaCl). The divalent calcium (Ca2+ ) ions remain associated with the multivalent SNA and have a higher affinity for SNAs compared to their linear counterparts. Importantly, confocal microscopy studies show a 22% decrease in the accumulation of CaCl2 -salted SNAs within the late endosomes compared to NaCl-salted SNAs, indicating increased cytosolic delivery. Consistent with this finding, CaCl2 -salted SNAs comprised of siRNA and antisense DNA all exhibit enhanced gene silencing activity (up to 20-fold), compared to NaCl-salted SNAs regardless of sequence or cell line (U87-MG and SK-OV-3) studied. Moreover, CaCl2 -salted SNA-based forced intercalation probes show improved cytosolic mRNA detection.
Collapse
Affiliation(s)
- Jungsoo Park
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Michael Evangelopoulos
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Matthew K. Vasher
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Sergej Kudruk
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Material Sciences and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Vinzenz Mayer
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Alexander C. Solivan
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Andrew Lee
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208
| | - Chad A. Mirkin
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Material Sciences and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208
| |
Collapse
|
7
|
Coste A, Slejko E, Zavadlav J, Praprotnik M. Developing an Implicit Solvation Machine Learning Model for Molecular Simulations of Ionic Media. J Chem Theory Comput 2024; 20:411-420. [PMID: 38118122 PMCID: PMC10782447 DOI: 10.1021/acs.jctc.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Molecular dynamics (MD) simulations of biophysical systems require accurate modeling of their native environment, i.e., aqueous ionic solution, as it critically impacts the structure and function of biomolecules. On the other hand, the models should be computationally efficient to enable simulations of large spatiotemporal scales. Here, we present the deep implicit solvation model for sodium chloride solutions that satisfies both requirements. Owing to the use of the neural network potential, the model can capture the many-body potential of mean force, while the implicit water treatment renders the model inexpensive. We demonstrate our approach first for pure ionic solutions with concentrations ranging from physiological to 2 M. We then extend the model to capture the effective ion interactions in the vicinity and far away from a DNA molecule. In both cases, the structural properties are in good agreement with all-atom MD, showcasing a general methodology for the efficient and accurate modeling of ionic media.
Collapse
Affiliation(s)
- Amaury Coste
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Ema Slejko
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Julija Zavadlav
- Professorship
of Multiscale Modeling of Fluid Materials, TUM School of Engineering
and Design, Technical University of Munich, Garching Near Munich DE-85748, Germany
| | - Matej Praprotnik
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
8
|
Kolesnikov ES, Gushchin IY, Zhilyaev PA, Onufriev AV. Why Na+ has higher propensity than K+ to condense DNA in a crowded environment. J Chem Phys 2023; 159:145103. [PMID: 37815107 DOI: 10.1063/5.0159341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
Experimentally, in the presence of the crowding agent polyethylene glycol (PEG), sodium ions compact double-stranded DNA more readily than potassium ions. Here, we have used molecular dynamics simulations and the "ion binding shells model" of DNA condensation to provide an explanation for the observed variations in condensation of short DNA duplexes in solutions containing different monovalent cations and PEG; several predictions are made. According to the model we use, externally bound ions contribute the most to the ion-induced aggregation of DNA duplexes. The simulations reveal that for two adjacent DNA duplexes, the number of externally bound Na+ ions is larger than the number of K+ ions over a wide range of chloride concentrations in the presence of PEG, providing a qualitative explanation for the higher propensity of sodium ions to compact DNA under crowded conditions. The qualitative picture is confirmed by an estimate of the corresponding free energy of DNA aggregation that is at least 0.2kBT per base pair more favorable in solution with NaCl than with KCl at the same ion concentration. The estimated attraction free energy of DNA duplexes in the presence of Na+ depends noticeably on the DNA sequence; we predict that AT-rich DNA duplexes are more readily condensed than GC-rich ones in the presence of Na+. Counter-intuitively, the addition of a small amount of a crowding agent with high affinity for the specific condensing ion may lead to the weakening of the ion-mediated DNA-DNA attraction, shifting the equilibrium away from the DNA condensed phase.
Collapse
Affiliation(s)
- Egor S Kolesnikov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Ivan Yu Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Petr A Zhilyaev
- The Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Alexey V Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
- Department of Computer Science, Virginia Tech, 2160C Torgersen Hall, Blacksburg, Virginia 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
9
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs. Biophys J 2023; 122:3323-3339. [PMID: 37469144 PMCID: PMC10465710 DOI: 10.1016/j.bpj.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 μs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
He X, Ewing AG. Hofmeister Series: From Aqueous Solution of Biomolecules to Single Cells and Nanovesicles. Chembiochem 2023; 24:e202200694. [PMID: 37043703 DOI: 10.1002/cbic.202200694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Indexed: 04/14/2023]
Abstract
Hofmeister effects play a critical role in numerous physicochemical and biological phenomena, including the solubility and/or accumulation of proteins, the activities of enzymes, ion transport in biochannels, the structure of lipid bilayers, and the dynamics of vesicle opening and exocytosis. This minireview focuses on how ionic specificity affects the physicochemical properties of biomolecules to regulate cellular exocytosis, vesicular content, and nanovesicle opening. We summarize recent progress in further understanding Hofmeister effects on biomacromolecules and their applications in biological systems. These important steps have increased our understanding of the Hofmeister effects on cellular exocytosis, vesicular content, and nanovesicle opening. Increasing evidence is firmly establishing that the ions along the Hofmeister series play an important role in living organisms that has often been ignored.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
11
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Direct monitoring of the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization from gaps and overhangs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536266. [PMID: 37090657 PMCID: PMC10120721 DOI: 10.1101/2023.04.10.536266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Hybridization of short nucleic acid segments (<4 nucleotides) to single-strand templates occurs as a critical intermediate in processes such as non-enzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood due to experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential non-canonical base pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2 to 40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involves a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Kührová P, Mlýnský V, Otyepka M, Šponer J, Banáš P. Sensitivity of the RNA Structure to Ion Conditions as Probed by Molecular Dynamics Simulations of Common Canonical RNA Duplexes. J Chem Inf Model 2023; 63:2133-2146. [PMID: 36989143 PMCID: PMC10091408 DOI: 10.1021/acs.jcim.2c01438] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 03/30/2023]
Abstract
RNA molecules play a key role in countless biochemical processes. RNA interactions, which are of highly diverse nature, are determined by the fact that RNA is a highly negatively charged polyelectrolyte, which leads to intimate interactions with an ion atmosphere. Although RNA molecules are formally single-stranded, canonical (Watson-Crick) duplexes are key components of folded RNAs. A double-stranded (ds) RNA is also important for the design of RNA-based nanostructures and assemblies. Despite the fact that the description of canonical dsRNA is considered the least problematic part of RNA modeling, the imperfect shape and flexibility of dsRNA can lead to imbalances in the simulations of larger RNAs and RNA-containing assemblies. We present a comprehensive set of molecular dynamics (MD) simulations of four canonical A-RNA duplexes. Our focus was directed toward the characterization of the influence of varying ion concentrations and of the size of the solvation box. We compared several water models and four RNA force fields. The simulations showed that the A-RNA shape was most sensitive to the RNA force field, with some force fields leading to a reduced inclination of the A-RNA duplexes. The ions and water models played a minor role. The effect of the box size was negligible, and even boxes with a small fraction of the bulk solvent outside the RNA hydration sphere were sufficient for the simulation of the dsRNA.
Collapse
Affiliation(s)
- Petra Kührová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations, VSB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Poruba, Czech Republic
| | - Jiří Šponer
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
13
|
Bubon T, Zdorevskyi O, Perepelytsya S. Molecular dynamics study of collective water vibrations in a DNA hydration shell. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:69-79. [PMID: 36920489 DOI: 10.1007/s00249-023-01638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
The structure of DNA double helix is stabilized by water molecules and metal counterions that form the ion-hydration shell around the macromolecule. Understanding the role of the ion-hydration shell in the physical mechanisms of the biological functioning of DNA requires detailed studies of its structure and dynamics at the atomistic level. In the present work, the study of collective vibrations of water molecules around the DNA double helix was performed within the framework of classical all-atom molecular dynamics methods. Calculating the vibrational density of states, the vibrations of water molecules in the low-frequency spectra ranged from [Formula: see text]30 to [Formula: see text]300 [Formula: see text] were analyzed for the case of different regions of the DNA double helix (minor groove, major groove, and phosphate groups). The analysis revealed significant differences in the collective vibrations behavior of water molecules in the DNA hydration shell, compared to the vibrations of bulk water. All low-frequency modes of the DNA ion-hydration shell are shifted by about 15-20 [Formula: see text] towards higher frequencies, which is more significant for water molecules in the minor groove region of the double helix. The interactions of water molecules with the atoms of the macromolecule induce intensity decrease of the mode of hydrogen-bond symmetrical stretching near 150 [Formula: see text], leading to the disappearance of this mode in the DNA spectra. The obtained results can provide an interpretation of the experimental data for DNA low-frequency spectra and may be important for the understanding of the processes of indirect protein-nucleic recognition.
Collapse
Affiliation(s)
- Tetiana Bubon
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b, Metrolohichna Str., Kyiv, 03143, Ukraine.
- Condensed Matter and Statistical Physics, Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 11, Trieste, 34151, Italy.
| | - Oleksii Zdorevskyi
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, 00014, Finland
| | - Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b, Metrolohichna Str., Kyiv, 03143, Ukraine
| |
Collapse
|