1
|
Ueda Y, Micheau C, Akutsu-Suyama K, Tokunaga K, Yamada M, Yamada NL, Bourgeois D, Motokawa R. Fluorous and Organic Extraction Systems: A Comparison from the Perspectives of Coordination Structures, Interfaces, and Bulk Extraction Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24257-24271. [PMID: 39506552 DOI: 10.1021/acs.langmuir.4c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Microscopic structures in liquid-liquid extraction, such as structuration between extractants or extracted complexes in bulk organic phases and at interfaces, can influence macroscopic phenomena, such as the distribution behavior of solutes, including extraction efficiency and selectivity. In this study, we correlated the macroscopic behavior of the Zr(IV) extraction from nitric acid solutions with microscopic structural information to understand at the molecular level the key factors contributing to the higher metal ion extraction performance in the fluorous extraction system as compared to the analogous organic extraction system. The fluorous and organic extraction systems consist of tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyl) phosphate (TFP) in perfluorohexane and tri-n-heptyl phosphate (THP) in n-hexane, respectively. Extended X-ray absorption fine structure, neutron reflectometry (NR), and small-angle neutron scattering revealed the structural information around the central metal ion of the complex, at the interface, and in the bulk extraction phase, respectively. NR results showed that extractant molecules did not accumulate much at the interface in both extraction system. In the fluorous extraction system, extractant aggregates with a 1.46 nm radius of gyration (Rg) were formed after contact with nitric acid, and remained even after Zr(IV) extraction through the form of a 1:3 (Zr(IV):TFP) complex. In contrast, in the organic extraction system, only extractant dimers with Rg of 0.70 nm were formed and Zr(IV) is extracted through the form of a 1:2 (Zr(IV):THP) complex. We speculate that differences in the local coordination structure around the Zr(IV) ion and the structuration of the extractant molecules in the bulk extraction phase contribute to the high Zr(IV) extraction performance in the fluorous extraction system. In particular, the size of the aggregates hardly changed with increasing Zr(IV) concentration in the fluorous phase, which may be closely related to the absence of phase splitting in the fluorous extraction system.
Collapse
Affiliation(s)
- Yuki Ueda
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| | - Cyril Micheau
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| | - Kazuhiro Akutsu-Suyama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki319-1106, Japan
| | - Kohei Tokunaga
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, Tomata, Okayama 708-0698, Japan
| | - Masako Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Damien Bourgeois
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, BP 13 17171, Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| |
Collapse
|
2
|
Aoyagi N, Motokawa R, Okumura M, Ueda Y, Saito T, Nishitsuji S, Taguchi T, Yomogida T, Sazaki G, Ikeda-Ohno A. Globular pattern formation of hierarchical ceria nanoarchitectures. Commun Chem 2024; 7:128. [PMID: 38867063 PMCID: PMC11549420 DOI: 10.1038/s42004-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Dissipative structures often appear as an unstable counterpart of ordered structures owing to fluctuations that do not form a homogeneous phase. Even a multiphase mixture may simultaneously undergo one chemical reaction near equilibrium and another one that is far from equilibrium. Here, we observed in real time crystal seed formation and simultaneous nanocrystal aggregation proceeding from CeIV complexes to CeO2 nanoparticles in an acidic aqueous solution, and investigated the resultant hierarchical nanoarchitecture. The formed particles exhibited two very different size ranges, resulting in further pattern formation with opalescence. The hierarchically assembled structures in solutions were CeO2 colloids, viz. primary core clusters (1-3 nm) of crystalline ceria and secondary clusters (20-30 nm) assembled through surface ions. Such self-assembly is widespread in multi-component complex fluids, paradoxically moderating hierarchical reactions. Stability and instability are not only critical but also complementary for co-optimisation around the nearby free energy landscape prior to bifurcation.
Collapse
Affiliation(s)
- Noboru Aoyagi
- Advanced Science Research Centre (ASRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki, 319-1195, Japan.
| | - Ryuhei Motokawa
- Materials Sciences Research Centre (MSRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki, 319-1195, Japan
| | - Masahiko Okumura
- Centre for Computational Science and e-Systems, JAEA, Kashiwa, Chiba, 277-0871, Japan
| | - Yuki Ueda
- Materials Sciences Research Centre (MSRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki, 319-1195, Japan
| | - Takumi Saito
- Advanced Science Research Centre (ASRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki, 319-1195, Japan
- Nuclear Professional School, School of Engineering, The University of Tokyo, Ibaraki, 319-1188, Japan
| | - Shotaro Nishitsuji
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tomitsugu Taguchi
- National Institutes for Quantum Science and Technology, Takasaki-shi, Gunma, 370-1292, Japan
| | - Takumi Yomogida
- Nuclear Science and Engineering Centre (NSEC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki, 319-1195, Japan
| | - Gen Sazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| | - Atsushi Ikeda-Ohno
- Advanced Science Research Centre (ASRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki, 319-1195, Japan
| |
Collapse
|
3
|
Sun P, Lin XM, Bera MK, Lin B, Ying D, Chang T, Bu W, Schlossman ML. Metastable precipitation and ion-extractant transport in liquid-liquid separations of trivalent elements. Proc Natl Acad Sci U S A 2024; 121:e2315584121. [PMID: 38507453 PMCID: PMC10990121 DOI: 10.1073/pnas.2315584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
The extractant-assisted transport of metal ions from aqueous to organic environments by liquid-liquid extraction has been widely used to separate and recover critical elements on an industrial scale. While current efforts focus on designing better extractants and optimizing process conditions, the mechanism that underlies ionic transport remains poorly understood. Here, we report a nonequilibrium process in the bulk aqueous phase that influences interfacial ion transport: the formation of metastable ion-extractant precipitates away from the liquid-liquid interface, separated from it by a depletion region without precipitates. Although the precipitate is soluble in the organic phase, the depletion region separates the two and ions are sequestered in a long-lived metastable state. Since precipitation removes extractants from the aqueous phase, even extractants that are sparingly soluble in water will continue to be withdrawn from the organic phase to feed the aqueous precipitation process. Solute concentrations in both phases and the aqueous pH influence the temporal evolution of the process and ionic partitioning between the precipitate and organic phase. Aqueous ion-extractant precipitation during liquid-liquid extraction provides a reaction path that can influence the extraction kinetics, which plays an important role in designing advanced processes to separate rare earths and other minerals.
Collapse
Affiliation(s)
- Pan Sun
- Department of Physics, University of Illinois at Chicago, Chicago, IL60607
- ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Mrinal K. Bera
- ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Binhua Lin
- ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Dongchen Ying
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Tieyan Chang
- ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Wei Bu
- ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Mark L. Schlossman
- Department of Physics, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
4
|
Wilson AD, Foo ZH, Jayasinghe AS, Stetson C, Lee H, Rollins HW, Deshmukh A, Lienhard JH. Modeling Henry's law and phase separations of water-NaCl-organic mixtures with solvation and ion-pairing. Phys Chem Chem Phys 2024; 26:749-759. [PMID: 37800279 DOI: 10.1039/d3cp02003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Empirical measurements of solution vapor pressure of ternary acetonitrile (MeCN) H2O-NaCl-MeCN mixtures were recorded, with NaCl concentrations ranging from zero to the saturation limit, and MeCN concentrations ranging from zero to an absolute mole fraction of 0.64. After accounting for speciation, the variability of the Henry's law coefficient at vapor-liquid equilibrium (VLE) of MeCN ternary mixtures decreased from 107% to 5.1%. Solute speciation was modeled using a mass action solution model that incorporates solute solvation and ion-pairing phenomena. Two empirically determined equilibrium constants corresponding to solute dissociation and ion pairing were utilized for each solute. When speciation effects were considered, the solid-liquid equilibrium of H2O-NaCl-MeCN mixtures appear to be governed by a simple saturation equilibrium constant that is consistent with the binary H2O-NaCl saturation coefficient. Further, our results indicate that the precipitation of NaCl in the MeCN ternary mixtures was not governed by changes in the dielectric constant. Our model indicates that the compositions of the salt-induced liquid-liquid equilibrium (LLE) boundary of the H2O-NaCl-MeCN mixture correspond to the binary plateau activity of MeCN, a range of concentrations over which the activity remains largely invariant in the binary water-MeCN system. Broader comparisons with other ternary miscible organic solvent (MOS) mixtures suggest that salt-induced liquid-liquid equilibrium exists if: (1) the solution displays a positive deviation from the ideal limits governed by Raoult's law; and (2) the minimum of the mixing free energy profile for the binary water-MOS system is organic-rich. This work is one of the first applications of speciation-based solution models to a ternary system, and the first that includes an organic solute.
Collapse
Affiliation(s)
- Aaron D Wilson
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Ashini S Jayasinghe
- Analytical Chemistry Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA
| | - Caleb Stetson
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Hyeonseok Lee
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Harry W Rollins
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Akshay Deshmukh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
5
|
Massey D, Williams CD, Mu J, Masters AJ, Motokawa R, Aoyagi N, Ueda Y, Antonio MR. Hierarchical Aggregation in a Complex Fluid─The Role of Isomeric Interconversion. J Phys Chem B 2023; 127:2052-2065. [PMID: 36821599 PMCID: PMC10009746 DOI: 10.1021/acs.jpcb.2c07527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There is an ever-increasing body of evidence that metallic complexes involving amphiliphic ligands do not form normal solutions in organic solvents. Instead, they form complex fluids with intricate structures. For example, the metallic complexes may aggregate into clusters, and these clusters themselves may aggregate into superclusters. To gain a deeper insight into the mechanisms at play, we have used an improved force field to conduct extensive molecular dynamics simulations of a system composed of zirconium nitrate, water, nitric acid, tri-n-butyl phosphate, and n-octane. The important new finding is that a dynamic equilibrium between the cis and trans isomers of the metal complex is likely to play a key role in the aggregation behavior. The isolated cis and trans isomers have similar energies, but simulation indicates that the clusters consist predominantly of cis isomers. With increasing metal concentration, we hypothesize that more clustering occurs and the chemical equilibrium shifts toward the cis isomer. It is possible that such isomeric effects play a role in the liquid-liquid extraction of other species and the inclusion of such effects in flow sheet modeling may lead to a better description of the process.
Collapse
Affiliation(s)
- Daniel Massey
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Christopher D Williams
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Junju Mu
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.,Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Andrew J Masters
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Noboru Aoyagi
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Yuki Ueda
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Mark R Antonio
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Favero UG, Schaeffer N, Passos H, A. M. L. Cruz K, Ananias D, Dourdain S, Hespanhol MC. Solvent extraction in non-ideal eutectic solvents – application towards lanthanide separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Sadhu B, Clark AE. Modulating Aggregation in Microemulsions: The Dispersion by Competitive Intermolecular Interaction Model. J Phys Chem Lett 2022; 13:10981-10987. [PMID: 36404619 DOI: 10.1021/acs.jpclett.2c02658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A phenomenological model has been developed for the mechanism of action of phase modifiers as additives that control aggregation phenomena within water-in-oil emulsions. The "Dispersion by Competitive Intermolecular Interaction" model (DCI) explicitly considers the strength and prevalence of different intermolecular interactions that influence the molecular association of amphiphiles, the resulting distribution of aggregate size, and interaggregate interactions that influence phase phenomena. The existing "cosolvent" and "cosurfactant" association models, which describe the distribution of these amphiphiles within the solution, are re-examined in the context of intermolecular interactions. The different contributions of intermolecular interactions to the potential energy landscape of molecular association create distinct regimes within the DCI model that explain prior observations of cosolvent and cosurfactant behavior. The specific system under consideration, the N,N,N',N'-tetraoctyl diglycolamide amphiphile extractant with tributyl phosphate or dihexyl octanamide phase modifier additives, represents a new regime-labeled the polar disruption regime-where strong hydrogen bonding of the phase modifier with the polar-solutes disrupts the internal hydrogen bonding network of the polar micellar core, thereby decreasing aggregate size and narrowing the polydispersity in solution.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Health Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra400085, India
| | - Aurora E Clark
- Department of Chemistry, Washington State University, Pullman, Washington99164, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
- Pacific Northwest National Laboratory, Richland, Washington99354, United States
| |
Collapse
|
8
|
Massey D, Masters A, Macdonald-Taylor J, Woodhead D, Taylor R. Molecular Dynamics Study of the Aggregation Behavior of N, N, N', N'-Tetraoctyl Diglycolamide. J Phys Chem B 2022; 126:6290-6300. [PMID: 35975814 PMCID: PMC9421649 DOI: 10.1021/acs.jpcb.2c02198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Liquid–liquid extraction is a commonly used technique
to
separate metals and is a process that has particular relevance to
the nuclear industry. There has been a drive to use environmentally
friendly ligands composed only of carbon, hydrogen, nitrogen, and
oxygen. One example is the i-SANEX process that has been developed
to separate minor actinides from spent nuclear fuel. The underlying
science of such processes, is, however, both complex and intriguing.
Recent research indicates that the liquid phases involved are frequently
structured fluids with a hierarchical organization of aggregates.
Effective flow-sheet modeling of such processes is likely to benefit
from the knowledge of the fundamental properties of these phases.
As a stepping stone toward this, we have performed molecular dynamics
simulations on a metal free i-SANEX system composed of the ligand N,N,N′,N′-tetraoctyl diglycolamide (TODGA), diluent hydrogenated
tetrapropylene (TPH), and polar species water and nitric acid. We
have also studied the effects of adding n-octanol
and swapping TPH for n-dodecane. It would seem sensible
to understand this simpler system before introducing metal complexes.
Such an understanding would ideally arise from studying the system’s
properties over a wide range of compositions. The large number of
components, however, precludes a comprehensive scan of compositions,
so we have chosen to study a fixed concentration of TODGA while varying
the concentrations of water and nitric acid over a substantial range.
Reverse aggregates are observed, with polar species in the interior
in contact with the polar portions of the TODGA molecules and the
organic diluent on the exterior in contact with the TODGA alkyl chains.
These aggregates are irregular in shape and grow in size as the amount
of water and nitric acid increases. At a sufficiently high polar content,
a single extended cluster forms corresponding to the third phase formation.
No well-defined bonding motifs were observed between the polar species
and TODGA. The cluster size distribution fits an isodesmic model,
where the Gibbs energy change of adding a TODGA molecule to a cluster
ranges between 4.5 and 7.0 kJ mol–1, depending on
the system composition. The addition of n-octanol
was found to reduce the degree of aggregation, with n-octanol acting as a co-surfactant. Exchanging the diluent TPH for n-dodecane also decreased the aggregation. We present evidence
that this is due to the greater penetration of n-dodecane
into the reverse aggregates. It is known, however, that the propensity
for the third phase formation is greater with n-dodecane
as the diluent than is the case with TPH, but we argue that these
two results are not contradictory. This research casts light on the
driving forces for aggregation, informs process engineers as to what
species are present, and indicates that flow-sheet liquid–liquid
extraction modeling might benefit by incorporating an isodesmic aggregation
approach.
Collapse
Affiliation(s)
- Daniel Massey
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew Masters
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jonathan Macdonald-Taylor
- National Nuclear Laboratory, 5th Floor Chadwick House, Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K
| | - David Woodhead
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG, U.K
| | - Robin Taylor
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG, U.K
| |
Collapse
|
9
|
Yan L, Saha A, Zhao W, Neal JF, Chen Y, Flood AH, Allen HC. Recognition competes with hydration in anion-triggered monolayer formation of cyanostar supra-amphiphiles at aqueous interfaces. Chem Sci 2022; 13:4283-4294. [PMID: 35509460 PMCID: PMC9006960 DOI: 10.1039/d2sc00986b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
The triggered self-assembly of surfactants into organized layers at aqueous interfaces is important for creating adaptive nanosystems and understanding selective ion extraction. While these transformations require molecular recognition, the underlying driving forces are modified by the local environment in ways that are not well understood. Herein, we investigate the role of ion binding and ion hydration using cyanosurf, which is composed of the cyanostar macrocycle, and its binding to anions that are either size-matched or mis-matched and either weakly or highly hydrated. We utilize the supra-amphiphile concept where anion binding converts cyanosurf into a charged and amphiphilic complex triggering its self-organization into monolayers at the air-water interface. Initially, cyanosurf forms aggregates at the surface of a pure water solution. When the weakly hydrated and size-matched hexafluorophosphate (PF6 -) and perchlorate (ClO4 -) anions are added, the macrocycles form distinct monolayer architectures. Surface-pressure isotherms reveal significant reorganization of the surface-active molecules upon anion binding while infrared reflection absorption spectroscopy show the ion-bound complexes are well ordered at the interface. Vibrational sum frequency generation spectroscopy shows the water molecules in the interfacial region are highly ordered in response to the charged monolayer of cyanosurf complexes. Consistent with the importance of recognition, we find the smaller mis-matched chloride does not trigger the transformation. However, the size-matched phosphate (H2PO4 -) also does not trigger monolayer formation indicating hydration inhibits its interfacial binding. These studies reveal how anion-selective recognition and hydration both control the binding and thus the switching of a responsive molecular interface.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Ankur Saha
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Wei Zhao
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Jennifer F Neal
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Yusheng Chen
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Amar H Flood
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| |
Collapse
|
10
|
Sheyfer D, Servis MJ, Zhang Q, Lal J, Loeffler T, Dufresne EM, Sandy AR, Narayanan S, Sankaranarayanan SKRS, Szczygiel R, Maj P, Soderholm L, Antonio MR, Stephenson GB. Advancing Chemical Separations: Unraveling the Structure and Dynamics of Phase Splitting in Liquid-Liquid Extraction. J Phys Chem B 2022; 126:2420-2429. [PMID: 35315675 DOI: 10.1021/acs.jpcb.1c09996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid-liquid extraction (LLE), the go-to process for a variety of chemical separations, is limited by spontaneous organic phase splitting upon sufficient solute loading, called third phase formation. In this study we explore the applicability of critical phenomena theory to gain insight into this deleterious phase behavior with the goal of improving separations efficiency and minimizing waste. A series of samples representative of rare earth purification were constructed to include each of one light and one heavy lanthanide (cerium and lutetium) paired with one of two common malonamide extractants (DMDOHEMA and DMDBTDMA). The resulting postextraction organic phases are chemically complex and often form rich hierarchical structures whose statics and dynamics near the critical point were probed herein with small-angle X-ray scattering and high-speed X-ray photon correlation spectroscopy. Despite their different extraction behaviors, all samples show remarkably similar critical behavior with exponents well described by classical critical point theory consistent with the 3D Ising model, where the critical behavior is characterized by fluctuations with a single diverging length scale. This unexpected result indicates a significant reduction in relevant chemical parameters at the critical point, indicating that the underlying behavior of phase transitions in LLE rely on far fewer variables than are generally assumed. The obtained scalar order parameter is attributed to the extractant fraction of the extractant/diluent mixture, revealing that other solution components and their respective concentrations simply shift the critical temperature but do not affect the nature of the critical fluctuations. These findings point to an opportunity to drastically simplify studies of liquid-liquid phase separation and phase diagram development in general while providing insights into LLE process improvement.
Collapse
Affiliation(s)
- D Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - J Lal
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - T Loeffler
- Nanoscale Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - E M Dufresne
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - A R Sandy
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S Narayanan
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Nanoscale Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607,United States
| | - R Szczygiel
- AGH University of Science and Technology, Krakow 30-059, Poland
| | - P Maj
- AGH University of Science and Technology, Krakow 30-059, Poland
| | - L Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Mark R Antonio
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - G B Stephenson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
11
|
Lu Z, Dourdain S, Demé B, Dufrêche JF, Zemb T, Pellet-Rostaing S. Effect of alkyl chain configuration of tertiary amines on uranium extraction and phase stability – Part I: Evaluation of phase stability, extraction, and aggregation properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Effect of alkyl chains configurations of tertiary amines on uranium extraction and phase stability – part II: Curvature free energy controlling the ion transfer. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Coquil M, Boubals N, Duvail M, Charbonnel MC, Dufrêche JF. On interactions in binary mixtures used in solvent extraction: Insights from combined Isothermal Titration Calorimetry experiments and Molecular Dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Kumar N, Clark AE. Unexpected inverse correlations and cooperativity in ion-pair phase transfer. Chem Sci 2021; 12:13930-13939. [PMID: 34760180 PMCID: PMC8549775 DOI: 10.1039/d1sc04004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Liquid/liquid extraction is one of the most widely used separation and purification methods, where a forefront of research is the study of transport mechanisms for solute partitioning and the relationships that these have to solution structure at the phase boundary. To date, organized surface features that include protrusions, water-fingers, and molecular hinges have been reported. Many of these equilibrium studies have focused upon small-molecule transport – yet the extent to which the complexity of the solute, and the competition between different solutes, influence transport mechanisms have not been explored. Here we report molecular dynamics simulations that demonstrate that a metal salt (LiNO3) can be transported via a protrusion mechanism that is remarkably similar to that reported for H2O by tri-butyl phosphate (TBP), a process that involves dimeric assemblies. Yet the LiNO3 out-competes H2O for a bridging position between the extracting TBP dimer, which in-turn changes the preferred transport pathway of H2O. Examining the electrolyte concentration dependence on ion-pair transport unexpectedly reveals an inverse correlation with the extracting surfactant concentration. As [LiNO3] increases, surface adsorbed TBP becomes a limiting reactant in correlation with an increased negative surface charge induced by excess interfacial NO3−, however the rate of transport is enhanced. Within the highly dynamic interfacial environment, we hypothesize that this unique cooperative effect may be due to perturbed surface organization that either decreases the energy of formation of transporting protrusion motifs or makes it easier for these self-assembled species to disengage from the surface. A forefront of research in separations science (specifically liquid–liquid extraction) is the study of transport mechanisms for solute partitioning, and the relationships that these have to solution structure at the phase boundary.![]()
Collapse
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Washington State University Pullman Washington 99164 USA
| | - Aurora E Clark
- Department of Chemistry, Washington State University Pullman Washington 99164 USA.,Pacific Northwest National Laboratory Richland Washington 99354 USA
| |
Collapse
|
15
|
Tabata C, Nakase M, Harigai M, Shirasaki K, Sunaga A, Yamamura T. Hydrofluorocarbon Diluent for CMPO Without Third Phase Formation: Extraction of Uranium(VI) and Lanthanide(III) Ions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1970767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chihiro Tabata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Masahiko Nakase
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Miki Harigai
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kenji Shirasaki
- Laboratory of Alpha-ray Emitters, Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Ayaki Sunaga
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Tomoo Yamamura
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
- Laboratory of Alpha-ray Emitters, Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
16
|
Špadina M, Dufrêche JF, Pellet-Rostaing S, Marčelja S, Zemb T. Molecular Forces in Liquid-Liquid Extraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10637-10656. [PMID: 34251218 DOI: 10.1021/acs.langmuir.1c00673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phase transfer of ions is driven by gradients of chemical potentials rather than concentrations alone (i.e., by both the molecular forces and entropy). Extraction is a combination of high-energy interactions that correspond to short-range forces in the first solvation shell such as ion pairing or complexation forces, with supramolecular and nanoscale organization. While the latter are similar to the long-range solvent-averaged interactions in the colloidal world, in solvent extraction they are associated with lower characteristic lengths of the nanometric domain. Modeling of such complex systems is especially complicated because the two domains are coupled, whereas the resulting free energy of extraction is around kBT to guarantee the reversibility of the practical process. Nevertheless, quantification is possible by considering a partitioning of space among the polar cores, interfacial film, and solvent. The resulting free energy of transfer can be rationalized by utilizing a combination of terms which represent strong complexation energies, counterbalanced by various entropic effects and the confinement of polar solutes in nanodomains dispersed in the diluent, together with interfacial extractant terms. We describe here this ienaics approach in the context of solvent extraction systems; it can also be applied to further complex ionic systems, such as membranes and biological interfaces.
Collapse
Affiliation(s)
- Mario Špadina
- Group for Computational Life Sciences, Rud̵er Bošković Institute, Division of Physical Chemistry, 10000 Zagreb, Croatia
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | - Stjepan Marčelja
- Research School of Physics, The Australian National University, Canberra, Australia
| | - Thomas Zemb
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, Marcoule, France
| |
Collapse
|
17
|
Ta AT, Golzwarden JVA, Jensen MP, Vyas S. Behaviors of ALSEP Organic Extractants: an Atomic Perspective Derived from Molecular Dynamics Simulation. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1956104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- An T. Ta
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States
| | | | - Mark P. Jensen
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States
- Nuclear Science and Engineering Program, Colorado School of Mines, Golden, Colorado, United States
| | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States
| |
Collapse
|
18
|
Selective Extraction of Platinum(IV) from the Simulated Secondary Resources Using Simple Secondary Amide and Urea Extractants. SEPARATIONS 2021. [DOI: 10.3390/separations8090139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The recycling of rare metals such as platinum (Pt) from secondary resources, such as waste electronic and electrical equipment and automotive catalysts, is an urgent global issue. In this study, simple secondary amides and urea, N-(2-ethylhexyl)acetamide, N-(2-ethylhexyl)octanamide, and 1-butyl-3-(2-ethylhexyl)urea, which selectively extract Pt(IV) from a simulated effluent containing numerous metal ions, such as in an actual hydrometallurgical process, were synthesized and achieved efficient Pt(IV) stripping using only water. Comparison of Pt(IV) extraction behavior with a tertiary amide without N–H moieties suggests that the secondary amides and urea extractants effectively use hydrogen bonding to the hexachloroplatinate anion by N–H moieties. Examining the conditions for the third phase formation revealed that the secondary amide extractant with the longest alkyl chain can be used in the extraction process for a long time without forming any third phase, despite its lower Pt(IV) extraction capacity. The practical trial with simple compounds developed in this study should contribute to the development of Pt separation and purification processes.
Collapse
|
19
|
Gourdin-Bertin S, Dufrêche JF, Duvail M, Zemb T. Microemulsion as Model to Predict Free Energy of Transfer of Electrolyte in Solvent Extraction. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1953259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - Magali Duvail
- ICSM, CEA, Univ Montpellier, CNRS, ENSCM, Marcoule, France
| | - Thomas Zemb
- ICSM, CEA, Univ Montpellier, CNRS, ENSCM, Marcoule, France
| |
Collapse
|
20
|
Zhang Z, Yong F, Zhang L, Chen H, Yuan WL, Xu D, Shen YH, Wang XH, He L, Tao GH. High performance task-specific ionic liquid in uranium extraction endowed with negatively charged effect. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Schaeffer N, Vargas SJR, Passos H, Brandão P, Nogueira HIS, Svecova L, Coutinho JAP. A HNO 3 -Responsive Aqueous Biphasic System for Metal Separation: Application towards Ce IV Recovery. CHEMSUSCHEM 2021; 14:3018-3026. [PMID: 34087058 DOI: 10.1002/cssc.202101149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 06/12/2023]
Abstract
An acidic aqueous biphasic system (AcABS) presenting a desired and reversible phase transition with HNO3 concentration and temperature was developed herein as an integrated platform for metal separation. The simple, economical, and fully incinerable (C,H,O,N) AcABS composed of tetrabutylammonium nitrate ([N4444 ][NO3 ])+HNO3 +H2 O was characterized and presented an excellent selectivity towards CeIV against other rare earth elements and transition metals from both synthetic solutions and nickel metal hydride (NiMH) battery leachates. The acid-driven self-assembly of AcABS bridges the gap between traditional ABS and liquid-liquid extraction whilst retaining their advantageous qualities, including compatibility with highly acidic solutions, water as the primary system component, the avoidance of organic diluents, rapid mass transfer, and the potential integration of the leaching and separation steps.
Collapse
Affiliation(s)
- Nicolas Schaeffer
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Silvia J R Vargas
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Passos
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula Brandão
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena I S Nogueira
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lenka Svecova
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - João A P Coutinho
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
22
|
Nayak S, Kumal RR, Liu Z, Qiao B, Clark AE, Uysal A. Origins of Clustering of Metalate-Extractant Complexes in Liquid-Liquid Extraction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24194-24206. [PMID: 33849269 DOI: 10.1021/acsami.0c23158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Effective and energy-efficient separation of precious and rare metals is very important for a variety of advanced technologies. Liquid-liquid extraction (LLE) is a relatively less energy intensive separation technique, widely used in separation of lanthanides, actinides, and platinum group metals (PGMs). In LLE, the distribution of an ion between an aqueous phase and an organic phase is determined by enthalpic (coordination interactions) and entropic (fluid reorganization) contributions. The molecular scale details of these contributions are not well understood. Preferential extraction of an ion from the aqueous phase is usually correlated with the resulting fluid organization in the organic phase, as the longer-range organization increases with metal loading. However, it is difficult to determine the extent to which organic phase fluid organization causes, or is caused by, metal loading. In this study, we demonstrate that two systems with the same metal loading may impart very different organic phase organizations and investigate the underlying molecular scale mechanism. Small-angle X-ray scattering shows that the structure of a quaternary ammonium extractant solution in toluene is affected differently by the extraction of two metalates (octahedral PtCl62- and square-planar PdCl42-), although both are completely transferred into the organic phase. The aggregates formed by the metalate-extractant complexes (approximated as reverse micelles) exhibit a more long-range order (clustering) with PtCl62- compared to that with PdCl42-. Vibrational sum frequency generation spectroscopy and complementary atomistic molecular dynamics simulations on model Langmuir monolayers indicate that the two metalates affect the interfacial hydration structures differently. Furthermore, the interfacial hydration is correlated with water extraction into the organic phase. These results support a strong relationship between the organic phase organizational structure and the different local hydration present within the aggregates of metalate-extractant complexes, which is independent of metalate concentration.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhu Liu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Baofu Qiao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aurora E Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
23
|
Okudaira T, Ueda Y, Hiroi K, Motokawa R, Inamura Y, Takata SI, Oku T, Suzuki JI, Takahashi S, Endo H, Iwase H. Polarization analysis for small-angle neutron scattering with a 3He spin filter at a pulsed neutron source. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neutron polarization analysis (NPA) for small-angle neutron scattering (SANS) experiments using a pulsed neutron source was successfully achieved by applying a 3He spin filter as a spin analyzer for the neutrons scattered from the sample. The cell of the 3He spin filter gives a weak small-angle scattering intensity (background) and covers a sufficient solid angle for performing SANS experiments. The relaxation time of the 3He polarization is sufficient for continuous use for approximately 2 days, thus reaching the typical duration required for a complete set of SANS experiments. Although accurate evaluation of the incoherent neutron scattering, which is predominantly attributable to the extremely large incoherent scattering cross section of hydrogen atoms in samples, is difficult using calculations based on the sample elemental composition, the developed NPA approach with consideration of the influence of multiple neutron scattering enabled reliable decomposition of the SANS intensity distribution into the coherent and incoherent scattering components. To date, NPA has not been well established as a standard technique for SANS experiments at pulsed neutron sources such as the Japan Proton Accelerator Research Complex (J-PARC) and the US Spallation Neutron Source. It is anticipated that this work will contribute significantly to the accurate determination of the coherent neutron scattering component for scatterers in various types of organic sample systems in SANS experiments at J-PARC, particularly for systems involving competition between the coherent and incoherent scattering intensity.
Collapse
|
24
|
El-Eswed BI, Sunjuk M, Ghuneim R, Al-Degs YS, Al Rimawi M, Albawarshi Y. Competitive extraction of Li, Na, K, Mg and Ca ions from acidified aqueous solutions into chloroform layer containing diluted alkyl phosphates. J Colloid Interface Sci 2020; 587:229-239. [PMID: 33360895 DOI: 10.1016/j.jcis.2020.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/27/2022]
Abstract
Alkyl phosphates were extensively used in liquid-liquid extraction of lanthanides and actinides, but to a lesser extent for alkali and alkaline earth metals. The high amount of alkyl phosphate, which is usually used in the organic layer (>40 wt%), is not favoured due to its corrosive effect and toxicity. In the present work, diluted chloroform solutions (20.0 mM) of tri-n-butyl phosphate (TBP), tris(2-ethylhexyl) phosphates (TRIS) and bis(2-ethylhexyl) phosphate (BIS) were investigated for their extraction of Li, Na, K, Mg and Ca ions. The extraction experiments were conducted on 7.0 M HNO3 aqueous solutions containing 60.0 mM of metal ions in binary (Li+ and Mg2+), ternary (Li+, Na+ and K+) and quinary (Li+, Na+, K+, Mg2+ and Ca2+) mixtures. The Li+ selectivity over Mg2+ was very high in the binary system. Remarkably, increasing HNO3 concentration in the aqueous layer had opposing effect on the extraction of Li+ (positive) and Mg2+ (negative). However, the selectivity for Li+ became less dramatic in the case of ternary and quinary system, though the selectivity varied with initial metal concentrations. The amounts of water and NO3- transferred into the organic layer demonstrated their synergistic effect on extracting metal ions. In the ternary and quinary systems, the total concentrations of metal ions in the organic layer (ranged from 49 to 85 mM) were higher than the concentration of ligand in the organic layer (20.0 mM), suggesting that metal ions may be extracted into water/ligand/NO3- aggregates in the organic layer. TBP, TRIS and BIS do not have significant difference in their extraction behaviour. The FTIR results indicated formation of P+-O-M+/M2+ in the solid TBP/metal complex.
Collapse
Affiliation(s)
- Bassam I El-Eswed
- Department of Basic Sciences, Zarqa University College, Al-Balqa Applied University, Jordan.
| | - Mahmoud Sunjuk
- Department of Chemistry, Faculty of Science, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan.
| | - Raed Ghuneim
- Department of Chemistry, Faculty of Science, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan
| | - Yahya S Al-Degs
- Department of Chemistry, Faculty of Science, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan.
| | - Maha Al Rimawi
- Department of Medical Allied Sciences, Zarqa University College, Al-Balqa Applied University, Jordan.
| | - Yanal Albawarshi
- Department of Medical Allied Sciences, Zarqa University College, Al-Balqa Applied University, Jordan.
| |
Collapse
|
25
|
Servis MJ, Piechowicz M, Shkrob IA, Soderholm L, Clark AE. Amphiphile Organization in Organic Solutions: An Alternative Explanation for Small-Angle X-ray Scattering Features in Malonamide/Alkane Mixtures. J Phys Chem B 2020; 124:10822-10831. [DOI: 10.1021/acs.jpcb.0c07080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael J. Servis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Marek Piechowicz
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
26
|
Nayak S, Lovering K, Uysal A. Ion-specific clustering of metal-amphiphile complexes in rare earth separations. NANOSCALE 2020; 12:20202-20210. [PMID: 32969439 DOI: 10.1039/d0nr04231e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nanoscale structure of a complex fluid can play a major role in the selective adsorption of ions at the nanometric interfaces, which is crucial in industrial and technological applications. Here we study the effect of anions and lanthanide ions on the nanoscale structure of a complex fluid formed by metal-amphiphile complexes, using small angle X-ray scattering. The nano- and mesoscale structures we observed can be directly connected to the preferential transfer of light (La and Nd) or heavy (Er and Lu) lanthanides into the complex fluid from an aqueous solution. While toluene-based complex fluids containing trioctylmethylammonium-nitrate (TOMA-nitrate) always show the same mesoscale hierarchical structure regardless of lanthanide loading and prefer light lanthanides, those containing TOMA-thiocyanate show an evolution of the mesoscale structure as a function of the lanthanide loading and prefer heavy lanthanides. The hierarchical structure indicates the presence of attractive interactions between ion-amphiphile aggregates, causing them to form clusters. A clustering model that accounts for the hard sphere repulsions and short-range attractions between the aggregates has been adapted to model the X-ray scattering results. The new model successfully describes the nanoscale structure and helps in understanding the mechanisms responsible for amphiphile assisted ion transport between immiscible liquids. Accordingly, our results imply different mechanisms of lanthanide transport depending on the anion present in the complex fluid and correspond with anion-dependent trends in rare earth separations.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Kaitlin Lovering
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
27
|
Takao K, Ikeda Y. Coordination Chemistry of Actinide Nitrates with Cyclic Amide Derivatives for the Development of the Nuclear Fuel Materials Selective Precipitation (NUMAP) Reprocessing Method. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Koichiro Takao
- Laboratory for Advanced Nuclear Energy Institute of Innovative Research Tokyo Institute of Technology (TokyoTech) 2‐12‐1 N1‐32, O‐okayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Yasuhisa Ikeda
- Laboratory for Advanced Nuclear Energy Institute of Innovative Research Tokyo Institute of Technology (TokyoTech) 2‐12‐1 N1‐32, O‐okayama Meguro‐ku Tokyo 152‐8550 Japan
| |
Collapse
|
28
|
Servis MJ, Martinez-Baez E, Clark AE. Hierarchical phenomena in multicomponent liquids: simulation methods, analysis, chemistry. Phys Chem Chem Phys 2020; 22:9850-9874. [PMID: 32154813 DOI: 10.1039/d0cp00164c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex, multicomponent, solutions have often been studied solely through the lens of specific applications of interest. Yet advances to both simulation methodologies (enhanced sampling, etc.) and analysis techniques (network analysis algorithms and others), are creating a trove of data that reveal transcending characteristics across vast compositional phase space. This perspective discusses technical considerations of the reliable and accurate simulations of complex solutions, followed by the advances to analysis algorithms that elucidate coupling of different length and timescale behavior (hierarchical phenomena). The different manifestations of hierarchical phenomena are presented across an array of solution environments, emphasizing fundamental and ongoing science questions. With a more advanced molecular understanding in hand, a quintessential application (solvent extraction) is discussed, where significant opportunities exist to re-imagine the technical scope of an established technology.
Collapse
Affiliation(s)
- Michael J Servis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
29
|
Špadina M, Bohinc K. Multiscale modeling of solvent extraction and the choice of reference state: Mesoscopic modeling as a bridge between nanoscale and chemical engineering. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Benbow T, Campbell J. Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): a literature review. Drug Dev Ind Pharm 2019; 45:1849-1855. [DOI: 10.1080/03639045.2019.1680996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tarique Benbow
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
31
|
Ueda Y, Kikuchi K, Sugita T, Motokawa R. Extraction Performance of a Fluorous Phosphate for Zr(IV) from HNO3 Solution: Comparison with Tri-n-Butyl Phosphate. SOLVENT EXTRACTION AND ION EXCHANGE 2019. [DOI: 10.1080/07366299.2019.1638015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuki Ueda
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Kei Kikuchi
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
- Institute of Quantum Beam Science, Ibaraki University, Mito, Japan
| | - Tsuyoshi Sugita
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| |
Collapse
|
32
|
Motokawa R, Kobayashi T, Endo H, Mu J, Williams CD, Masters AJ, Antonio MR, Heller WT, Nagao M. A Telescoping View of Solute Architectures in a Complex Fluid System. ACS CENTRAL SCIENCE 2019; 5:85-96. [PMID: 30693328 PMCID: PMC6346384 DOI: 10.1021/acscentsci.8b00669] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 05/28/2023]
Abstract
Short- and long-range correlations between solutes in solvents can influence the macroscopic chemistry and physical properties of solutions in ways that are not fully understood. The class of liquids known as complex (structured) fluids-containing multiscale aggregates resulting from weak self-assembly-are especially important in energy-relevant systems employed for a variety of chemical- and biological-based purification, separation, and catalytic processes. In these, solute (mass) transfer across liquid-liquid (water, oil) phase boundaries is the core function. Oftentimes the operational success of phase transfer chemistry is dependent upon the bulk fluid structures for which a common functional motif and an archetype aggregate is the micelle. In particular, there is an emerging consensus that mass transfer and bulk organic phase behaviors-notably the critical phenomenon of phase splitting-are impacted by the effects of micellar-like aggregates in water-in-oil microemulsions. In this study, we elucidate the microscopic structures and mesoscopic architectures of metal-, water-, and acid-loaded organic phases using a combination of X-ray and neutron experimentation as well as density functional theory and molecular dynamics simulations. The key conclusion is that the transfer of metal ions between an aqueous phase and an organic one involves the formation of small mononuclear clusters typical of metal-ligand coordination chemistry, at one extreme, in the organic phase, and their aggregation to multinuclear primary clusters that self-assemble to form even larger superclusters typical of supramolecular chemistry, at the other. Our metrical results add an orthogonal perspective to the energetics-based view of phase splitting in chemical separations known as the micellar model-founded upon the interpretation of small-angle neutron scattering data-with respect to a more general phase-space (gas-liquid) model of soft matter self-assembly and particle growth. The structure hierarchy observed in the aggregation of our quinary (zirconium nitrate-nitric acid-water-tri-n-butyl phosphate-n-octane) system is relevant to understanding solution phase transitions, in general, and the function of engineered fluids with metalloamphiphiles, in particular, for mass transfer applications, such as demixing in separation and synthesis in catalysis science.
Collapse
Affiliation(s)
- Ryuhei Motokawa
- Materials
Sciences Research Center, Japan Atomic Energy
Agency, Tokai, Ibaraki 319-1195, Japan
| | - Tohru Kobayashi
- Materials
Sciences Research Center, Japan Atomic Energy
Agency, Tokai, Ibaraki 319-1195, Japan
| | - Hitoshi Endo
- Materials
Sciences Research Center, Japan Atomic Energy
Agency, Tokai, Ibaraki 319-1195, Japan
- Neutron
Science Division, Institute of Materials Structure Science, and Materials
and Life Science Division, J-PARC Center, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
- Department
of Materials Structure Science, The Graduate
University for Advanced Studies (SOKENDAI), 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Junju Mu
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Christopher D. Williams
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Andrew J. Masters
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mark R. Antonio
- Chemical
Sciences & Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - William T. Heller
- Neutron Scattering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michihiro Nagao
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
- Center
for Exploration of Energy and Matter, Department of Physics, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
33
|
Servis MJ, Clark AE. Surfactant-enhanced heterogeneity of the aqueous interface drives water extraction into organic solvents. Phys Chem Chem Phys 2019; 21:2866-2874. [DOI: 10.1039/c8cp06450d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid/liquid extraction (LLE) is one of the most industrially relevant separations methods. Adsorbed surfactant is demonstrated to enhance interfacial heterogeneity and lead to water protrusions that form the basis for transport into the organic phase.
Collapse
Affiliation(s)
| | - Aurora E. Clark
- Department of Chemistry
- Washington State University
- Pullman
- USA
- Pacific Northwest National Laboratory
| |
Collapse
|
34
|
Zhao Q, Zhao X, Sun J, Yang L, Shen Y. Catalytic Process for the Hydroxide-Initiated Reaction of the “Weakly Acidic” Substrate in the Third-Liquid Phase-Transfer Catalytic System. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiangqiang Zhao
- Engineering Research Center for Eco−Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci−Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci−Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiao Zhao
- Engineering Research Center for Eco−Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci−Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci−Tech University, Hangzhou 310018, Zhejiang, China
| | - Jie Sun
- Zhejiang Province New Textile Research & Development Emphasised Laboratory, Hangzhou 310009, China
| | - Lei Yang
- Engineering Research Center for Eco−Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci−Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci−Tech University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Shen
- Engineering Research Center for Eco−Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci−Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci−Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
35
|
Seaton MA. DL_MESO_DPD: development and use of mesoscale modelling software. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1524143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|