1
|
Patel BS, Yadav S, Surolia A, Jayaraman N. Multivalent chitobiose self-assembled glycostructures as ligands to lysozyme. Bioorg Chem 2025; 154:108009. [PMID: 39637484 DOI: 10.1016/j.bioorg.2024.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Synthetic chitobiose-containing glycolipid (GL) and lipid (L) are prepared in order to secure self-assembled multivalent glycostructures, constituted with varying molar fractions of GL and L. The morphologies of glycostructures are uniform, as adjudged by dynamic light scattering (DLS) in solution and microscopies in the solid state. Presence of the ester linkage between the lipid and chitobiose moieties permit hydrolysis and disassembly of the self-assembled structures at acidic and alkaline pH. The avidity of chitobiose in the multivalent glycostructures to lysozyme follows the percentage of GL in the GL-L compositions in the order 50 % GL > 100 % GL-L > 10 % GL-L. The interaction with lysozyme occurs with fast association and slow dissociation kinetics, from which the equilibrium binding constant (Ka) is identified to be 2-4 orders of magnitude higher (Ka 105 to 107 M-1), as compared to monomeric chitobiose-lysozyme complexation in solution. When assessed for the antimicrobial lytic property of lysozyme, the multivalent chitobiose-lysozyme complex is found to delay the lytic property, when compared to the enzyme alone. The study establishes (i) the pH-sensitive multivalent chitobiose-containing glycostructures for high affinity binding to lysozyme; (ii) that the multivalent ligand presentation enables orders of magnitude higher equilibrium binding constants with enzyme lysozyme and (iii) that the lytic activity of the enzyme is delayed upon complexation with the multivalent glycostructures.
Collapse
Affiliation(s)
- Bharat Singh Patel
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
2
|
Saini HK, Creagh AL, La CC, Lim DTE, Kizhakkedathu JN, Haynes CA, Srebnik S, Straus SK, Ballauff M. Interaction between the Polyelectrolytes Unfractionated Heparin and Universal Heparin Reversal Agents. J Phys Chem B 2024; 128:12808-12817. [PMID: 39665790 DOI: 10.1021/acs.jpcb.4c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The interaction of unfractionated heparin (UFH) with universal heparin reversal agent 7 (UHRA-7) is investigated. UHRA-7 is composed of a hyperbranched polyglycerol core onto which an array of methylated tris(2-aminoethylamine) (Me-TREN) charged groups is grafted, which in turn are shielded with a layer of small chain poly(ethylene glycol) methyl ether (mPEG) chains. This system has previously been shown to be biocompatible and to be effective at neutralizing heparin. The binding constant Kb was determined from isothermal titration calorimetry experiments, at temperatures ranging from 278 to 323 K and salt concentrations ranging from 0.06 to 0.20 M NaCl. The data were analyzed in terms of a number of different theoretical models to determine the contribution of counterion release and water release to driving the interaction between UFH and UHRA-7. With the support of NMR and molecular dynamics simulation data, a model of the interaction between UFH and UHRA-7 is proposed. The binding of heparin and universal heparin reversal agent 7 is mainly due to charge-charge interactions between the negatively charged units on UFH with positively charged Me-TREN and mPEG chains.
Collapse
Affiliation(s)
- Hemant K Saini
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - A Louise Creagh
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chanel C La
- Center for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - David Thiam En Lim
- Center for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jayachandran N Kizhakkedathu
- Center for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- The School of Biomedical Engineering, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Charles A Haynes
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Simcha Srebnik
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
3
|
Ballauff M. Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation. Biomolecules 2024; 14:1421. [PMID: 39595597 PMCID: PMC11592313 DOI: 10.3390/biom14111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
A thermodynamic analysis of the binary complex formation of the highly positively charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα) is detailed. ProTα and H1 have large opposite net charges (-44 and +53, respectively) and form complexes at physiological salt concentrations with high affinities. The data obtained for the binary complex formation are analyzed by a thermodynamic model that is based on counterion condensation modulated by hydration effects. The analysis demonstrates that the release of the counterions mainly bound to ProTα is the main driving force, and effects related to water release play no role within the limits of error. A strongly negative Δcp (=-0.87 kJ/(K mol)) is found, which is due to the loss of conformational degrees of freedom.
Collapse
Affiliation(s)
- Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a, 14195 Berlin, Germany
| |
Collapse
|
4
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 PMCID: PMC12023540 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P. Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Zhang Y, Ma N, Wang L, Liu L, Wang T, Liu H, Qian W. Real-Time Study of the Specific Interactions of Lactoferrin with Mimicked Heparan Sulfate Meshes Using Ordered Porous Layer Interferometry. Anal Chem 2024; 96:14413-14423. [PMID: 38989558 DOI: 10.1021/acs.analchem.4c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heparan sulfate (HS) meshes within the glycocalyx on cell surfaces have protein recognition ability and have been crucial for gaining insights into vital bioprocesses, such as viral infection, cancer development, and inflammation. The protein recognition ability is determined by the mesh property and compositions of HS, although little attention has been paid to the effect of the mesh property on the recognition. An in-depth specificity study of protein-HS-mesh recognition is essential to illustrate related biological functions. Here, ordered porous layer interferometry is applied to study the interaction behavior between mimicked HS meshes and lactoferrin (LF). Our work aimed at mimicking HS meshes with heparin, a widely used substitute of HS, and analyzing the specific LF-heparin-mesh interaction mechanism by inhibiting the nonspecific interaction in a blended sample. We found that the counterion release-based electrostatic interaction is dominant in the specific LF-heparin-mesh recognition. Furthermore, we detail the contributions of nonspecific and specific interactions to the recognition. We illustrate that the concentrated charge distribution of the proteins appears to be primarily related to this robust, specific recognition.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liming Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianze Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- OPLI (Suzhou) Biotechnology Co., Ltd., New District, Suzhou 215163, China
| |
Collapse
|
6
|
Lauster D, Osterrieder K, Haag R, Ballauff M, Herrmann A. Respiratory viruses interacting with cells: the importance of electrostatics. Front Microbiol 2023; 14:1169547. [PMID: 37440888 PMCID: PMC10333706 DOI: 10.3389/fmicb.2023.1169547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
The COVID-19 pandemic has rekindled interest in the molecular mechanisms involved in the early steps of infection of cells by viruses. Compared to SARS-CoV-1 which only caused a relatively small albeit deadly outbreak, SARS-CoV-2 has led to fulminant spread and a full-scale pandemic characterized by efficient virus transmission worldwide within a very short time. Moreover, the mutations the virus acquired over the many months of virus transmission, particularly those seen in the Omicron variant, have turned out to result in an even more transmissible virus. Here, we focus on the early events of virus infection of cells. We review evidence that the first decisive step in this process is the electrostatic interaction of the spike protein with heparan sulfate chains present on the surface of target cells: Patches of cationic amino acids located on the surface of the spike protein can interact intimately with the negatively charged heparan sulfate chains, which results in the binding of the virion to the cell surface. In a second step, the specific interaction of the receptor binding domain (RBD) within the spike with the angiotensin-converting enzyme 2 (ACE2) receptor leads to the uptake of bound virions into the cell. We show that these events can be expressed as a semi-quantitative model by calculating the surface potential of different spike proteins using the Adaptive Poison-Boltzmann-Solver (APBS). This software allows visualization of the positive surface potential caused by the cationic patches, which increased markedly from the original Wuhan strain of SARS-CoV-2 to the Omicron variant. The surface potential thus enhanced leads to a much stronger binding of the Omicron variant as compared to the original wild-type virus. At the same time, data taken from the literature demonstrate that the interaction of the RBD of the spike protein with the ACE2 receptor remains constant within the limits of error. Finally, we briefly digress to other viruses and show the usefulness of these electrostatic processes and calculations for cell-virus interactions more generally.
Collapse
Affiliation(s)
- Daniel Lauster
- Institut für Pharmazie, Biopharmazeutika, Freie Universität Berlin, Berlin, Germany
| | | | - Rainer Haag
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Walkowiak JJ, Nikam R, Ballauff M. Adsorption of Mono- and Divalent Ions onto Dendritic Polyglycerol Sulfate (dPGS) as Studied Using Isothermal Titration Calorimetry. Polymers (Basel) 2023; 15:2792. [PMID: 37447437 DOI: 10.3390/polym15132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effective charge of highly charged polyelectrolytes is significantly lowered by a condensation of counterions. This effect is more pronounced for divalent ions. Here we present a study of the counterion condensation to dendritic polyglycerol sulfate (dPGS) that consists of a hydrophilic dendritic scaffold onto which sulfate groups are appended. The interactions between the dPGS and divalent ions (Mg2+ and Ca2+) were analyzed using isothermal titration calorimetry (ITC) and showed no ion specificity upon binding, but clear competition between the monovalent and divalent ions. Our findings, in line with the latest theoretical studies, demonstrate that a large fraction of the monovalent ions is sequentially replaced with the divalent ions.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI-Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Rohit Nikam
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Taktstraße 3, 14195 Berlin, Germany
| |
Collapse
|
8
|
Maysinger D, Zhang I, Wu PY, Kagelmacher M, Luo HD, Kizhakkedathu JN, Dernedde J, Ballauff M, Haag R, Shobo A, Multhaup G, McKinney RA. Sulfated Hyperbranched and Linear Polyglycerols Modulate HMGB1 and Morphological Plasticity in Neural Cells. ACS Chem Neurosci 2023; 14:677-688. [PMID: 36717083 DOI: 10.1021/acschemneuro.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to establish if polyglycerols with sulfate or sialic acid functional groups interact with high mobility group box 1 (HMGB1), and if so, which polyglycerol could prevent loss of morphological plasticity in excitatory neurons in the hippocampus. Considering that HMGB1 binds to heparan sulfate and that heparan sulfate has structural similarities with dendritic polyglycerol sulfates (dPGS), we performed the experiments to show if polyglycerols can mimic heparin functions by addressing the following questions: (1) do dendritic and linear polyglycerols interact with the alarmin molecule HMGB1? (2) Does dPGS interaction with HMGB1 influence the redox status of HMGB1? (3) Can dPGS prevent the loss of dendritic spines in organotypic cultures challenged with lipopolysaccharide (LPS)? LPS plays a critical role in infections with Gram-negative bacteria and is commonly used to test candidate therapeutic agents for inflammation and endotoxemia. Pathologically high LPS concentrations and other stressful stimuli cause HMGB1 release and post-translational modifications. We hypothesized that (i) electrostatic interactions of hyperbranched and linear polysulfated polyglycerols with HMGB1 will likely involve sites similar to those of heparan sulfate. (ii) dPGS can normalize HMGB1 compartmentalization in microglia exposed to LPS and prevent dendritic spine loss in the excitatory hippocampal neurons. We performed immunocytochemistry and biochemical analyses combined with confocal microscopy to determine cellular and extracellular locations of HMGB1 and morphological plasticity. Our results suggest that dPGS interacts with HMGB1 similarly to heparan sulfate. Hyperbranched dPGS and linear sulfated polymers prevent dendritic spine loss in hippocampal excitatory neurons. MS/MS analyses reveal that dPGS-HMGB1 interactions result in fully oxidized HMGB1 at critical cysteine residues (Cys23, Cys45, and Cys106). Triply oxidized HMGB1 leads to the loss of its pro-inflammatory action and could participate in dPGS-mediated spine loss prevention. LPG-Sia exposure to HMGB1 results in the oxidation of Cys23 and Cys106 but does not normalize spine density.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Marten Kagelmacher
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Haiming Daniel Luo
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin13353, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| |
Collapse
|
9
|
Malicka W, Haag R, Ballauff M. Interaction of Heparin with Proteins: Hydration Effects. J Phys Chem B 2022; 126:6250-6260. [PMID: 35960645 DOI: 10.1021/acs.jpcb.2c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a thermodynamic investigation of the interaction of heparin with lysozyme in the presence of potassium glutamate (KGlu). The binding constant Kb is measured by isothermal titration calorimetry (ITC) in a temperature range from 288 to 310 K for concentrations of KGlu between 25 and 175 mM. The free energy of binding ΔGb derived from Kb is strongly decreasing with increasing concentration of KGlu, whereas the dependence of ΔGb on temperature T is found to be small. The decrease of ΔGb can be explained in terms of counterion release: Binding of lysozyme to the strong polyelectrolyte heparin liberates approximately three of the condensed counterions of heparin, thus increasing the entropy of the system. The dependence of ΔGb on T, on the other hand, is traced back to a change of hydration of the protein and the polyelectrolyte upon complex formation. This dependence is quantitatively described by the parameter Δw that depends on T and vanishes at a characteristic temperature T0. A comparison of the complex formation in the presence of KGlu with the one in the presence of NaCl demonstrates that the parameters related to hydration are changed considerably. The characteristic temperature T0 in the presence of KGlu solutions is considerably smaller than that in the presence of NaCl solutions. The change of specific heat Δcp is found to become more negative with increasing salt concentration: This finding agrees with the model-free analysis by the generalized van't Hoff equation. The entire analysis reveals a small but important change of the free energy of binding by hydration. It shows that these ion-specific Hofmeister effects can be modeled quantitatively in terms of a characteristic temperature T0 and a parameter describing the dependence of Δcp on salt concentration.
Collapse
Affiliation(s)
- Weronika Malicka
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
10
|
Xu X. Development of the Sequential Binding Model and Application for Anticooperative Protein Adsorption onto Charged Dendrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4102-4110. [PMID: 35324205 DOI: 10.1021/acs.langmuir.2c00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Langmuir binding model provides one of the simplest and elegant methods for characterizing an adsorption process. Despite its wide-ranging applications, enormous effort has been spent to further integrate complexity onto the standard Langmuir isotherm to incorporate a wide breadth of binding kinetics with the heterogeneity and cooperative effect among ligands and receptors. Here, we use statistical mechanics as a convenient theoretical framework to depict several adsorption processes on a Langmuir-like description. With regard to the system with a two-component mixture of macromolecular binders, we have derived the two-group sequential binding isotherm as an important extension of the original sequential model with more applications, including systems of non-identical binders. Via comparison of the Langmuir equilibrium with the Boltzmann equilibrium, for the first time the binding free energy defined in the Langmuir-like models can be meaningfully compared with simulations. In a practical example of the adsorption between the lysozyme protein and charged dendrimer, we have demonstrated how the calorimetry data of this system could be interpreted by the binding models described above, with an accurate description of the adsorption process, including the cooperative effect and dendrimer heterogeneity. Using the computer simulation as a benchmark, we also reveal and discuss the strengths and limitations of the proposed binding models. The entire analysis serves as a starting point for extending the standard Langmuir model to access more complicated binding processes.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| |
Collapse
|
11
|
Ballauff M. Denaturation of proteins: electrostatic effects vs. hydration. RSC Adv 2022; 12:10105-10113. [PMID: 35424951 PMCID: PMC8968186 DOI: 10.1039/d2ra01167k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The unfolding transition of proteins in aqueous solution containing various salts or uncharged solutes is a classical subject of biophysics. In many cases, this transition is a well-defined two-stage equilibrium process which can be described by a free energy of transition ΔG u and a transition temperature T m. For a long time, it has been known that solutes can change T m profoundly. Here we present a phenomenological model that describes the change of T m with the solute concentration c s in terms of two effects: (i) the change of the number of correlated counterions Δn ci and (ii) the change of hydration expressed through the parameter Δw and its dependence on temperature expressed through the parameter dΔc p/dc s. Proteins always carry charges and Δn ci describes the uptake or release of counterions during the transition. Likewise, the parameter Δw measures the uptake or release of water during the transition. The transition takes place in a reservoir with a given salt concentration c s that defines also the activity of water. The parameter Δn ci is a measure for the gain or loss of free energy because of the release or uptake of ions and is related to purely entropic effects that scale with ln c s. Δw describes the effect on ΔG u through the loss or uptake of water molecules and contains enthalpic as well as entropic effects that scale with c s. It is related to the enthalpy of transition ΔH u through a Maxwell relation: the dependence of ΔH u on c s is proportional to the dependence of Δw on temperature. While ionic effects embodied in Δn ci are independent of the kind of salt, the hydration effects described through Δw are directly related to Hofmeister effects of the various salt ions. A comparison with literature data underscores the general validity of the model.
Collapse
Affiliation(s)
- Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
12
|
Lunkad R, Barroso da Silva FL, Košovan P. Both Charge-Regulation and Charge-Patch Distribution Can Drive Adsorption on the Wrong Side of the Isoelectric Point. J Am Chem Soc 2022; 144:1813-1825. [DOI: 10.1021/jacs.1c11676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Fernando L. Barroso da Silva
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| |
Collapse
|
13
|
Interaction of Linear Polyelectrolytes with Proteins: Role of Specific Charge-Charge Interaction and Ionic Strength. Biomolecules 2021; 11:biom11091377. [PMID: 34572590 PMCID: PMC8472085 DOI: 10.3390/biom11091377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
We present a thermodynamic study of the interaction of synthetic, linear polyelectrolytes with bovine serum albumin (BSA). All polyelectrolytes are based on poly(allyl glycidyl ether) which has been modified by polymer-analogous reaction with anionic (-SO3Na), cationic (-NH3Cl or -NHMe2Cl) or zwitterionic groups (-NMe2(CH2)3SO3). While the anionic polymer shows a very weak interaction, the zwitterionic polymer exhibits no interaction with BSA (pI = 4.7) under the applied pH = 7.4, ionic strength (I = 23–80 mM) and temperature conditions (T = 20–37 °C). A strong binding, however, was observed for the polycations bearing primary amino or tertiary dimethyl amino groups, which could be analysed in detail by isothermal titration calorimetry (ITC). The analysis was done using an expression which describes the free energy of binding, ΔGb, as the function of the two decisive variables, temperature, T, and salt concentration, cs. The underlying model splits ΔGb into a term related to counterion release and a term related to water release. While the number of released counter ions is similar for both systems, the release of bound water is more important for the primary amine compared to the tertiary N,N-dimethyl amine presenting polymer. This finding is further traced back to a closer contact of the polymers’ protonated primary amino groups in the complex with oppositely charged moieties of BSA as compared to the bulkier protonated tertiary amine groups. We thus present an investigation that quantifies both driving forces for electrostatic binding, namely counterion release and change of hydration, which contribute to a deeper understanding with direct impact on future advancements in the biomedical field.
Collapse
|
14
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfate hemmen durch elektrostatische Wechselwirkungen die SARS‐CoV‐2‐Infektion**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Paria Pouyan
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Daniel Lauster
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Yannic Kerkhoff
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Gergo Peter Szekeres
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Matthias Wallert
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Stephan Block
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anil Kumar Sahoo
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité-Universitätsmedizin Berlin Augustenburgerplatz 1 13353 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Benedikt B. Kaufer
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Roland R. Netz
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
15
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfates Block SARS-CoV-2 Uptake through Electrostatic Interactions*. Angew Chem Int Ed Engl 2021; 60:15870-15878. [PMID: 33860605 PMCID: PMC8250366 DOI: 10.1002/anie.202102717] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 μg mL-1 (approx. 1.6 μm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 μg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Paria Pouyan
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Daniel Lauster
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Yannic Kerkhoff
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Gergo Peter Szekeres
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Matthias Wallert
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Stephan Block
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Anil Kumar Sahoo
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und PathobiochemieCharité-Universitätsmedizin BerlinAugustenburgerplatz 113353BerlinGermany
| | - Kevin Pagel
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Benedikt B. Kaufer
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Roland R. Netz
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
16
|
Walkowiak JJ, Ballauff M. Interaction of Polyelectrolytes with Proteins: Quantifying the Role of Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100661. [PMID: 34194953 PMCID: PMC8224434 DOI: 10.1002/advs.202100661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Indexed: 05/11/2023]
Abstract
A theoretical model is presented for the free energy ΔGb of complex formation between a highly charged polyelectrolyte and a protein. The model introduced here comprises both the effect of released counterions and the uptake or release of water molecules during complex formation. The resulting expression for ΔGb is hence capable of describing the dependence of ΔGb on temperature as well as on the concentration of salt in the system: An increase of the salt concentration in the solution increases the activity of the ions and counterion release becomes less effective for binding. On the other hand, an increased salt concentration leads to the decrease of the activity of water in bulk. Hence, release of water molecules during complex formation will be more advantageous and lead to an increase of the magnitude of ΔGb and the binding constant. It is furthermore demonstrated that the release or uptake of water molecules is the origin of the marked enthalpy-entropy cancellation observed during complex formation of polyelectrolytes with proteins. The comparison with experimental data on complex formation between a synthetic (sulfated dendritic polyglycerol) and natural polyelectrolytes (DNA; heparin) with proteins shows full agreement with theory.
Collapse
Affiliation(s)
- Jacek J. Walkowiak
- Institut für Chemie und BiochemieFreie Universität BerlinTaktstraße 3Berlin14195Germany
- Aachen‐Maastricht Institute for Biobased MaterialsMaastricht UniversityBrightlands Chemelot Campus, Urmonderbaan 22Geleen6167 RDThe Netherlands
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTaktstraße 3Berlin14195Germany
| |
Collapse
|
17
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021; 60:3882-3904. [PMID: 32589355 PMCID: PMC7894192 DOI: 10.1002/anie.202006457] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The counterions neutralizing the charges on polyelectrolytes such as DNA or heparin may dissociate in water and greatly influence the interaction of such polyelectrolytes with biomolecules, particularly proteins. In this Review we give an overview of studies on the interaction of proteins with polyelectrolytes and how this knowledge can be used for medical applications. Counterion release was identified as the main driving force for the binding of proteins to polyelectrolytes: Patches of positive charge become multivalent counterions of the polyelectrolyte and lead to the release of counterions from the polyelectrolyte and a concomitant increase in entropy. This is shown from investigations on the interaction of proteins with natural and synthetic polyelectrolytes. Special emphasis is paid to sulfated dendritic polyglycerols (dPGS). The Review demonstrates that we are moving to a better understanding of charge-charge interactions in systems of biological relevance. Research along these lines will aid and promote the design of synthetic polyelectrolytes for medical applications.
Collapse
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- IRIS AdlershofHumboldt Universität zu BerlinZum Grossen Windkanal 612489BerlinGermany
| | - Jens Dernedde
- Charité-Universitätsmedizin BerlinInstitute of Laboratory MedicineClinical Chemistry, and PathobiochemistryCVK Augustenburger Platz 113353BerlinGermany
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood ResearchDepartment of Pathology and Laboratory MedicineLife Science InstituteDepartment of ChemistrySchool of Biomedical EngineeringUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| | - Gerd Multhaup
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| |
Collapse
|
18
|
Zhang I, Lépine P, Han C, Lacalle-Aurioles M, Chen CXQ, Haag R, Durcan TM, Maysinger D. Nanotherapeutic Modulation of Human Neural Cells and Glioblastoma in Organoids and Monocultures. Cells 2020; 9:cells9112434. [PMID: 33171886 PMCID: PMC7695149 DOI: 10.3390/cells9112434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory processes in the brain are orchestrated by microglia and astrocytes in response to activators such as pathogen-associated molecular patterns, danger-associated molecular patterns and some nanostructures. Microglia are the primary immune responders in the brain and initiate responses amplified by astrocytes through intercellular signaling. Intercellular communication between neural cells can be studied in cerebral organoids, co-cultures or in vivo. We used human cerebral organoids and glioblastoma co-cultures to study glia modulation by dendritic polyglycerol sulfate (dPGS). dPGS is an extensively studied nanostructure with inherent anti-inflammatory properties. Under inflammatory conditions, lipocalin-2 levels in astrocytes are markedly increased and indirectly enhanced by soluble factors released from hyperactive microglia. dPGS is an effective anti-inflammatory modulator of these markers. Our results show that dPGS can enter neural cells in cerebral organoids and glial cells in monocultures in a time-dependent manner. dPGS markedly reduces lipocalin-2 abundance in the neural cells. Glioblastoma tumoroids of astrocytic origin respond to activated microglia with enhanced invasiveness, whereas conditioned media from dPGS-treated microglia reduce tumoroid invasiveness. Considering that many nanostructures have only been tested in cancer cells and rodent models, experiments in human 3D cerebral organoids and co-cultures are complementary in vitro models to evaluate nanotherapeutics in the pre-clinical setting. Thoroughly characterized organoids and standardized procedures for their preparation are prerequisites to gain information of translational value in nanomedicine. This study provides data for a well-characterized dendrimer (dPGS) that modulates the activation state of human microglia implicated in brain tumor invasiveness.
Collapse
Affiliation(s)
- Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada;
| | - Paula Lépine
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Chanshuai Han
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - María Lacalle-Aurioles
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany;
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada;
- Correspondence: ; Tel.: +1-514-398-1264
| |
Collapse
|
19
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Wechselwirkung von Polyelektrolyt‐Architekturen mit Proteinen und Biosystemen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
- IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 6 12489 Berlin Deutschland
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie CVK Augustenburger Platz 1 13353 Berlin Deutschland
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research Department of Pathology and Laboratory Medicine Life Science Institute Department of Chemistry School of Biomedical Engineering University of British Columbia Vancouver V6T 1Z3 Kanada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| | - Gerd Multhaup
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| |
Collapse
|
20
|
Walkowiak JJ, Ballauff M, Zimmermann R, Freudenberg U, Werner C. Thermodynamic Analysis of the Interaction of Heparin with Lysozyme. Biomacromolecules 2020; 21:4615-4625. [DOI: 10.1021/acs.biomac.0c00780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jacek Janusz Walkowiak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
21
|
Ding F, Peng W, Peng YK, Liu BQ. Estimating the potential toxicity of chiral diclofop-methyl: Mechanistic insight into the enantioselective behavior. Toxicology 2020; 438:152446. [DOI: 10.1016/j.tox.2020.152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
|
22
|
Probing the protein corona around charged macromolecules: interpretation of isothermal titration calorimetry by binding models and computer simulations. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04648-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractIsothermal titration calorimetry (ITC) is a widely used tool to experimentally probe the heat signal of the formation of the protein corona around macromolecules or nanoparticles. If an appropriate binding model is applied to the ITC data, the heat of binding and the binding stoichiometry as well as the binding affinity per protein can be quantified and interpreted. However, the binding of the protein to the macromolecule is governed by complex microscopic interactions. In particular, due to the steric and electrostatic protein–protein interactions within the corona as well as cooperative, charge renormalization effects of the total complex, the application of standard (e.g., Langmuir) binding models is questionable and the development of more appropriate binding models is very challenging. Here, we discuss recent developments in the interpretation of the Langmuir model applied to ITC data of protein corona formation, exemplified for the well-defined case of lysozyme coating highly charged dendritic polyglycerol sulfate (dPGS), and demonstrate that meaningful data can be extracted from the fits if properly analyzed. As we show, this is particular useful for the interpretation of ITC data by molecular computer simulations where binding affinities can be calculated but it is often not clear how to consistently compare them with the ITC data. Moreover, we discuss the connection of Langmuir models to continuum binding models (where no discrete binding sites have to be assumed) and their possible extensions toward the inclusion of leading order cooperative electrostatic effects.
Collapse
|
23
|
Zhao L, Zhao L, Li H, Sun P, Wu J, Li K, Hu S, Wang X, Pu Q. Facile Evaluation of Nanoparticle-Protein Interaction Based on Charge Neutralization with Pulsed Streaming Potential Measurement. Anal Chem 2019; 91:15670-15677. [PMID: 31710814 DOI: 10.1021/acs.analchem.9b03778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Exploration of simple and universal methods to quantitatively measure nanoparticle (NP)-protein interaction is of great importance. In this work, pulsed streaming potential (SP) measurement has been used to evaluate the interaction between NPs and proteins within microchannels. Graphene oxide (GO) and SiO2 NPs were selected to represent two kinds of NPs. Lysozyme and common blood proteins, including albumin V, γ-globulins, and fibrinogen, were used as model proteins. The linear relationship between the initial adsorption rate (S = dEr/dt) and the concentration of proteins was observed. Combined with the Hill equation, the microscopic dissociation constant (KD) and the Hill coefficient (n) between NPs and proteins were calculated based on the relationship between S and the concentration of each protein. The concentration of free proteins which have not interacted with the NPs in the NPs-protein mixture could also be measured. The influence of pH, conductivity, and ionic strengths of the incubation buffer on the interaction between GO and lysozyme was evaluated based on the constant KD. The interaction intensity between NPs and proteins was defined as charge neutralization efficiency QC, which could be calculated from the value of S. It takes only 150 s to get the whole set of data under the optimized experiment parameters. The measurement solely depends on the surface charge, no intrinsic fluorescence is required for either the NPs or the proteins, and no labeling or immobilization process is involved as well.
Collapse
Affiliation(s)
- Lei Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China.,State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Hongli Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Ping Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Jing Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Ke Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China
| | - Siqi Hu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| |
Collapse
|