1
|
Soto Puelles J, O'Dell LA, Cooray MCD, Forsyth M, Chen F. Effectively enhancing ion diffusion in superconcentrated ionic liquid electrolytes using co-solvent additives. NANOSCALE 2025; 17:10057-10064. [PMID: 40172100 DOI: 10.1039/d4nr05234j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The incorporation of high salt concentrations in ionic liquid (IL) electrolytes, forming superconcentrated ionic liquids, has been shown to improve Li-ion transference numbers and enhance cycling stability against lithium metal anodes. However, this benefit comes at the cost of significantly increased viscosity and reduced ionic conductivity due to the formation of large ion aggregates. To optimize conductivity further, a co-solvent can be introduced at an optimal concentration to enhance ion transport while preserving superior interfacial stability. The effectiveness of this approach depends on the solvent as it affects ion diffusion to varying degrees. This computational study examines how co-solvents can effectively enhance metal ion diffusion in superconcentrated ionic liquids by comparing two widely used organic solvents. We found that the key lies in their ability to effectively participate in Li solvation shells, disrupting the large Li-anion aggregates. Our results show that anion exchange in a Li(anion)x(solvent)y hybrid solvation shell occurs more rapidly than in a Li (anion)z solvation shell, facilitating Li diffusion through a structural diffusion mechanism. A co-solvent with a high donor number exhibits a stronger affinity for lithium ions, which is identified as a crucial factor in enhancing ion diffusion. This work provides valuable insights to guide the design of superconcentrated ionic liquid electrolytes for lithium-metal battery development.
Collapse
Affiliation(s)
- Jhonatan Soto Puelles
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
- Future Battery Industries Cooperative Research Centre (FBICRC), Building 220, Brand Drive, Curtin University, Bentley, WA 6102, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Future Battery Industries Cooperative Research Centre (FBICRC), Building 220, Brand Drive, Curtin University, Bentley, WA 6102, Australia
| | - M C Dilusha Cooray
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
- Future Battery Industries Cooperative Research Centre (FBICRC), Building 220, Brand Drive, Curtin University, Bentley, WA 6102, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
- Future Battery Industries Cooperative Research Centre (FBICRC), Building 220, Brand Drive, Curtin University, Bentley, WA 6102, Australia
| | - Fangfang Chen
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
- Future Battery Industries Cooperative Research Centre (FBICRC), Building 220, Brand Drive, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
2
|
Frömbgen T, Zaby P, Alizadeh V, Da Silva JLF, Kirchner B, Lourenço TC. Lessons Learned on Obtaining Reliable Dynamic Properties for Ionic Liquids. Chemphyschem 2025; 26:e202401048. [PMID: 39887879 PMCID: PMC12005134 DOI: 10.1002/cphc.202401048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/01/2025]
Abstract
Ionic liquids are nowadays investigated with respect to their use as electrolytes for high-performance energy storage materials. In this study, we provide a tutorial on how to calculate dynamic properties such as self-diffusion coefficients, ionic conductivities, transference numbers, as well as ion pair and ion cage dynamics, that all play a role in judging the applicability of ionic liquids as electrolytes. For the case of the ionic liquid[ C 2 C 1 Im ] [ NTf 2 ] ${[{\rm{C}}_2 {\rm{C}}_1 {\rm{Im}}][{\rm{NTf}}_2 ]}$ , we investigate the performance of different force fields. Amongst them are non-polarizable models employing unity charges, a charge-scaled version of a non-polarizable model, a polarizable model and another non-polarizable model with refined Lennard-Jones parameters. We also study the influence of the system size on the dynamic properties. While all studied force field models capture qualitatively correct trends, only the polarizable force field and the non-polarizable force field with refined Lennard-Jones parameters provide quantitative agreement to reference data, making the latter model very attractive for the reason of lower computational costs.
Collapse
Affiliation(s)
- Tom Frömbgen
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Paul Zaby
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Juarez L. F. Da Silva
- São Carlos Institute of ChemistryUniversity of São PauloP.O. Box 78013560-970São CarlosSPBrazil
| | - Barbara Kirchner
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Tuanan C. Lourenço
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
- São Carlos Institute of ChemistryUniversity of São PauloP.O. Box 78013560-970São CarlosSPBrazil
| |
Collapse
|
3
|
Feng W, Zhang L, Cheng Y, Wu J, Wei C, Zhang J, Yu K. Screening and Design of Aqueous Zinc Battery Electrolytes Based on the Multimodal Optimization of Molecular Simulation. J Phys Chem Lett 2025; 16:3326-3335. [PMID: 40130824 DOI: 10.1021/acs.jpclett.5c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Aqueous batteries, such as aqueous zinc-ion batteries (AZIB), have garnered significant attention because of their advantages in intrinsic safety, low cost, and eco-friendliness. However, aqueous electrolytes tend to freeze at low temperatures, which limits their potential industrial applications. Thus, one of the core challenges in aqueous electrolyte design is optimizing the formula to prevent freezing while maintaining good ion conductivity. However, the experimental trial-and-error approach is inefficient for this purpose, and existing simulation tools are either inaccurate or too expensive for high-throughput phase transition predictions. In this work, we employ a small amount of experimental data and differentiable simulation techniques to develop a multimodal optimization workflow. With minimal human intervention, this workflow significantly enhances the prediction power of classical force fields for electrical conductivity. Most importantly, the simulated electrical conductivity can serve as an effective predictor of electrolyte freezing at low temperatures. Generally, the workflow developed in this work introduces a new paradigm for electrolyte design. This paradigm leverages both easily measurable experimental data and fast simulation techniques to predict properties that are challenging to access by using either approach alone.
Collapse
Affiliation(s)
- Wei Feng
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, P. R. China
| | - Luyan Zhang
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, P. R. China
| | - Yaobo Cheng
- Shenzhen Cubic-Science Company, Ltd., Shenzhen 518052, Guangdong, P. R. China
| | - Jin Wu
- Shenzhen Cubic-Science Company, Ltd., Shenzhen 518052, Guangdong, P. R. China
| | - Chunguang Wei
- Shenzhen Cubic-Science Company, Ltd., Shenzhen 518052, Guangdong, P. R. China
| | - Junwei Zhang
- Shenzhen Cubic-Science Company, Ltd., Shenzhen 518052, Guangdong, P. R. China
| | - Kuang Yu
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
4
|
Verma AK, Thorat AS, Shah JK. Predicting Ionic Conductivity of Imidazolium-Based Ionic Liquid Mixtures Using Quantum-Mechanically Derived Partial Charges in the Condensed Phase. J Phys Chem B 2025; 129:2546-2559. [PMID: 39982474 DOI: 10.1021/acs.jpcb.4c08275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A considerable effort has been expended over the years to tune the properties of ionic liquids (ILs) by designing cations, anions, and pendant groups on the ions. A simple and effective approach to altering the properties of ILs is formulating IL-IL mixtures. However, the measurements and properties of such mixtures lag considerably behind those of pure ILs. From a molecular simulation point of view, binary IL mixtures have been investigated using charge distributions of pure ILs, which implicitly assumes that the ions of different polarizability do not influence the local electronic environment due to changing concentrations. To understand this effect, molecular dynamics (MD) simulations were conducted for a series of IL-IL mixtures containing the common cation 1-ethyl-3-methylimidazolium [C2mim] varying the composition of various combinations of anions (tetrafluoroborate [BF4] and dicyanamide [DCA], [BF4] and bis(trifluoromethanesulfonyl)imide [NTF2], [BF4] and trifluoromethanesulfonate [TFO], and [TFO] and [NTF2]). The effect of changing the electronic environment was evaluated by deriving partial charges using density functional theory (DFT) calculations in the condensed phase. It was observed that the overall charge on the cation and anion was a function of the cation-anion pairings for pure ILs. Moreover, the cation charge was found to vary linearly with anionic concentrations. Improved agreement of predicted density and ionic conductivity with experimental values was found for binary IL mixtures with this approach, in comparison to that when a fixed charge model is employed.
Collapse
Affiliation(s)
- Ashutosh Kumar Verma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Amey S Thorat
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jindal K Shah
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
5
|
Walker T, Vuong V, Irle S, Ma J. Evaluation of Density-Functional Tight-Binding Methods for Simulation of Protic Molecular Ion Pairs. J Comput Chem 2025; 46:e70064. [PMID: 39945524 PMCID: PMC11823592 DOI: 10.1002/jcc.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/26/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
In this work, we benchmark the accuracy of the density-functional tight-binding (DFTB) method, namely the long-range corrected second-order (LC-DFTB2) and third-order (DFTB3) models, for predicting energetics of imidazolium-based ionic liquid (IL) ion pairs. We compare the DFTB models against popular density functionals such as LC-ωPBE and B3LYP, using ab initio domain-based local pair-natural orbital coupled cluster (DLPNO-CC) energies as reference. Calculations were carried out in the gas phase, as well as in aqueous solution using implicit solvent methods. We find that the LC-DFTB2 model shows excellent performance in the gas phase and agrees well with reference energies in implicit solvent, often outperforming DFTB3 predictions for complexation energetics. Our study identifies a range of opportunities for use of the LC-DFTB method and quantifies its sensitivity to protonation states and the types of chemical interactions between ion pairs.
Collapse
Affiliation(s)
- Tyler Walker
- Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Van‐Quan Vuong
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| | - Stephan Irle
- Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Jihong Ma
- Department of Mechanical EngineeringUniversity of VermontBurlingtonVermontUSA
- Department of PhysicsUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
6
|
Liu X, Ma X, Liu J, Zhang B, Wang X, Yang J, Hou K, Shi Y, Chen H. Molecular dynamics investigation of IEPOX chemical behavior at the interface and in the bulk phase of acidic aerosols. CHEMOSPHERE 2024; 367:143586. [PMID: 39433101 DOI: 10.1016/j.chemosphere.2024.143586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Isoprene epoxydiol (IEPOX) is an important reactive gas-phase intermediate produced by the photooxidation of isoprene under low NOx conditions, playing a key role in the formation of secondary organic aerosols (SOA). Previous studies have mostly focused on the liquid-phase reactions of IEPOX within aerosols; however, interfacial heterogeneous chemical reactions are equally important in SOA formation. This study systematically explores the reaction mechanisms of IEPOX at the acidic aerosol interface and in the bulk phase using classical molecular dynamics (MD) and ab initio molecular dynamics simulations (AIMD). The study found that the free energy of IEPOX at the aerosol interface significantly decreases, indicating that interfacial heterogeneous chemical reactions are indispensable for the formation of IEPOX-derived SOA. The research reveals the formation pathways of 2-methyltetrols (2-MTO) and 1,3,4-trihydroxy-3-methylbutan-2-yl sulfates (2-MTOOS), finding that the protonation of the epoxy O atom and the cleavage of the C-O bond are the rate-controlling steps, while the nucleophilic addition is a spontaneous process. Through multiple sets of simulations, it was observed that the formation frequency of 2-MTO at the acidic aerosol interface and in the bulk phase reached 53.8%, significantly higher than the 30.8% of 2-MTOOS, which is consistent with field observation data. Additionally, through metadynamics (MTD) simulations, it was suggested that IEPOX could undergoes acid-catalyzed ring-opening reactions at the interface, potentially followed by the transfer of H atoms from primary alcohols into the aerosol, leading to the possible formation of the intermediate product 3-methylbut-3-ene-1,2,4-triol (one of the proposed structures of C5-alkene triols). These findings provide new insights into the formation mechanism of IEPOX-derived SOA and offer a scientific basis for future studies on their physicochemical properties and atmospheric fate.
Collapse
Affiliation(s)
- Xihong Liu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Xiaohui Ma
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Jiale Liu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Xi Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Jiaoxue Yang
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| | - Kunjie Hou
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yahui Shi
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
7
|
Pierini A, Piacentini V, Gómez‐Urbano JL, Balducci A, Brutti S, Bodo E. A Polarizable Forcefields for Glyoxal Acetals as Electrolyte Components for Lithium-Ion Batteries. ChemistryOpen 2024; 13:e202400134. [PMID: 39086036 PMCID: PMC11564869 DOI: 10.1002/open.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
In this work we have derived the parameters of an AMOEBA-like polarizable forcefield for electrolytes based on tetramethoxy and tetraethoxy-glyoxal acetals, and propylene carbonate. The resulting forcefield has been validated using both ab-initio data and the experimental properties of the fluids. Using molecular dynamics simulations, we have investigated the structural features and the solvation properties of both the neat liquids and of the corresponding 1 M LiTFSI electrolytes at the molecular level. We present a detailed analysis of the Li ion solvation shells, of their structure and highlight the different behavior of the solvents in terms of their molecular structure and coordinating features.
Collapse
Affiliation(s)
- Adriano Pierini
- Department of ChemistryUniversity of Rome La SapienzaP. Aldo Moro 500185RomeItaly
| | - Vanessa Piacentini
- Department of ChemistryUniversity of Rome La SapienzaP. Aldo Moro 500185RomeItaly
| | - Juan Luis Gómez‐Urbano
- Institute for Technical Chemistry and Environmental ChemistryFriedrich-Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC)Friedrich-Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Andrea Balducci
- Institute for Technical Chemistry and Environmental ChemistryFriedrich-Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC)Friedrich-Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Sergio Brutti
- Department of ChemistryUniversity of Rome La SapienzaP. Aldo Moro 500185RomeItaly
- Istituto dei Sistemi ComplessiConsiglio Nazionale delle RicercheP. Aldo Moro 500185RomeItaly
| | - Enrico Bodo
- Department of ChemistryUniversity of Rome La SapienzaP. Aldo Moro 500185RomeItaly
| |
Collapse
|
8
|
Mondal J, Maji D, Mitra S, Biswas R. Temperature-Dependent Dielectric Relaxation Measurements of (Betaine + Urea + Water) Deep Eutectic Solvent in Hz-GHz Frequency Window: Microscopic Insights into Constituent Contributions and Relaxation Mechanisms. J Phys Chem B 2024; 128:6567-6580. [PMID: 38949428 DOI: 10.1021/acs.jpcb.4c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A combined experimental and simulation study of dielectric relaxation (DR) of a deep eutectic solvent (DES) composed of betaine, urea, and water with the composition [Betaine:Urea:Water = 11.7:12:1 (weight ratio) and 9:18:5 (molar ratio)] was performed to explore and understand the interaction and dynamics of this system. Temperature-dependent (303 ≤ T/K ≤ 343) measurements were performed over 9 decades of frequency, combining three different measurement setups. Measured DR, comprising four distinct steps with relaxation times spreading over a few picoseconds to several nanoseconds, was found to agree well with simulations. The simulated total DR spectra, upon dissection into three self (intraspecies) and three cross (interspecies) interaction contributions, revealed that the betaine-betaine self-term dominated (∼65%) the relaxation, while the urea-urea and water-water interactions contributed only ∼7% and ∼1%, respectively. The cross-terms (betaine-urea, betaine-water, and urea-water) together accounted for <30% of the total DR. The slowest DR component with a time constant of ∼1-10 ns derived dominant contribution from betaine-betaine interactions, where betaine-water and urea-water interactions also contributed. The subnanosecond (0.1-0.6 ns) time scale originated from all interactions except betaine-water interaction. An extensive interaction of water with betaine and urea severely reduced the average number of water-water H-bonds (∼0.7) and heavily decreased the static dielectric constant of water in this DES (εs ∼ 2). Furthermore, simulated first rank collective single particle reorientational relaxations (C1(t)) and the structural H-bond fluctuation dynamics (CHB (t)) exhibited multiexponential kinetics with time scales that corresponded well with those found both in the simulated and measured DR.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Sudipta Mitra
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
9
|
Gousseva E, Towers Tompkins FK, Seymour JM, Parker LG, Clarke CJ, Palgrave RG, Bennett RA, Grau-Crespo R, Lovelock KRJ. Anion-Dependent Strength Scale of Interactions in Ionic Liquids from X-ray Photoelectron Spectroscopy, Ab Initio Molecular Dynamics, and Density Functional Theory. J Phys Chem B 2024; 128:5030-5043. [PMID: 38727250 PMCID: PMC11129296 DOI: 10.1021/acs.jpcb.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Using a combination of experiments and calculations, we have gained new insights into the nature of anion-cation interactions in ionic liquids (ILs). An X-ray photoelectron spectroscopy (XPS)-derived anion-dependent electrostatic interaction strength scale, determined using XPS core-level binding energies for IL cations, is presented here for 39 different anions, with at least 18 new anions included. Linear correlations of experimental XPS core-level binding energies for IL cations with (a) calculated core binding energies (ab initio molecular dynamics (AIMD) simulations were used to generate high-quality model IL structures followed by single-point density functional theory (DFT) to obtain calculated core binding energies), (b) experimental XPS core-level binding energies for IL anions, and (c) other anion-dependent interaction strength scales led to three main conclusions. First, the effect of different anions on the cation can be related to ground-state interactions. Second, the variations of anion-dependent interactions with the identity of the anion are best rationalized in terms of electrostatic interactions and not occupied valence state/unoccupied valence state interactions or polarizability-driven interactions. Therefore, the XPS-derived anion-dependent interaction strength scale can be explained using a simple electrostatic model based on electrostatic site potentials. Third, anion-probe interactions, irrespective of the identity of the probe, are primarily electrostatic, meaning that our electrostatic interaction strength scale captures some inherent, intrinsic property of anions independent of the probe used to measure the interaction strength scale.
Collapse
Affiliation(s)
| | | | - Jake M. Seymour
- Department
of Chemistry, University of Reading, Reading RG6 6DX, U.K.
| | - Lewis G. Parker
- Department
of Chemistry, University of Reading, Reading RG6 6DX, U.K.
| | - Coby J. Clarke
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Robert G. Palgrave
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Roger A. Bennett
- Department
of Chemistry, University of Reading, Reading RG6 6DX, U.K.
| | | | | |
Collapse
|
10
|
Mantha S, Glisman A, Yu D, Wasserman EP, Backer S, Wang ZG. Adsorption Isotherm and Mechanism of Ca 2+ Binding to Polyelectrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6212-6219. [PMID: 38497336 PMCID: PMC10976897 DOI: 10.1021/acs.langmuir.3c03640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Polyelectrolytes, such as poly(acrylic acid) (PAA), can effectively mitigate CaCO3 scale formation. Despite their success as antiscalants, the underlying mechanism of binding of Ca2+ to polyelectrolyte chains remains unresolved. Through all-atom molecular dynamics simulations, we constructed an adsorption isotherm of Ca2+ binding to sodium polyacrylate (NaPAA) and investigated the associated binding mechanism. We find that the number of calcium ions adsorbed [Ca2+]ads to the polymer saturates at moderately high concentrations of free calcium ions [Ca2+]aq in the solution. This saturation value is intricately connected with the binding modes accessible to Ca2+ ions when they bind to the polyelectrolyte chain. We identify two dominant binding modes: the first involves binding to at most two carboxylate oxygens on a polyacrylate chain, and the second, termed the high binding mode, involves binding to four or more carboxylate oxygens. As the concentration of free calcium ions [Ca2+]aq increases from low to moderate levels, the polyelectrolyte chain undergoes a conformational transition from an extended coil to a hairpin-like structure, enhancing the accessibility to the high binding mode. At moderate concentrations of [Ca2+]aq, the high binding mode accounts for at least one-third of all binding events. The chain's conformational change and its consequent access to the high binding mode are found to increase the overall Ca2+ ion binding capacity of the polyelectrolyte chain.
Collapse
Affiliation(s)
- Sriteja Mantha
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Alec Glisman
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Decai Yu
- Core
R&D, The Dow Chemical Company, 633 Washington St., Midland, Michigan 48674, United States
| | - Eric P. Wasserman
- Consumer
Solutions R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Scott Backer
- Consumer
Solutions R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Zhen-Gang Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Kostal V, Jungwirth P, Martinez-Seara H. Nonaqueous Ion Pairing Exemplifies the Case for Including Electronic Polarization in Molecular Dynamics Simulations. J Phys Chem Lett 2023; 14:8691-8696. [PMID: 37733610 PMCID: PMC10561266 DOI: 10.1021/acs.jpclett.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The inclusion of electronic polarization is of crucial importance in molecular simulations of systems containing charged moieties. When neglected, as often done in force field simulations, charge-charge interactions in solution may become severely overestimated, leading to unrealistically strong bindings of ions to biomolecules. The electronic continuum correction introduces electronic polarization in a mean-field way via scaling of charges by the reciprocal of the square root of the high-frequency dielectric constant of the solvent environment. Here, we use ab initio molecular dynamics simulations to quantify the effect of electronic polarization on pairs of like-charged ions in a model nonaqueous environment where electronic polarization is the only dielectric response. Our findings confirm the conceptual validity of this approach, underlining its applicability to complex aqueous biomolecular systems. Simultaneously, the results presented here justify the potential employment of weaker charge scaling factors in force field development.
Collapse
Affiliation(s)
- Vojtech Kostal
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Rezaei M, Sakong S, Groß A. Molecular Modeling of Water-in-Salt Electrolytes: A Comprehensive Analysis of Polarization Effects and Force Field Parameters in Molecular Dynamics Simulations. J Chem Theory Comput 2023; 19:5712-5730. [PMID: 37528639 DOI: 10.1021/acs.jctc.3c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Accurate modeling of highly concentrated aqueous solutions, such as water-in-salt (WiS) electrolytes in battery applications, requires proper consideration of polarization contributions to atomic interactions. Within the force field molecular dynamics (MD) simulations, the atomic polarization can be accounted for at various levels. Nonpolarizable force fields implicitly account for polarization effects by incorporating them into their van der Waals interaction parameters. They can additionally mimic electron polarization within a mean-field approximation through ionic charge scaling. Alternatively, explicit polarization description methods, such as the Drude oscillator model, can be selectively applied to either a subset of polarizable atoms or all polarizable atoms to enhance simulation accuracy. The trade-off between simulation accuracy and computational efficiency highlights the importance of determining an optimal level of accounting for atomic polarization. In this study, we analyze different approaches to include polarization effects in MD simulations of WiS electrolytes, with an example of a Na-OTF solution. These approaches range from a nonpolarizable to a fully polarizable force field. After careful examination of computational costs, simulation stability, and feasibility of controlling the electrolyte properties, we identify an efficient combination of force fields: the Drude polarizable force field for salt ions and non-polarizable models for water. This cost-effective combination is sufficiently flexible to reproduce a broad range of electrolyte properties, while ensuring simulation stability over a relatively wide range of force field parameters. Furthermore, we conduct a thorough evaluation of the influence of various force field parameters on both the simulation results and technical requirements, with the aim of establishing a general framework for force field optimization and facilitating parametrization of similar systems.
Collapse
Affiliation(s)
- Majid Rezaei
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, 89081 Ulm, Germany
| | - Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, 89081 Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, 89081 Ulm, Germany
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89069 Ulm, Germany
| |
Collapse
|
13
|
Kubař T, Elstner M, Cui Q. Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines. Annu Rev Biophys 2023; 52:525-551. [PMID: 36791746 PMCID: PMC10810093 DOI: 10.1146/annurev-biophys-111622-091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy. Using several recent examples, we illustrate the value and limitations of QM/MM methodologies for both ground and excited states, as well as strategies for calibrating them in specific applications. We conclude with brief comments on several areas that can benefit from further efforts to make QM/MM analyses more quantitative and applicable to increasingly complex biological problems.
Collapse
Affiliation(s)
- T Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany;
| | - M Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany;
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany;
| | - Q Cui
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Molecular modelling of ionic liquids: Perfluorinated anionic species with enlarged halogen substitutions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Molecular modelling of ionic liquids: Physical properties of species with extremely long aliphatic chains from a near-optimal regime. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Mistry A, Yu Z, Peters BL, Fang C, Wang R, Curtiss LA, Balsara NP, Cheng L, Srinivasan V. Toward Bottom-Up Understanding of Transport in Concentrated Battery Electrolytes. ACS CENTRAL SCIENCE 2022; 8:880-890. [PMID: 35912355 PMCID: PMC9335914 DOI: 10.1021/acscentsci.2c00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bottom-up understanding of transport describes how molecular changes alter species concentrations and electrolyte voltage drops in operating batteries. Such an understanding is essential to predictively design electrolytes for desired transport behavior. We herein advocate building a structure-property-performance relationship as a systematic approach to accurate bottom-up understanding. To ensure generalization across salt concentrations as well as different electrolyte types and cell configurations, the property-performance relation must be described using Newman's concentrated solution theory. It uses Stefan-Maxwell diffusivity, ij , to describe the role of molecular motions at the continuum scale. The key challenge is to connect ij to the structure. We discuss existing methods for making such a connection, their peculiarities, and future directions to advance our understanding of electrolyte transport.
Collapse
Affiliation(s)
- Aashutosh Mistry
- Chemical
Sciences and Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Zhou Yu
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brandon L. Peters
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chao Fang
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Joint Center
for Energy Storage Research, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Rui Wang
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Joint Center
for Energy Storage Research, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Larry A. Curtiss
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nitash P. Balsara
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Joint Center
for Energy Storage Research, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Lei Cheng
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Venkat Srinivasan
- Chemical
Sciences and Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
17
|
Ishii Y, Matubayasi N, Washizu H. Nonpolarizable Force Fields through the Self-Consistent Modeling Scheme with MD and DFT Methods: From Ionic Liquids to Self-Assembled Ionic Liquid Crystals. J Phys Chem B 2022; 126:4611-4622. [PMID: 35698025 DOI: 10.1021/acs.jpcb.2c02782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key to achieve the accuracy of molecular dynamics (MD) simulation is the set of force fields used to express the atomistic interactions. In particular, the electrostatic interaction remains the main issue for the precise simulation of various ionic soft materials from ionic liquids to their supramolecular compounds. In this study, we test the nonpolarizable force fields of ionic liquids (ILs) and self-assembled ionic liquid crystals (ILCs) for which the intermolecular charge transfer and intramolecular polarization are significant. The self-consistent modeling scheme is adopted to refine the atomic charges of ionic species in a condensed state through the use of density functional theory (DFT) under the periodic boundary condition. The atomic charges of the generalized amber force field (GAFF) are effectively updated to express the electrostatic properties of ionic molecules obtained by the DFT calculation in condensed phase, which improves the prediction accuracy of ionic conductivity with the obtained force field (GAFF-DFT). The derived DFT charges then suggest that the substitution of a hydrophobic liquid-crystalline moiety into IL-based cations enhances the charge localization of ionic groups in the amphiphilic molecules, leading to the amplification of the electrostatic interactions among the hydrophilic/ionic groups in the presence of hydrophobic moieties. In addition, we focus on an ion-conductive pathway hidden in the self-assembled nanostructure. The MD results indicate that the ionic groups of cation and anion interact strongly for keeping the bicontinuous nanosegregation of ionic nanochannel. The partial fractions of hydrophilic/ionic and hydrophobic nanodomains are then quantified with the volume difference from referenced IL systems, while the calculated ionic conductivity decreases in the self-assembled ILCs more than the occupied volume of ionic nanodomains. These analyses suggest that the mobility of ions in the self-assembled ILCs remains quite restricted even with small tetrafluoroborate anions because of strong attractive interaction among ionic moieties.
Collapse
Affiliation(s)
- Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Nobuyuki Matubayasi
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan.,Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
18
|
Szabadi A, Schröder C. Recent Developments in Polarizable Molecular Dynamics Simulations of Electrolyte Solutions. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022. [DOI: 10.1142/s2737416521420035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polarizable molecular dynamics simulations are a fast progressing field in the scientific research of ionic liquids. The fundamentals of polarizable simulations, as well as their application to ionic liquids, were summarized in a review [Bedrov, D.; Piquemal, J.-P.; Borodin, O.; MacKerell, Jr., A. D.; Roux, B.; Schröder, C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem. Rev. 2019, 119, 7940–7995] in 2019. Since then, new methods to treat intermolecular interaction of induced dipoles in these highly charged systems were developed. This concerns the damping of these interactions and additional charge transfer as well as the prediction of ionic materials with ultrahigh refractive indices. In addition to the progress of the polarizable force fields, also thermostats and barostats for polarizable simulations evolved recently.
Collapse
Affiliation(s)
- András Szabadi
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, A-1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, A-1090 Vienna, Austria
| |
Collapse
|
19
|
Shayestehpour O, Zahn S. Ion Correlation in Choline Chloride-Urea Deep Eutectic Solvent (Reline) from Polarizable Molecular Dynamics Simulations. J Phys Chem B 2022; 126:3439-3449. [PMID: 35500254 DOI: 10.1021/acs.jpcb.1c10671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, deep eutectic solvents (DESs) emerged as highly tunable and environmentally friendly alternatives to common ionic liquids and organic solvents. In this work, a polarizable model based on the CHARMM Drude polarizable force field is developed for a 1:2 ratio mixture of choline chloride/urea (reline) DES. To successfully reproduce the structure of the liquid as compared to first-principles molecular dynamics simulations, a damping factor was introduced to correct the observed over-binding between the chloride and the hydrogen bonding site of choline. Investigated radial distributions reveal the formation of hydrogen bonds between all the constituents of reline and similar interactions for chloride and urea's oxygen atoms, which could contribute to the melting point depression of the mixture. Predicted dynamic properties from our polarizable force field are in good agreement with experiments, showing significant improvements over nonpolarizable models. Similar to some ionic liquids, an oscillatory behavior in the velocity autocorrelation function of the anion is visible, which can be interpreted as a rattling motion of the lighter anion surrounded by the heavier cations. The obtained results for ionic conductivity of reline show some degree of correlated ion motion in this DES. However, a joint diffusion of ion pairs cannot be observed during the simulations.
Collapse
Affiliation(s)
- Omid Shayestehpour
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
20
|
Deng J, Cui Q. Electronic Polarization Is Essential for the Stabilization and Dynamics of Buried Ion Pairs in Staphylococcal Nuclease Mutants. J Am Chem Soc 2022; 144:4594-4610. [PMID: 35239338 PMCID: PMC9616648 DOI: 10.1021/jacs.2c00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Buried charged residues play important roles in the modulation of protein stabilities and conformational dynamics and make crucial contributions to protein functions. Considering the generally nonpolar nature of protein interior, a key question concerns the contribution of electronic polarization to the stabilization and properties of buried charges. We answer this question by conducting free energy simulations using the latest polarizable CHARMM force field based on Drude oscillators for a series of Staphylococcal nuclease mutants that involve a buried Glu-Lys pair in different titration states and orientations. While a nonpolarizable model suggests that the ionized form of the buried Glu-Lys pair is more than 40 kcal/mol less stable than the charge-neutral form, the two titration states are comparable in stability when electronic polarization is included explicitly, a result better reconcilable with available experimental data. Analysis of free energy components suggests that additional stabilization of the ionized Glu-Lys pair has contributions from both the enhanced salt-bridge strength and stronger interaction between the ion-pair and surrounding protein residues and penetrated water. Despite the stronger direct interaction between Glu and Lys, the ion-pair exhibits considerably larger and faster structural fluctuations when polarization is included, due to compensation of interactions in the cavity. Collectively, observations from this work provide compelling evidence that electronic polarization is essential to the stability, hydration, dynamics, and therefore function of buried charges in proteins. Therefore, our study advocates for the explicit consideration of electronic polarization for mechanistic and engineering studies that implicate buried charged residues, such as enzymes and ion transporters.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
21
|
MOLECULAR SIMULATIONS OF DEEP EUTECTIC SOLVENTS: A PERSPECTIVE ON STRUCTURE, DYNAMICS, AND PHYSICAL PROPERTIES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2022. [DOI: 10.1002/9781119625933.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Philippi F, Goloviznina K, Gong Z, Gehrke S, Kirchner B, Pádua AAH, Hunt PA. Charge transfer and polarisability in ionic liquids: a case study. Phys Chem Chem Phys 2022; 24:3144-3162. [PMID: 35040843 DOI: 10.1039/d1cp04592j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The practical use of ionic liquids (ILs) is benefiting from a growing understanding of the underpinning structural and dynamic properties, facilitated through classical molecular dynamics (MD) simulations. The predictive and explanatory power of a classical MD simulation is inextricably linked to the underlying force field. A key aspect of the forcefield for ILs is the ability to recover charge based interactions. Our focus in this paper is on the description and recovery of charge transfer and polarisability effects, demonstrated through MD simulations of the widely used 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] IL. We study the charge distributions generated by a range of ab initio methods, and present an interpolation method for determining atom-wise scaled partial charges. Two novel methods for determining the mean field (total) charge transfer from anion to cation are presented. The impact of using different charge models and different partial charge scaling (unscaled, uniformly scaled, atom-wise scaled) are compared to fully polarisable simulations. We study a range of Drude particle explicitly polarisable potentials and shed light on the performance of current approaches to counter known problems. It is demonstrated that small changes in the charge description and MD methodology can have a significant impact; biasing some properties, while leaving others unaffected within the structural and dynamic domains.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Kateryna Goloviznina
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Agílio A H Pádua
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Patricia A Hunt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.,School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
23
|
Velez C, Acevedo O. Simulation of deep eutectic solvents: Progress to promises. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caroline Velez
- Department of Chemistry University of Miami Coral Gables Florida USA
| | - Orlando Acevedo
- Department of Chemistry University of Miami Coral Gables Florida USA
| |
Collapse
|
24
|
Salehi HS, Moultos OA, Vlugt TJH. Interfacial Properties of Hydrophobic Deep Eutectic Solvents with Water. J Phys Chem B 2021; 125:12303-12314. [PMID: 34719232 PMCID: PMC8591605 DOI: 10.1021/acs.jpcb.1c07796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Hydrophobic deep
eutectic solvents (DESs) have recently gained
much attention as water-immiscible solvents for a wide range of applications.
However, very few studies exist in which the hydrophobicity of these
DESs is quantified. In this work, the interfacial properties of hydrophobic
DESs with water were computed at various temperatures using molecular
dynamics simulations. The considered DESs were tetrabutylammonium
chloride–decanoic acid (TBAC–dec) with a molar ratio
of 1:2, thymol–decanoic acid (Thy–dec) with a molar
ratio of 1:2, and dl-menthol–decanoic acid (Men–dec)
with a molar ratio of 2:1. The following properties were investigated
in detail: interfacial tensions, water-in-DES solubilities (and salt-in-water
solubilities for TBAC–dec/water), density profiles, and the
number densities of hydrogen bonds. Different ionic charge scaling
factors were used for TBAC–dec. Thy–dec and Men–dec
showed a high level of hydrophobicity with negligible computed water-in-DES
solubilities. For charge scaling factors of 0.7 and 1 for the thymol
and decanoic acid components of Thy–dec, the computed interfacial
tensions of the DESs are in the following order: TBAC–dec (ca.
4 mN m–1) < Thy–dec (20 mN m–1) < Men–dec (26 mN m–1). The two sets
of charge scaling factors for Thy–dec did not lead to different
density profiles but resulted in considerable differences in the DES/water
interfacial tensions due to different numbers of decanoic acid–water
hydrogen bonds at the interfaces. Large peaks were observed for the
density profiles of (the hydroxyl oxygen of) decanoic acid at the
interfaces of all DES/water mixtures, indicating a preferential alignment
of the oxygen atoms of decanoic acid toward the aqueous phase.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
25
|
Saielli G. The effect of hydration on the stability of ionic liquid crystals: MD simulations of [C 14C 1im]Cl and [C 14C 1im]Cl·H 2O. Phys Chem Chem Phys 2021; 23:24386-24395. [PMID: 34676847 DOI: 10.1039/d1cp03757a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thermal range of the stability of Ionic Liquid Crystal (ILC) phases of imidazolium ILCs, and the type of the mesophase itself are affected by several molecular structural features, the two prominent ones being the alkyl chain length and the counter-anion. Hydration is also very important: monohydrate samples of 1-alkyl-3-methylimidazolium halides have a higher clearing point and a wider thermal range of the stability of the ionic smectic phase, compared with the analogous anhydrous sample. To understand the reasons, at a microscopic level, for such increased stability due to hydration, we run classical Molecular Dynamics (MD) simulations of a typical ionic liquid crystal, 1-tetradecyl-3-methylimidazolium chloride, and of its monohydrate form. We tested a full-charge non-polarizable force field and a scaled-charge version having the total charge of the ions scaled by a factor of 0.80. Comparison of the structural and dynamic properties with available experimental data reveals that the scaling of the charge by a factor of 0.80 results in a good agreement between simulated and experimental data and it sheds light on the microscopic mechanism responsible for the increased stability of the monohydrated phase. A hydrogen-bond network between water and the chloride anion is established in the ionic layer which increases the stability of the ionic layer; this in turn increases the nano-segregation between the ionic and hydrophobic layers which eventually produce an increased order of the alkylic layer as well.
Collapse
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology, Padova Section, Via Marzolo, 1-35131 Padova, Italy. .,Department of Chemical Sciences, University of Padova, Via Marzolo, 1-35131 - Padova, Italy
| |
Collapse
|
26
|
Goloviznina K, Gong Z, Padua AAH. The
CL
&Pol polarizable force field for the simulation of ionic liquids and eutectic solvents. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Zheng Gong
- Laboratoire de Chimie École Normale Supérieure de Lyon & CNRS Lyon France
| | - Agilio A. H. Padua
- Laboratoire de Chimie École Normale Supérieure de Lyon & CNRS Lyon France
| |
Collapse
|
27
|
Jeong KJ, McDaniel JG, Yethiraj A. Deep Eutectic Solvents: Molecular Simulations with a First-Principles Polarizable Force Field. J Phys Chem B 2021; 125:7177-7186. [PMID: 34181852 DOI: 10.1021/acs.jpcb.1c01692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The unique properties of deep eutectic solvents make them useful in a variety of applications. In this work we develop a first-principles force field for reline, which is composed of choline chloride and urea in the molar ratio 1:2. We start with the symmetry adapted perturbation theory (SAPT) protocol and then make adjustments to better reproduce the structure and dynamics of the liquid when compared to first-principles molecular dynamics (FPMD) simulations. The resulting force field is in good agreement with experiments in addition to being consistent with the FPMD simulations. The simulations show that primitive molecular clusters are preferentially formed with choline-chloride ionic pairs bound with a hydrogen bond in the hydroxyl group and that urea molecules coordinate the chloride mainly via the trans-H chelating hydrogen bonds. Incorporating polarizability qualitatively influences the radial distributions and lifetimes of hydrogen bonds and affects long-range structural order and dynamics. The polarizable force field predicts a diffusion constant about an order of magnitude larger than the nonpolarizable force field and is therefore less computationally intensive. We hope this study paves the way for studying complex hydrogen-bonding liquids from a first-principles approach.
Collapse
Affiliation(s)
- Kyeong-Jun Jeong
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Avula NVS, Karmakar A, Kumar R, Balasubramanian S. Efficient Parametrization of Force Field for the Quantitative Prediction of the Physical Properties of Ionic Liquid Electrolytes. J Chem Theory Comput 2021; 17:4274-4290. [PMID: 34097391 DOI: 10.1021/acs.jctc.1c00268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of transport properties of room-temperature ionic liquids from nonpolarizable force field-based simulations has long been a challenge. The uniform charge scaling method has been widely used to improve the agreement with the experiment by incorporating the polarizability and charge transfer effects in an effective manner. While this method improves the performance of the force fields, this prescription is ad hoc in character; further, a quantitative prediction is still not guaranteed. In such cases, the nonbonded interaction parameters too need to be refined, which requires significant effort. In this work, we propose a three-step semiautomated refinement procedure based on (1) atomic site charges obtained from quantum calculations of the bulk condensed phase; (2) quenched Monte Carlo optimizer to shortlist suitable force field candidates, which are then tested using pilot simulations; and (3) manual refinement to further improve the accuracy of the force field. The strategy is designed in a sequential manner with each step improving the accuracy over the previous step, allowing the users to invest the effort commensurate with the desired accuracy of the refined force field. The refinement procedure is applied on N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI), a front-runner as an electrolyte for electric double-layer capacitors and single-molecule-based devices. The transferability of the refined force field is tested on N,N-dimethyl-N-ethyl-N-methoxyethoxyethylammonium bis(trifluoromethanesulfonyl)imide (N112,2O2O1-TFSI). The refined force field is found to be better at predicting both structural and transport properties compared to the uniform charge scaling procedure, which showed a discrepancy in the X-ray structure factor. The refined force field showed quantitative agreement with structural (density and X-ray structure factor) and transport properties-diffusion coefficients, ionic conductivity, and shear viscosity over a wide temperature range, building a case for the wide adoption of the procedure.
Collapse
Affiliation(s)
- Nikhil V S Avula
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Anwesa Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Rahul Kumar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
29
|
Lytle TK, Muralidharan A, Yethiraj A. Why Lithium Ions Stick to Some Anions and Not Others. J Phys Chem B 2021; 125:4447-4455. [PMID: 33881867 DOI: 10.1021/acs.jpcb.1c01660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing battery electrolytes for lithium-ion batteries has been a topic of extensive research for decades. The ideal electrolyte must have a large conductivity as well as high Li+ transference number. The conductivity is very sensitive to the nature of the anions and dynamical correlations between ions. For example, lithium bis(trifluoromethane)sulfonimide (LiTFSI) has a large conductivity, but the chemically similar lithium trifluoromethanesulfonate (LiOTf) shows poor conductivity. In this work, we study the binding of Li+ to these anions in an ethylene carbonate (EC) solvent using enhanced sampling metadynamics. The evaluated free energies display a large dissociation barrier for LiOTf compared to LiTFSI, suggesting long-lived ion-pair formation in the former but not the latter. We probe these observations via unbiased molecular dynamics simulations and metadynamics simulations of TFSI with a hypothetical OTF-like partial charge model indicating an electrostatic origin for those differences. Our results highlight the deleterious impact of sulfonate groups in lithium-ion battery electrolytes and provide a new basis for the assessment of electrolyte designs.
Collapse
Affiliation(s)
- Tyler K Lytle
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ajay Muralidharan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Eisenhart AE, Beck TL. Quantum Simulations of Hydrogen Bonding Effects in Glycerol Carbonate Electrolyte Solutions. J Phys Chem B 2021; 125:2157-2166. [PMID: 33619965 DOI: 10.1021/acs.jpcb.0c10942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The need for environmentally friendly nonaqueous solvents in electrochemistry and other fields has motivated recent research into the molecular-level solvation structure, thermodynamics, and dynamics of candidate organic liquids. In this paper, we present the results of quantum density functional theory simulations of glycerol carbonate (GC), a molecule that has been proposed as a solvent for green industrial chemistry, nonaqueous alternatives for biocatalytic reactions, and liquid media in energy storage devices. We investigate the structure and dynamics of both the pure GC liquid and electrolyte solutions containing KF and KCl ion pairs. These simulations reveal the importance of hydrogen bonding that controls the structural and dynamic behavior of the pure liquid and ion association in the electrolyte solutions. The results illustrate the difficulties associated with classical modeling of complex organic solvents. The simulations lead to a better understanding of the underlying mechanisms behind the previously observed peculiar ion-specific behavior in GC electrolyte solutions.
Collapse
Affiliation(s)
- Andrew E Eisenhart
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Thomas L Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
31
|
Kobayashi T, Kraus H, Hansen N, Fyta M. Confined Ru‐catalysts in a Two‐phase Heptane/Ionic Liquid Solution: Modeling Aspects. ChemCatChem 2020. [DOI: 10.1002/cctc.202001596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takeshi Kobayashi
- Institute for Computational Physics University of Stuttgart Allmandring 3 Stuttgart 70569 Germany
| | - Hamzeh Kraus
- Institute of Thermodynamics and Thermal Process Engineering University of Stuttgart Pfaffenwaldring 9 Stuttgart 70569 Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering University of Stuttgart Pfaffenwaldring 9 Stuttgart 70569 Germany
| | - Maria Fyta
- Institute for Computational Physics University of Stuttgart Allmandring 3 Stuttgart 70569 Germany
| |
Collapse
|
32
|
Molecular simulation of the separation of toluene and p-xylene with the thermally-robust ionic liquid triphenyl-p-phenyl sulfonyl phenyl phosphonium. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Salehi HS, Hens R, Moultos OA, Vlugt TJ. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Li Z, Robertson LA, Shkrob IA, Smith KC, Cheng L, Zhang L, Moore JS, Z Y. Realistic Ion Dynamics through Charge Renormalization in Nonaqueous Electrolytes. J Phys Chem B 2020; 124:3214-3220. [PMID: 32207623 DOI: 10.1021/acs.jpcb.0c01197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While many practically important electrolytes contain lithium ions, interactions of these ions are particularly difficult to probe experimentally because of their small X-ray and neutron scattering cross sections and large neutron absorption cross sections. Molecular dynamics (MD) is a powerful tool for understanding the properties of nonaqueous electrolyte solutions from the atomic level, but the accuracy of this computational method crucially depends on the physics built into the classical force field. Here, we demonstrate that several force fields for lithium bistriflimide (LiTFSI) in acetonitrile yield a solution structure that is consistent with the neutron scattering experiments, yet these models produce dramatically different ion dynamics in solution. Such glaring discrepancies indicate that inadequate representation of long-range interactions leads to excessive ionic association and ion-pair clustering. We show that reasonable agreement with the experimental observations can be achieved by renormalization of the ion charges using a "titration" method suggested herewith. This simple modification produces realistic concentration dependencies for ionic diffusion and conductivity in <2 M solutions, without loss in quality for simulation of the structure.
Collapse
Affiliation(s)
- Zhixia Li
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Lily A Robertson
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Ilya A Shkrob
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Kyle C Smith
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Program of Computational Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Lei Cheng
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Materials Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Lu Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Jeffrey S Moore
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Y Z
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Program of Computational Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
35
|
Fajardo OY, Di Lecce S, Bresme F. Molecular dynamics simulation of imidazolium C nMIM-BF 4 ionic liquids using a coarse grained force-field. Phys Chem Chem Phys 2020; 22:1682-1692. [PMID: 31895366 DOI: 10.1039/c9cp05932f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids feature thermophysical properties that are of interest in solvents, energy storage materials and tunable lubrication applications. Here we use new Coarse Grained (CG) models to investigate the structure, dynamics and interfacial properties of the [C2-8MIM][BF4] family of ionic liquids (ILs). The simulated equation of state and diffusion coefficients are in good agreement with experimental data and with all-atom force-fields. We quantify the nano-structure and liquid-vapour interfacial properties of the ILs as a function of the size of the imidazolium cation. The computational efficiency of the CG models enables the simulation of very long time scales (100's of nanoseconds), which are needed to resolve the dynamic and interfacial properties of ILs containing cations with long aliphatic chains. For [C>4MIM] [BF4] the break in symmetry associated to the liquid-vapour interface induces nanostructuring of polar and non-polar domains in the direction perpendicular to the interface plane, with the inhomogeneous regions penetrating deep inside the bulk liquid, typically 5 nm for C8MIM cations.
Collapse
Affiliation(s)
- Oscar Y Fajardo
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, W12 0BZ, London, UK.
| | - Silvia Di Lecce
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, W12 0BZ, London, UK.
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, W12 0BZ, London, UK.
| |
Collapse
|
36
|
Ishii Y, Matubayasi N. Self-Consistent Scheme Combining MD and Order- N DFT Methods: An Improved Set of Nonpolarizable Force Fields for Ionic Liquids. J Chem Theory Comput 2019; 16:651-665. [PMID: 31873016 DOI: 10.1021/acs.jctc.9b00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nonpolarizable force field of ionic liquids is tuned by using the self-consistent scheme of molecular dynamics (MD) simulation and first-principles calculation based on the order-N density functional theory (DFT). The atomic charges are determined by using the whole MD cell for DFT calculation and accounts effectively for the many-body effects of charge transfer and intramolecular polarization. The charges represent effective interactions in the condensed phase within the framework of the nonpolarizable force field and can be an alternative for an explicitly many-body model incorporating, for example, polarizability. Here we demonstrate the performance of nonpolarizable force field determined with the MD-DFT self-consistent scheme in imidazolium-, pyrrolidinium-, and ammonium-based ionic liquids. The variation ranges of molecular charges are much larger with the compositions of the ionic liquid than with the thermodynamic conditions, and the charge-ordering structures become systematically weaker with the effective charges. For energetic properties, while the calculated heat of vaporization depends on the atomic and molecular charges, the corresponding heat capacity is not strongly affected by the DFT-based variation. For transport properties, the self-diffusion coefficient, electrical conductivity, and viscosity vary much more in the self-consistent scheme. The effective DFT charge is observed to enhance the fluidity of ionic liquids and improve the accuracy of electrical conductivity and viscosity. This is due to the weakened interactions among the ions, and the too slow motions observed with a full-charge model are well corrected through the iteration of MD and DFT. We therefore conclude that the set of nonpolarizable force fields obtained with the MD-DFT self-consistent scheme leads to better description of transport properties of ionic liquids.
Collapse
Affiliation(s)
- Yoshiki Ishii
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan.,Elements Strategy Initiative for Catalysts and Batteries , Kyoto University , Katsura , Kyoto 615-8520 , Japan
| |
Collapse
|