1
|
Chawla M, Poater A, Oliva R, Cavallo L. Unveiling structural and energetic characterization of the emissive RNA alphabet anchored in the methylthieno[3,4- d]pyrimidine heterocycle core. Phys Chem Chem Phys 2024; 26:16358-16368. [PMID: 38805177 DOI: 10.1039/d3cp06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This study presents a comprehensive theoretical exploration of the fluorescent non-natural emissive nucleobases- mthA, mthG, mthC, and mthU derived from the methylthieno[3,4-d]pyrimidine heterocycle. Our calculations, aligning with experimental findings, reveal that these non-natural bases exert minimal influence on the geometry of classical Watson-Crick base pairs within an RNA duplex, maintaining H-bonding akin to natural bases. In terms of energy, the impact of the modified bases, but for mthG, is also found to be little significant. We delved into an in-depth analysis of the photophysical properties of these non-natural bases. This investigation unveiled a correlation between their absorption/emission peaks and the substantial impact of the modification on the energy levels of the highest unoccupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbital (LUMO). Notably, this alteration in energy levels resulted in a significant reduction of the HOMO-LUMO gap, from approximately 5.4-5.5 eV in the natural bases, to roughly 3.9-4.7 eV in the modified bases. This shift led to a consequential change in absorption and emission spectra towards longer wavelengths, elucidating their bathochromic shift.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, Naples, I-80143, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Babar V, Sharma S, Shaikh AR, Oliva R, Chawla M, Cavallo L. Detecting Hachimoji DNA: An Eight-Building-Block Genetic System with MoS 2 and Janus MoSSe Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21427-21437. [PMID: 38634539 PMCID: PMC11071042 DOI: 10.1021/acsami.3c18400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
In the pursuit of personalized medicine, the development of efficient, cost-effective, and reliable DNA sequencing technology is crucial. Nanotechnology, particularly the exploration of two-dimensional materials, has opened different avenues for DNA nucleobase detection, owing to their impressive surface-to-volume ratio. This study employs density functional theory with van der Waals corrections to methodically scrutinize the adsorption behavior and electronic band structure properties of a DNA system composed of eight hachimoji nucleotide letters adsorbed on both MoS2 and MoSSe monolayers. Through a comprehensive conformational search, we pinpoint the most favorable adsorption sites, quantifying their adsorption energies and charge transfer properties. The analysis of electronic band structure unveils the emergence of flat bands in close proximity to the Fermi level post-adsorption, a departure from the pristine MoS2 and MoSSe monolayers. Furthermore, leveraging the nonequilibrium Green's function approach, we compute the current-voltage characteristics, providing valuable insights into the electronic transport properties of the system. All hachimoji bases exhibit physisorption with a horizontal orientation on both monolayers. Notably, base G demonstrates high sensitivity on both substrates. The obtained current-voltage (I-V) characteristics, both without and with base adsorption on MoS2 and the Se side of MoSSe, affirm excellent sensing performance. This research significantly advances our understanding of potential DNA sensing platforms and their electronic characteristics, thereby propelling the endeavor for personalized medicine through enhanced DNA sequencing technologies.
Collapse
Affiliation(s)
- Vasudeo Babar
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sitansh Sharma
- Department
of Research and Innovation, STEMskills Research
and Education Lab Private Limited, Faridabad, Haryana 121002, India
| | - Abdul Rajjak Shaikh
- Department
of Research and Innovation, STEMskills Research
and Education Lab Private Limited, Faridabad, Haryana 121002, India
| | - Romina Oliva
- Department
of Sciences and Technologies, University
Parthenope of Naples, Centro Direzionale Isola C4, 80143 Naples, Italy
| | - Mohit Chawla
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Negi I, Singh B, Singh Mahmi A, Sharma P. Structural Properties of Hachimoji Nucleic Acids and Their Building Blocks: Comparison of Genetic Systems with Four, Six and Eight Alphabets. Chemphyschem 2023; 24:e202200714. [PMID: 36315394 DOI: 10.1002/cphc.202200714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Indexed: 11/07/2022]
Abstract
Expansion of the genetic alphabet is an ambitious goal. A recent breakthrough has led to the eight-base (hachimoji) genetics having canonical and unnatural bases. However, very little is known on the molecular-level features that facilitate the candidature of unnatural bases as genetic alphabets. Here we amalgamated DFT calculations and MD simulations to analyse the properties of the constituents of hachimoji DNA and RNA. DFT reveals the dominant syn conformation for isolated unnatural deoxyribonucleosides and at the 5'-end of oligonucleotides, although an anti/syn mixture is predicted at the nonterminal and 3'-terminal positions. However, isolated ribonucleotides prefer an anti/syn mixture, but mostly prefer anti conformation at the nonterminal positions. Further, the canonical base pairing combinations reveals significant strength, which may facilitate replication of hachimoji DNA. We also identify noncanonical base pairs that can better tolerate the substitution of unnatural pairs in RNA. Stacking strengths of 51 dimers reveals higher average stacking stabilization of dimers of hachimoji bases than canonical bases, which provides clues for choosing energetically stable sequences. A total of 14.4 μs MD simulations reveal the influence of solvent on the properties of hachimoji oligonucleotides and point to the likely fidelity of replication of hachimoji DNA. Our results pinpoint the features that explain the experimentally observed stability of hachimoji DNA.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Bimaldeep Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Amanpreet Singh Mahmi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
5
|
Fu TH, Lin MY, Fu CB, Yu XF, Xiao B, Cheng JB, Li Q. The role of nitro group on the excited-state relaxation mechanism of P-Z base pair. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120549. [PMID: 34810098 DOI: 10.1016/j.saa.2021.120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
DNAs' photostability is significant to the normal function of organisms. P-Z is a hydrogen bonded artificial DNA base pair, where P and Z represent 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one and 6-amino-5nitro-2(1H)-pyridone, respectively. The excited-state relaxation mechanism of P-Z pair is investigated using static TDDFT calculations combined with the non-adiabatic dynamic simulations at TDDFT level. The roles of nitro rotation, nitro out-of-plane deformation, and single proton transfer (SPT) along hydrogen bond are revealed. The results of potential energy profile calculations demonstrate that the SPT processes along the hydrogen bonds are unfavorable to occur statically, which is in great contrast to the natural base pair. The non-adiabatic dynamic simulations show that the excited-state nitro rotation and nitro out-of-plane deformation are the two important relaxation channels which lead to the fast internal conversion to S0 state. The SPT from Z to P is also observed, followed by distortion on P, inducing the fast internal conversion to S0 state. However, this channel (decay via SPT process) plays minor roles on the excited-state relaxation mechanism statistically. This work shows the great differences of the excited-state relaxation mechanism between the natural base pairs and artificial base pair, also sheds new light into the role of hydrogen bond and nitro group in P-Z base pair.
Collapse
Affiliation(s)
- Ting-He Fu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Man-Yu Lin
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Cheng-Bin Fu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Xue-Fang Yu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Bo Xiao
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Jian-Bo Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
6
|
Zhao Y, Cui X, Song Y, Zhang C, Meng Q. Photophysical properties of fluorescent nucleobase P-analogues expected to monitor DNA replication. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119926. [PMID: 34022693 DOI: 10.1016/j.saa.2021.119926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, we computationally design a series of fluorescent purine analogues based on the 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one (P) to monitor the DNA replication process with merely a minimal perturbation to the natural structure of nucleic acid. The P-modified fluorescent probes present red-shifted absorption spectra and enhanced photoluminescence due to the additional π-conjugation resulting from the fluorophore modification and the ring-expansion. Efficient fluorescence quenching of P-analogues occurs upon pairing with the complementary 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) due to the nonradiative relaxation from the low-lying dark excited state to the ground state of Z moiety. Especially, the P3 and the P7, which have high fluorescence intensity in both gas and liquid phases, are proposed as the sensors for studying conformational switching in the presence and absence of a complementary sequence. Also examined are the influences of hydration and the linking to deoxyribose on absorption and emission processes. Besides, the potential phosphorescence emission of these modified base pairs is taken into account by constructing the relaxed potential energy curves of S0, T1 and S1 states.
Collapse
Affiliation(s)
- Yu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yuzhi Song
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
7
|
Cui X, Zhao Y, Li Z, Meng Q, Zhang C. Proton Transfer and Nitro Rotation Tuned Photoisomerization of Artificial Base Pair-ZP. Front Chem 2020; 8:605117. [PMID: 33330400 PMCID: PMC7734142 DOI: 10.3389/fchem.2020.605117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Recently, the successful incorporation of artificial base pairs in genetics has made a significant progress in synthetic biology. The present work reports the proton transfer and photoisomerization of unnatural base pair ZP, which is synthesized from the pyrimidine analog 6-amino-5-nitro-3-(1-β-D-2'-deoxyribo-furanosyl)-2 (1H)-pyridone (Z) and paired with its Watson-Crick complement, the purine analog 2-amino-8-(1'-β-D-2'- deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one (P). To explain the mechanism of proton transfer process, we constructed the relaxed potential energy surfaces (PESs) linking the different tautomers in both gas phase and solution. Our results show that the double proton transfer in the gas phase occurs in a concerted way both in S0 and S1 states, while the stepwise mechanism becomes more favorable in solution. The solvent effect can promote the single proton transfer, which undergoes a lower energy barrier in S1 state due to the strengthened hydrogen bond. In contrast to the excited state ultrafast deactivation process of the natural bases, there is no conical intersection between S0 and S1 states along the proton transfer coordinate to activate the decay mechanism in ZP. Of particular relevance to the photophysical properties, charge-transfer character is obviously related to the nitro rotation in S1 state. We characterized the molecular vibration effect on the electronic properties, which reveals the electronic excitation can be tuned by the rotation-induced structural distortion accompanied with the electron localization on nitro group.
Collapse
Affiliation(s)
- Xixi Cui
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yu Zhao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Zhibing Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qingtian Meng
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Changzhe Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Ouaray Z, Singh I, Georgiadis MM, Richards NGJ. Building better enzymes: Molecular basis of improved non-natural nucleobase incorporation by an evolved DNA polymerase. Protein Sci 2020; 29:455-468. [PMID: 31654473 PMCID: PMC6954703 DOI: 10.1002/pro.3762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 01/02/2023]
Abstract
Obtaining semisynthetic microorganisms that exploit the information density of "hachimoji" DNA requires access to engineered DNA polymerases. A KlenTaq variant has been reported that incorporates the "hachimoji" P:Z nucleobase pair with a similar efficiency to that seen for Watson-Crick nucleobase incorporation by the wild type (WT) KlenTaq DNA polymerase. The variant polymerase differs from WT KlenTaq by only four amino acid substitutions, none of which are located within the active site. We now report molecular dynamics (MD) simulations on a series of binary complexes aimed at elucidating the contributions of the four amino acid substitutions to altered catalytic activity. These simulations suggest that WT KlenTaq is insufficiently flexible to be able to bind AEGIS DNA correctly, leading to the loss of key protein/DNA interactions needed to position the binary complex for efficient incorporation of the "hachimoji" Z nucleobase. In addition, we test literature hypotheses about the functional roles of each amino acid substitution and provide a molecular description of how individual residue changes contribute to the improved activity of the KlenTaq variant. We demonstrate that MD simulations have a clear role to play in systematically screening DNA polymerase variants capable of incorporating different types of nonnatural nucleobases thereby limiting the number that need to be characterized by experiment. It is now possible to build DNA molecules containing nonnatural nucleobase pairs in addition to A:T and G:C. Exploiting this development in synthetic biology requires engineered DNA polymerases that can replicate nonnatural nucleobase pairs. Computational studies on a DNA polymerase variant reveal how amino acid substitutions outside of the active site yield an enzyme that replicates nonnatural nucleobase pairs with high efficiency. This work will facilitate efforts to obtain bacteria possessing an expanded genetic alphabet.
Collapse
Affiliation(s)
| | - Isha Singh
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndiana
| | - Millie M. Georgiadis
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndiana
| | | |
Collapse
|
9
|
Jena NR. Electron and hole interactions with P, Z, and P:Z and the formation of mutagenic products by proton transfer reactions. Phys Chem Chem Phys 2020; 22:919-931. [DOI: 10.1039/c9cp05367k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Z would act as an electron acceptor and P would capture a hole in the unnatural DNA. The latter process would produce mutagenic products via a proton transfer reaction.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology, Design, and Manufacturing
- Jabalpur-482005
- India
| |
Collapse
|
10
|
Behera B, Das P, Jena NR. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. J Phys Chem B 2019; 123:6728-6739. [PMID: 31290661 DOI: 10.1021/acs.jpcb.9b04653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several artificial nucleobases, such as B, S, J, V, X, K, P, and Z, have been proposed to help in the expansion of the genetic information system and diagnosis of diseases. Among these bases, P and Z were identified to form stable DNA and to participate in the replication. However, the stabilities of P:Z and other artificial base pairs are not fully understood. The abilities of these unnatural nucleobases in mispairing with themselves and with natural bases are also not known. Here, the ωB97X-D dispersion-corrected density functional theoretical and complete basis set (CBS-QB3) methods are used to obtain accurate structural and energetic data related to base pair interactions involving these unnatural nucleobases. The roles of protonation and deprotonation of certain artificial bases in inducing mutations are also studied. It is found that each artificial purine has a complementary artificial pyrimidine, the base pair interactions between which are similar to those of the natural Watson-Crick base pairs. Hence, these base pairs will function naturally and would not impart mutagenicity. Among these base pairs, the J:V complex is found to be the most stable and promising artificial base pair. Remarkably, the noncomplementary artificial nucleobases are found to form stable mispairs, which may generate mutagenic products in DNA. Similarly, the misinsertions of natural bases opposite artificial bases are also found to be mutagenic. The mechanisms of these mutations are explained in detail. These results are in agreement with earlier biochemical studies. It is thus expected that this study would aid in the advancement of the synthetic biology to design more robust artificial nucleotides.
Collapse
Affiliation(s)
- B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| |
Collapse
|
11
|
Chawla M, Minenkov Y, Vu KB, Oliva R, Cavallo L. Structural and Energetic Impact of Non-natural 7-Deaza-8-azaguanine, 7-Deaza-8-azaisoguanine, and Their 7-Substituted Derivatives on Hydrogen-Bond Pairing with Cytosine and Isocytosine. Chembiochem 2019; 20:2262-2270. [PMID: 30983115 DOI: 10.1002/cbic.201900245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/12/2022]
Abstract
The impact of 7-deaza-8-azaguanine (DAG) and 7-deaza-8-azaisoguanine (DAiG) modifications on the geometry and stability of the G:C Watson-Crick (cWW) base pair and the G:iC and iG:C reverse Watson-Crick (tWW) base pairs has been characterized theoretically. In addition, the effect on the same base pairs of seven C7-substituted DAG and DAiG derivatives, some of which have been previously experimentally characterized, has been investigated. Calculations indicate that all of these modifications have a negligible impact on the geometry of the above base pairs, and that modification of the heterocycle skeleton has a small impact on the base-pair interaction energies. Instead, base-pair interaction energies are dependent on the nature of the C7 substituent. For the 7-substituted DAG-C cWW systems, a linear correlation between the base-pair interaction energy and the Hammett constant of the 7-substituent is found, with higher interaction energies corresponding to more electron-withdrawing substituents. Therefore, the explored modifications are expected to be accommodated in both parallel and antiparallel nucleic acid duplexes without perturbing their geometry, while the strength of a base pair (and duplex) featuring a DAG modification can, in principle, be tuned by incorporating different substituents at the C7 position.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| | - Yury Minenkov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Khanh B Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Vietnam
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Padroni G, Withers JM, Taladriz-Sender A, Reichenbach LF, Parkinson JA, Burley GA. Sequence-Selective Minor Groove Recognition of a DNA Duplex Containing Synthetic Genetic Components. J Am Chem Soc 2019; 141:9555-9563. [DOI: 10.1021/jacs.8b12444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giacomo Padroni
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Jamie M. Withers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Andrea Taladriz-Sender
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Linus F. Reichenbach
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - John A. Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
13
|
Chawla M, Poater A, Besalú-Sala P, Kalra K, Oliva R, Cavallo L. Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: impact on H-bonding potential and photophysical properties. Phys Chem Chem Phys 2018; 20:7676-7685. [PMID: 29497733 DOI: 10.1039/c7cp07656h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We employ density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to investigate the structural, energetic and optical properties of a new computationally designed RNA alphabet, where the nucleobases, tsA, tsG, tsC, and tsU (ts-bases), have been derived by replacing sulfur with selenium in the previously reported tz-bases, based on the isothiazolo[4,3-d]pyrimidine heterocycle core. We find out that the modeled non-natural bases have minimal impact on the geometry and energetics of the classical Watson-Crick base pairs, thus potentially mimicking the natural bases in a RNA duplex in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge of purines are destabilized as compared to their natural counterparts. We also focus on the photophysical properties of the non-natural bases and correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital. It is indeed stabilized by roughly 1.1-1.6 eV as compared to the natural analogues, resulting in a reduction of the gap between the highest occupied and the lowest unoccupied molecular orbital from 5.3-5.5 eV in the natural bases to 3.9-4.2 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra. Overall, our analysis clearly indicates that the newly modelled ts-bases are expected to exhibit better fluorescent properties as compared to the previously reported tz-bases, while retaining similar H-bonding properties. In addition, we show that a new RNA alphabet based on size-extended benzo-homologated ts-bases can also form stable Watson-Crick base pairs with the natural complementary nucleobases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
14
|
Wang W, Sheng X, Zhang S, Huang F, Sun C, Liu J, Chen D. Theoretical characterization of the conformational features of unnatural oligonucleotides containing a six nucleotide genetic alphabet. Phys Chem Chem Phys 2018; 18:28492-28501. [PMID: 27711557 DOI: 10.1039/c6cp05594j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The addition of the unnatural P:Z base pair to the four naturally occurring DNA bases expands the genetic alphabet and yields an artificially expanded genetic information system (AEGIS). Herein, the structural feature of oligonucleotides containing a novel unnatural P:Z base pair is characterized using both molecular dynamics and quantum chemistry. The results show that the incorporation of the novel artificial base pair (P:Z) preserves the global conformational feature of duplex DNA except for some local structures. The Z-nitro group imparts new properties to the groove width, which widens the major groove. The unnatural oligonucleotides containing mismatched base pairs exhibit low stability. This ensures efficient and high-fidelity replication. In general, the incorporation of the P:Z pair strengthens the stability of the corresponding DNA duplex. The calculated results also show that the thermostability originates from both hydrogen interaction and stacking interaction. The Z-nitro group plays an important role in enhancing the stability of the H-bonds and stacking strength of the P:Z pair. Overall, the present results provide theoretical insights in the exploration of artificially expanded genetic information systems.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiehuang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Shaolong Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
15
|
Hallé F, Fin A, Rovira AR, Tor Y. Emissive Synthetic Cofactors: Enzymatic Interconversions of tz A Analogues of ATP, NAD + , NADH, NADP + , and NADPH. Angew Chem Int Ed Engl 2018; 57:1087-1090. [PMID: 29228460 PMCID: PMC5771816 DOI: 10.1002/anie.201711935] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/11/2022]
Abstract
A series of enzymatic transformations, which generate visibly emissive isofunctional cofactors based on an isothiazolo[4,3-d]pyrimidine analogue of adenosine (tz A), was developed. Nicotinamide adenylyl transferase condenses nicotinamide mononucleotide and tz ATP to yield Ntz AD+ , which can be enzymatically phosphorylated by NAD+ kinase and ATP or tz ATP to the corresponding Ntz ADP+ . The latter can be engaged in NADP-specific coupled enzymatic transformations involving conversion to Ntz ADPH by glucose-6-phosphate dehydrogenase and reoxidation to Ntz ADP+ by glutathione reductase. The Ntz ADP+ /Ntz ADPH cycle can be monitored in real time by fluorescence spectroscopy.
Collapse
Affiliation(s)
- François Hallé
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Alexander R Rovira
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
16
|
Chawla M, Autiero I, Oliva R, Cavallo L. Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair. Phys Chem Chem Phys 2018; 20:3699-3709. [DOI: 10.1039/c7cp07400j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantum mechanics and molecular dynamics methods are used to compare the non-natural 4AP–DAP base pair to natural base pairs.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| | - Ida Autiero
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies
- University Parthenope of Naples
- Centro Direzionale Isola C4
- Naples
- Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|
17
|
Emissive Synthetic Cofactors: Enzymatic Interconversions of tz
A Analogues of ATP, NAD+
, NADH, NADP+
, and NADPH. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Chawla M, Chermak E, Zhang Q, Bujnicki JM, Oliva R, Cavallo L. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Res 2017; 45:11019-11032. [PMID: 28977572 PMCID: PMC5737201 DOI: 10.1093/nar/gkx757] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4' atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose-base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair-π stacking interactions also occur between ribose and aromatic amino acids in RNA-protein complexes.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Edrisse Chermak
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Qingyun Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy.,King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
Richards NGJ, Georgiadis MM. Toward an Expanded Genome: Structural and Computational Characterization of an Artificially Expanded Genetic Information System. Acc Chem Res 2017; 50:1375-1382. [PMID: 28594167 DOI: 10.1021/acs.accounts.6b00655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although the fundamental properties of DNA as first proposed by Watson and Crick in 1953 provided a basic understanding of how duplex DNA was organized and might be replicated, it was not until the first crystal structures of DNA (Z-DNA in 1979, B-DNA in 1980, and A-DNA in 1982) that the true complexity of the molecule began to be appreciated. Many crystal structures of oligonucleotides have since shed light on the helical forms that "Watson-Crick" DNA can adopt, their associated groove widths, and the properties of the nucleobase pairs and their interactions in all three helical forms. Additional understanding of the properties of Watson-Crick DNA has been provided by computational studies employing a variety of theoretical methods. Together with these studies devoted to understanding Watson-Crick DNA, recent efforts to expand the genetic alphabet have founded a new field in synthetic biology. One of these efforts, the artificially expanded genetic information system (AEGIS) developed by Steven Benner and co-workers, takes advantage of orthogonal hydrogen bonding to produce DNA comprised of six nucleobase pairs, of which the most extensively studied is referred to as P:Z with P being 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one) and Z being 6-amino-5-nitro-2(1H)-pyridone. P:Z forms three edge-on hydrogen bonds that differ from standard Watson-Crick pairs in the arrangement of acceptors and donor groups; P presents acceptor, acceptor, donor, and Z presents donor, donor, acceptor. Z is unique among the AEGIS nucleobases in having a nitro group present in the major groove. PZ-containing DNA has been exploited in a number of clinical applications and is being used to develop receptors and catalysts. Ultimately, the grand challenge will be to create a semisynthetic organism with an expanded genome. Furthermore, just as our understanding of the properties of natural DNA have benefited from structural and computational characterization, so too will our understanding of artificial DNA. This Account focuses on the structural and biophysical properties of AEGIS DNA containing P:Z pairs. We begin with the fundamental properties of P:Z nucleobase pairs, including their electrostatic potential and hydrogen-bonding energies, as elucidated by quantum mechanical calculations. We then examine the impact of including multiple consecutive P:Z pairs into duplex DNA providing an opportunity to investigate stacking interactions between P:Z pairs. The self-complementary 5'-CTTATPPTAZZATAAG was crystallized in B-form using the host-guest system along with analogous natural sequences including Gs or As. Use of the host-guest system to characterize B-DNA obviates a number of limitations on the structural characterization of sequences of interest; these include the ability to crystallize the desired sequences and to distinguish structural effects imparted by the lattice constraints from those inherent in the sequence itself. On the other hand, 3/6ZP, 5'-CTTATPPPZZZATAAG, was crystallized in A-form in a DNA-only lattice allowing a comparative analysis of P:Z pairs in two of the biologically relevant helical forms: A- and B-DNA. Computational studies on the 3/6ZP sequence starting in A-form provide additional evidence for a more energetically favorable stacking interaction, which we term the "slide" conformer, observed in the A-form crystal structure; this unusual stacking interaction plays a major role in altering the conformational dynamics observed for the PZ-containing duplex as compared to a GC-containing "control" duplex in long time scale molecular dynamics simulations. This combined use of structural and computational strategies paves the way for obtaining a detailed description of artificial DNA, both in how it differs from Watson-Crick DNA and in the rational discovery of proteins, such as endonucleases, transcription factors, and polymerases, which can specifically manipulate DNA containing AEGIS nucleobase pairs.
Collapse
Affiliation(s)
- Nigel G. J. Richards
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, Florida 32615, United States
| | - Millie M. Georgiadis
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department
of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
20
|
Molt RW, Georgiadis MM, Richards NG. Consecutive non-natural PZ nucleobase pairs in DNA impact helical structure as seen in 50 μs molecular dynamics simulations. Nucleic Acids Res 2017; 45:3643-3653. [PMID: 28334863 PMCID: PMC5397145 DOI: 10.1093/nar/gkx144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/12/2017] [Accepted: 02/24/2017] [Indexed: 12/25/2022] Open
Abstract
Z Little is known about the influence of multiple consecutive 'non-standard' ( , 6-amino-5-nitro-2(1H)-pyridone, and , 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one) nucleobase pairs on the structural parameters of duplex DNA. nucleobase pairs follow standard rules for Watson-Crick base pairing but have rearranged hydrogen bonding donor and acceptor groups. Using the X-ray crystal structure as a starting point, we have modeled the motions of a DNA duplex built from a self-complementary oligonucleotide (5΄-CTTATPPPZZZATAAG-3΄) in water over a period of 50 μs and calculated DNA local parameters, step parameters, helix parameters, and major/minor groove widths to examine how the presence of multiple, consecutive nucleobase pairs might impact helical structure. In these simulations, the -containing DNA duplex exhibits a significantly wider major groove and greater average values of stagger, slide, rise, twist and h-rise than observed for a 'control' oligonucleotide in which nucleobase pairs are replaced by . The molecular origins of these structural changes are likely associated with at least two differences between and . First, the electrostatic properties of differ from in terms of density distribution and dipole moment. Second, differences are seen in the base stacking of pairs in dinucleotide steps, arising from energetically favorable stacking of the nitro group in with π-electrons of the adjacent base.
Collapse
Affiliation(s)
- Robert W. Molt
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, FL 32940, USA
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | |
Collapse
|
21
|
Matsuura MF, Kim HJ, Takahashi D, Abboud KA, Benner SA. Crystal structures of deprotonated nucleobases from an expanded DNA alphabet. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2016; 72:952-959. [PMID: 27918296 DOI: 10.1107/s2053229616017071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022]
Abstract
Reported here is the crystal structure of a heterocycle that implements a donor-donor-acceptor hydrogen-bonding pattern, as found in the Z component [6-amino-5-nitropyridin-2(1H)-one] of an artificially expanded genetic information system (AEGIS). AEGIS is a new form of DNA from synthetic biology that has six replicable nucleotides, rather than the four found in natural DNA. Remarkably, Z crystallizes from water as a 1:1 complex of its neutral and deprotonated forms, and forms a `skinny' pyrimidine-pyrimidine pair in this structure. The pair resembles the known intercalated cytosine pair. The formation of the same pair in two different salts, namely poly[[aqua(μ6-2-amino-6-oxo-3-nitro-1,6-dihydropyridin-1-ido)sodium]-6-amino-5-nitropyridin-2(1H)-one-water (1/1/1)], denoted Z-Sod, {[Na(C5H4N3O3)(H2O)]·C5H5N3O3·H2O}n, and ammonium 2-amino-6-oxo-3-nitro-1,6-dihydropyridin-1-ide-6-amino-5-nitropyridin-2(1H)-one-water (1/1/1), denoted Z-Am, NH4+·C5H4N3O3-·C5H5N3O3·H2O, under two different crystallization conditions suggests that the pair is especially stable. Implications of this structure for the use of this heterocycle in artificial DNA are discussed.
Collapse
Affiliation(s)
- Mariko F Matsuura
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Hyo Joong Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Daisuke Takahashi
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| |
Collapse
|
22
|
Chawla M, Poater A, Oliva R, Cavallo L. Structural and energetic characterization of the emissive RNA alphabet based on the isothiazolo[4,3-d]pyrimidine heterocycle core. Phys Chem Chem Phys 2016; 18:18045-53. [PMID: 27328414 DOI: 10.1039/c6cp03268k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present theoretical characterization of fluorescent non-natural nucleobases, (tz)A, (tz)G, (tz)C, and (tz)U, derived from the isothiazolo[4,3-d]pyrimidine heterocycle. Consistent with the experimental evidence, our calculations show that the non-natural bases have minimal impact on the geometry and stability of the classical Watson-Crick base pairs, allowing them to accurately mimic natural bases in a RNA duplex, in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge are destabilized relative to their natural counterparts. Analysis of the photophysical properties of the non-natural bases allowed us to correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital, LUMO, which is stabilized by roughly 1.0-1.2 eV relative to the natural analogues, while the highest occupied molecular orbital, HOMO, is not substantially affected. As a result, the HOMO-LUMO gap is reduced from 5.3-5.5 eV in the natural bases to 4.0-4.4 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | |
Collapse
|