1
|
Madhuprakash J, Dalhus B, Bissaro B, Duhsaki L, Vaaje-Kolstad G, Sørlie M, Røhr ÅK, Eijsink VGH. An Alkaliphilic Chitinase Unveils Environment-Dependent Variation in the Canonical Catalytic Machinery of Family-18 Glycoside Hydrolases. Biochemistry 2025; 64:2291-2305. [PMID: 40314600 DOI: 10.1021/acs.biochem.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Chitinases belonging to glycoside hydrolase family-18 (GH18) employ substrate-assisted catalysis and typically have neutral/acidic pH-optima. We describe the structural and functional analysis of CaChiA, a chitinase from the anaerobic alkaliphilic bacterium Chitinivibrio alkaliphilus with an alkaline pH optimum (8.8) and unique active site features, including a noncanonical catalytic HxxExDxE motif, which is DxxDxDxE in other chitinases. Propka calculations indicated a significantly higher pKa for the catalytic acid/base, Glu148, in CaGH18, compared to other GH18 enzymes, aligning with its alkaline pH optimum. Both Propka calculations and functional studies of enzyme variants with mutations in the catalytic center suggested that not the change in the catalytic motif, but rather a unique glutamine, Gln57, modulating the properties of this motif, enables activity at alkaline pH. Further characterization of CaChiA unveiled additional peculiar enzyme properties, such as a unique ability to convert chitin to chitotriose. Thus, CaChiA adds novel catalytic capabilities to the widespread family of GH18 chitinases, made possible by adaptation of an intricate catalytic center.
Collapse
Affiliation(s)
- Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
- Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Rikshospitalet, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Bastien Bissaro
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Lal Duhsaki
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
2
|
Yu Y, Chen S, Yan M, Li Y, Yang M, Liu X, Miao J, Wang X, Xiao M, Mou H, Leng K. Identification, expression, and characterization of a marine-derived chitinase Ce0303 from Chitiniphilus eburneus YS-30 with exo- and endo-hydrolytic properties. Int J Biol Macromol 2024; 276:133980. [PMID: 39032901 DOI: 10.1016/j.ijbiomac.2024.133980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
N-acetyl-oligosaccharides exhibit antioxidant and antibacterial activities. However, the low catalytic efficiency of chitinase on crystalline chitin hinders the eco-friendly production of N-acetyl-oligosaccharides. A marine-derived chitinase-producing strain Chitiniphilus eburneus YS-30 was screened in this study. The genome of C. eburneus YS-30 spans 4,522,240 bp, with a G + C content of 63.96 % and 4244 coding genes. Among the chitinases secreted by C. eburneus YS-30, Ce0303 showed the highest content at 19.10 %, with a molecular weight of 73.5 kDa. Recombinant Ce0303 exhibited optimal activity at 50 °C and pH 5.0, maintaining stability across pH 4.0-10.0. Ce0303 demonstrated strict substrate specificity, with a specific activity toward colloidal chitin of 6.41 U mg-1, Km of 2.34 mg mL-1, and kcat of 3.27 s-1. The specific activity of Ce0303 toward α-chitin was 18.87 % of its activity on colloidal chitin. Ce0303 displayed both exo- and endo-hydrolytic properties, primarily producing (GlcNAc)1-3 from colloidal chitin. The structure of Ce0303 includes one catalytic domain and two chitin-binding domains. Docking results revealed that the GlcNAc at -1 subsite formed two hydrogen bonds with conserved Trp380. The hydrolytic properties of Ce0303 will provide technical support for the comprehensive utilization of crustacean raw materials.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Sunan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaofang Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Junkui Miao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xixi Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Kailiang Leng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Jiménez-Ortega E, Kidibule PE, Fernández-Lobato M, Sanz-Aparicio J. Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Comput Struct Biotechnol J 2021; 19:5466-5478. [PMID: 34712392 PMCID: PMC8515301 DOI: 10.1016/j.csbj.2021.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022] Open
Abstract
Chitinases degrade chitin into low molecular weight chitooligomers, which have a broad range of industrial, agricultural, and medical functions. Understanding the relationship between the diverse characteristics of chitinases and their functions is necessary for the improvement of functional enzymes that meet specific requirements. We report here a full crystallographic analysis of three complexes obtained from the chitinase Chit42 from Trichoderma harzianum, which represent different states along the enzymatic mechanism. The inactive double mutant D169A/E171A was submitted to soaking/crystallization experiments with hexa-N-acetyl-glucosamine (NAG6) or tetra-N-acetyl-glucosamine (NAG4), trapping the enzyme-substrate complex (Chit42-NAG6), the enzyme-products complex (Chit42-NAG4-NAG2) and a someway intermediate state. Structural comparison among the different complexes depicts the determinants defining the different subsites and revealed a previously unobserved dynamic on-off ligand binding process associated with a motion of its insertion domain, which might be accompanying the role or aromatics in processivity. An ensemble refinement performed to extract dynamic details from the diffraction data elucidates the implication of some highly flexible residues in the productive sliding of the substrate and the product release event. These positions were submitted to mutagenesis and the activity of the variants was investigated in the hydrolysis of NAG6, colloidal chitin and two chitosans with different polymerization and acetylation degree. All the changes affected the Chit42 hydrolytic activity therefore confirming the involvement of these positions in catalysis. Furthermore, we found the variants R295S and E316S improving the apparent catalytic efficiency of chitin and NAG6 and, together with E316A, enhancing the specific activity on chitosan. Therefore, our results provide novel insight into the molecular mechanisms underlying the hydrolysis of chitinous material by fungal chitinases, and suggest new targets to address engineering of these biotechnologically important enzymes.
Collapse
Affiliation(s)
- Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| | - Peter Elias Kidibule
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| |
Collapse
|
4
|
Gomaa EZ. Microbial chitinases: properties, enhancement and potential applications. PROTOPLASMA 2021; 258:695-710. [PMID: 33483852 DOI: 10.1007/s00709-021-01612-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Chitinases are a category of hydrolytic enzymes that catalyze chitin and are formed by a wide variety of microorganisms. In nature, microbial chitinases are primarily responsible for chitin decomposition and play a vital role in the balance of carbon and nitrogen ratio in the ecosystem. The physicochemical attributes and the source of chitinase are the main bases that determine their functional characteristics and hydrolyzed products. Several chitinases have been reported and characterized, and they obtain a wider consideration for their utilization in a large number of uses such as in agriculture, food, environment, medicine and pharmaceutical companies. The antifungal and insecticidal impacts of several chitinases have been extensively studied, aiming to protect crops from phytopathogenic fungi and insects. Chitooligosaccharides synthesized by chitin degradation have been shown to improve human health through their antimicrobial, antioxidant, anti-inflammatory and antitumor properties. This review aims at investigating chitinase production, properties and their potential applications in various biotechnological fields.
Collapse
Affiliation(s)
- Eman Zakaria Gomaa
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Harmsen RAG, Aam BB, Madhuprakash J, Hamre AG, Goddard-Borger ED, Withers SG, Eijsink VGH, Sørlie M. Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating N-d-Acetylglucosamine and d-Glucosamine. Biochemistry 2020; 59:4581-4590. [DOI: 10.1021/acs.biochem.0c00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rianne A. G. Harmsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Berit Bjugan Aam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Jogi Madhuprakash
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Anne Grethe Hamre
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Ethan D. Goddard-Borger
- Walter & Eliza Hall, Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry, University of British Colombia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Colombia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| |
Collapse
|
6
|
Rani TS, Madhuprakash J, Podile AR. Chitinase-E from Chitiniphilus shinanonensis generates chitobiose from chitin flakes. Int J Biol Macromol 2020; 163:1037-1043. [DOI: 10.1016/j.ijbiomac.2020.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
|
7
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
8
|
Madhuprakash J, Rani TS, Podile AR, Eijsink VGH, Sørlie M. Thermodynamic insights into the role of aromatic residues in chitooligosaccharide binding to the transglycosylating chitinase-D from Serratia proteamaculans. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2020; 1868:140414. [PMID: 32224199 DOI: 10.1016/j.bbapap.2020.140414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Jogi Madhuprakash
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India.
| | - T Swaroopa Rani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway.
| |
Collapse
|
9
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
Affiliation(s)
- Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|