1
|
Gao Z, Qiu R, Dave DR, Chandravanshi P, Soares GP, Smith CS, Ortega JA, Palmer LC, Álvarez Z, Stupp SI. Supramolecular Copolymerization of Glycopeptide Amphiphiles and Amyloid Peptides Improves Neuron Survival. J Am Chem Soc 2025; 147:17710-17724. [PMID: 40365999 DOI: 10.1021/jacs.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis are characterized by progressive neuronal loss and the accumulation of misfolded proteins including amyloid proteins. Current therapeutic options include the use of antibodies for these proteins, but novel chemical strategies need to be developed. The disaccharide trehalose has been widely reported to prevent misfolding and aggregation of proteins, and we therefore investigated the conjugation of this moiety to biocompatible peptide amphiphiles (TPAs) known to undergo supramolecular polymerization. Using X-ray scattering, circular dichroism, and infrared spectroscopy, we found that trehalose conjugation destabilized the internal β-sheet structures within the TPA supramolecular polymers as evidenced by a lower thermal transition. Thioflavin T fluorescence showed that these metastable TPA nanofibers suppressed A42 aggregation. Interestingly, we found that the suppression involved supramolecular copolymerization of TPA polymers with Aβ42, which effectively trapped the peptides within the filamentous structures. In vitro assays with human induced pluripotent stem cell-derived neurons demonstrated that these TPAs significantly improved neuron survival compared to other conditions. Our study highlights the potential of properly tuned supramolecular polymerizations of monomers to safely remove amyloidogenic proteins in neurodegeneration.
Collapse
Affiliation(s)
- Zijun Gao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dhwanit R Dave
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Gisele P Soares
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Neurodevelopmental Disorders Group, NeuroBell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Cara S Smith
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Neurodevelopmental Disorders Group, NeuroBell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Wang J, Bi J, Wang F, Lyu J. Effect of osmotic dehydration with binary/ternary sugar solutes on macro-& micro-structure, chromaticity and thermal stability of dehydrated peach slices prepared by heat pump drying. Food Chem 2025; 468:142487. [PMID: 39706120 DOI: 10.1016/j.foodchem.2024.142487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The binary solution (sucrose/erythritol solution) and ternary solution (compound sucrose/erythritol with maltitol/fructooligosaccharide) were prepared as osmotic dehydration (OD) pretreatment before hot-pump-dried (HPD). Based on the analysis of OD solutions, the analysis of quality of dehydrated yellow peach slices (DYPS) were emphasized on the soluble sugar content, macro-µ-structure and thermal stability. Following with sucrose and maltitol (SM)-OD pretreatment, DYPS showed the decreased free sugar content and improved cohesiveness (0.85 ± 0.01) and springiness (97.92 ± 1.47 mm). Moreover, the highest L* value (71.35 ± 4.39) observed in Erythritol group was related to the sugar layer on the DYPS surface. The biggest b* (44.41 ± 3.63) value was observed in EM group, which was in line with the high content of carotenoids (24.52 ± 1.84 μg/mL). However, no significant differences were observed in total phenol content of DYPS with various pretreatments. The penetration of sucrose compounded with maltitol into DYPS tissue supported the homogeneous and regular cellular arrangement, which improved thermal stability of cell wall polysaccharides. As a whole, SM was expected to be the promising ternary osmotic solution for DYPS.
Collapse
Affiliation(s)
- Jingxuan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinfeng Bi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Fengzhao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jian Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
3
|
Basu J, Soni A, Athale CA. Physical effects of crowdant size and concentration on collective microtubule polymerization. Biophys J 2025; 124:789-806. [PMID: 39885688 PMCID: PMC11897549 DOI: 10.1016/j.bpj.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
The polymerization of cytoskeletal filaments is regulated by both biochemical pathways, as well as physical factors such as crowding. The effect of crowding in vivo emerges from the density of intracellular components. Due to the complexity of the intracellular environment, most studies are based on either in vitro reconstitution or theory. Crowding agent (crowdants) size has been shown to influence polymerization of both actin and microtubules (MTs). Previously, the elongation rates of MT dynamics observed at single filament scale were reported to decrease with increasing concentrations of small but not large crowdants, and this correlated with in vivo viscosity increases. However, the exact nature of the connection between viscosity, crowdant size, nucleation, and MT elongation has remained unclear. Here, we use in vitro reconstitution of bulk MT polymerization kinetics and microscopy to examine the collective effect of crowdant molecular weight, volume occupancy, and viscosity on elongation and spontaneous polymerization. We find MT elongation rates obtained from bulk polymerization decrease in the presence of multiple low-molecular weight (LMW) crowdants, while increasing with high-molecular weight (HMW) crowdants. Lattice Monte Carlo simulations of an effective model of collective polymerization demonstrate reduced polymerization rates arise due to decrease in monomer diffusion due to small-sized crowdants. However, MT polymerization in the absence of nucleators, de novo, shows a crowdant size independence of polymerization rate and critical concentration, depending solely on concentration of the crowdant. In microscopy, we find LMW crowdants result in short but many filaments, while HMW crowdants increase filament density, but have little effect on lengths. The effect of crowdant volume fraction ϕC and size in de novo polymerization match simulations, demonstrating crowdants affect elongation independent of nucleation. Thus, the effect of viscosity on collective MT dynamics, i.e., filament numbers and lengths, shows crowdant size dependence for elongation, but independence for de novo polymerization.
Collapse
Affiliation(s)
- Jashaswi Basu
- Division of Biology, IISER Pune, Pashan, Pune, India
| | - Aman Soni
- Division of Biology, IISER Pune, Pashan, Pune, India
| | | |
Collapse
|
4
|
Viana JVDS, Oliveira LRMD, Rodrigues LLV, Moura YBF, Pereira ABM, Alves PV, Silva HVR, Pereira AF. No synergistic effect of extracellular cryoprotectants with dimethyl sulfoxide in the conservation of northern tiger cat fibroblasts. Cryobiology 2025; 118:105169. [PMID: 39577602 DOI: 10.1016/j.cryobiol.2024.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The success of somatic cell cryobanks is dependent on establishing reproducible cryopreservation methodologies. We supposed that associated extracellular cryoprotectants (sucrose and L-proline) with 2.5 or 10 % dimethyl sulfoxide (Me2SO) could guarantee better northern tiger cat cells quality rates after thawing when compared to Me2SO alone. Therefore, we evaluated the effects of sucrose or L-proline with 2.5 or 10 % Me2SO on the cryopreservation of northern tiger cat fibroblasts. Somatic cells were also cryopreserved with 2.5 % or 10 % Me2SO alone. All cells were analyzed for morphology, membrane integrity, proliferative activity, metabolism, apoptosis classification, reactive oxygen species (ROS) levels, and mitochondrial membrane potential (ΔΨm). Regardless of the cryoprotective solution, cryopreservation did not affect morphology, membrane integrity after culture, proliferative activity, and metabolism (P > 0.05). However, immediately after thawing, 2.5 % Me2SO with L-proline and 10 % Me2SO promoted higher rates of membrane integrity when compared to the other cryopreserved groups (P < 0.05). Interestingly, cells cryopreserved with 10 % Me2SO maintained ROS levels similar to non-cryopreserved cells (P > 0.05). However, the percentage of viable cells evaluated by apoptosis classification was reduced when using 10 % Me2SO with L-proline compared to non-cryopreserved groups (P < 0.05). Additionally, ΔΨm was altered in all cryopreserved groups (P < 0.05). In summary, sucrose and L-proline were less effective in cryopreservation of northern tiger cat fibroblasts in the presence of 2.5 % or 10 % Me2SO. Also, 10 % Me2SO appears to be the most suitable cryoprotectant for the formation of cryobanks of this species.
Collapse
Affiliation(s)
- João Vitor da Silva Viana
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, RN, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sayyad P, Jha S, Sharma R, Yadav V, Jain S. Unveiling the Potential of Nanosuspension Formulation Strategy for Improved Oral Bioavailability of Gefitinib. AAPS PharmSciTech 2025; 26:59. [PMID: 39930276 DOI: 10.1208/s12249-025-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025] Open
Abstract
Gefitinib (GB), an oral tyrosine kinase inhibitor suffers major setbacks in clinical application due to limited aqueous solubility leading to poor oral bioavailability. Nanosuspension serves as a promising formulation strategy to overcome the above-mentioned drawbacks. Hence, the present study involves the development of gefitinib nanosuspension (GB-NS) using High-pressure homogenization (HPH) to increase its aqueous solubility and maximize oral bioavailability. GB-NS was optimized by utilizing the quality-by-design strategy to optimize independent variables such as homogenization pressure, drug-to-stabilizer ratio, and number of cycles. Lecithin was found to stabilize the nanosuspension with optimal particle size, PDI, and zeta potential of 157 ± 18.77 nm, 0.296 ± 0.040, and -33.25 respectively. Intriguingly, a drug-to-stabilizer ratio significantly influenced (p < 0.005) particle size and PDI, establishing its crucial role in optimization. The morphological characterization by SEM of GB-NS revealed a rod-shaped structure. Thereafter, the thermal and powder X-ray analysis depicted the crystalline nature of gefitinib in GB-NS. Additionally, GB-NS exhibited enhanced saturation solubility (~ 2.4- and ~ 3.4-fold) and dissolution rate (~ 2.5- and ~ 3.5-fold) compared to pure GB in 0.1 N HCl and PBS 6.8 respectively. GB-NS remained stable under both storage conditions ( 25°C and 4°C). Finally, the pharmacokinetic study depicted a considerable increase in Cmax (~ 2.84-fold) and AUC(0-t) (~ 3.87-fold) of GB-NS when compared to free GB. Therefore, developed formulations showed a competent solution for enhancing the oral bioavailability of poor water-soluble drugs.
Collapse
Affiliation(s)
- Parvez Sayyad
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Shikha Jha
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
6
|
Płowaś-Korus I, Korus P, Buchner R. Cooperative Dynamics and Hydration of Aqueous D-Mannitol and myo-Inositol. J Phys Chem B 2025; 129:712-718. [PMID: 39753515 DOI: 10.1021/acs.jpcb.4c07344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The cooperative dynamics and hydration of D-mannitol and myo-inositol in aqueous solution at 25 °C were investigated by broad-band dielectric relaxation spectroscopy (DRS) for solute concentrations c < 0.9M. The recorded spectra, covering the frequency range 0.05 ≤ ν/GHz ≤ 50, can be described as a superposition of three Debye-type relaxation processes. The determined total effective hydration numbers, Zt, as well as the effective dipole moments, μeff, of D-mannitol and myo-inositol do not depend on solute concentration. The Zt values obtained for both sugar alcohols are significantly smaller than that of the previously studied xylitol. In contrast to aqueous xylitol, the dielectric spectra also showed no indication of the formation of D-mannitol or myo-inositol aggregates.
Collapse
Affiliation(s)
- Iwona Płowaś-Korus
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Paweł Korus
- GFT Poland, płk. Jana Kilińskiego 66, 90-118 Łódź, Poland
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
7
|
Ermilova I, Lyubartsev A, Kocherbitov V. Sucrose versus Trehalose: Observations from Comparative Study Using Molecular Dynamics Simulations. ACS OMEGA 2024; 9:46323-46338. [PMID: 39583685 PMCID: PMC11579781 DOI: 10.1021/acsomega.4c07314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Binary mixtures of sucrose and trehalose in water were investigated using classical molecular dynamics (MD) simulations and free energy calculations. By classical MD simulations, the behavior of sugars was studied across the entire range of concentrations, from 0 to 100 wt % of water. Sugar-sugar and sugar-water affinities in diluted systems were in focus when using umbrella sampling and well-tempered metadynamics calculations. Moreover, in classical MD simulations, two approaches for system equilibration were applied: in the first, mixtures were preheated (using simulated annealing) before simulations under desired conditions, while in the second, no preliminary heating was used. It was discovered that sucrose has a stronger tendency to aggregate than trehalose, while the latter forms more hydrogen bonds with water. Below the concentration of 10 wt % of water, the number of hydrogen bonds between sugars is higher than the number of hydrogen bonds between sugars and water. The free energy calculations and hydrogen bonding analysis reveal certain dissimilarities in the hydration of oxygen-containing molecular groups. While there are noticeable differences in the hydration of various hydroxyl groups in sucrose and trehalose, all hydroxyl groups are clearly more hydrated than the ether oxygens in both sugars. Three factors contribute to the lower hydration of ether oxygens: they do not donate hydrogen bonds, they are slightly less polar than the oxygen atoms in hydroxyl groups, and they are less accessible to the solvent. Moreover, hydroxyl groups play the main role in binding water, and the geometry of trehalose is energetically preferable compared to the geometry of sucrose. Effects of preheating were demonstrated at water concentrations below 70 wt %, with more significant differences between mixtures observed at water concentrations below 40 wt %. Disaccharides bind stronger to each other and weaker with water molecules in preheated systems than in mixtures that were not preheated. The hydroxyl groups of sucrose and trehalose in preheated mixtures rotate slower than in systems that did not undergo thermal treatment. Therefore, while preheating is not necessary for liquid solutions, it is vital for the equilibration of samples in their amorphous solid state. In the experimental community, these findings are relevant for decision-making when choosing one of the disaccharides as a preservative.
Collapse
Affiliation(s)
- Inna Ermilova
- Department
of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden
| | - Alexander Lyubartsev
- Department
of Materials and Environmental Chemistry, Stockholm’s University, SE-114 18 Stockholm, Sweden
| | - Vitaly Kocherbitov
- Department
of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, SE-205 06 Malmö, Sweden
| |
Collapse
|
8
|
Kaur A, Singh S, Sharma SC. Unlocking Trehalose's versatility: A comprehensive Journey from biosynthesis to therapeutic applications. Exp Cell Res 2024; 442:114250. [PMID: 39260672 DOI: 10.1016/j.yexcr.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
For over forty years, a sugar of rare configuration known as trehalose (two molecules of glucose linked at their 1-carbons), has been recognised for more than just its roles as a storage compound. The ability of trehalose to protect an extensive range of biological materials, for instance cell lines, tissues, proteins and DNA, has sparked considerable interest in the biotechnology and pharmaceutical industries. Currently, trehalose is now being investigated as a promising therapeutic candidate for human use, as it has shown potential to reduce disease severity in various experimental models. Despite its diverse biological effects, the precise mechanism underlying this observation remain unclear. Therefore, this review delves into the significance of trehalose biosynthesis pathway in the development of novel drug, investigates the inhibitors of trehalose synthesis and evaluates the binding efficiency of T6P with TPS1. Additionally, it also emphasizes the knowledge about the protective effect of trehalose on modulation of autophagy, combating viral infections, addressing the conditions like cancer and neurodegenerative diseases based on the recent advancement. Furthermore, review also highlight the trehalose's emerging role as a surfactant in delivering monoclonal antibodies that will further broadening its potential application in biomedicines.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | - Sukhwinder Singh
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
9
|
Espinoza Ballesteros M, Schöneich C. Near UV and Visible Light Photodegradation in Solid Formulations: Generation of Carbon Dioxide Radical Anions from Citrate Buffer and Fe(III). Mol Pharm 2024; 21:4618-4633. [PMID: 39110953 DOI: 10.1021/acs.molpharmaceut.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Near UV and visible light photodegradation can target therapeutic proteins during manufacturing and storage. While the underlying photodegradation pathways are frequently not well-understood, one important aspect of consideration is the formulation, specifically the formulation buffer. Citrate is a common buffer for biopharmaceutical formulations, which can complex with transition metals, such as Fe(III). In an aqueous solution, the exposure of such complexes to light leads to the formation of the carbon dioxide radical anion (•CO2-), a powerful reductant. However, few studies have characterized such processes in solid formulations. Here, we show that solid citrate formulations containing Fe(III) lead to the photochemical formation of •CO2-, identified through DMPO spin trapping and HPLC-MS/MS analysis. Factors such as buffers, the availability of oxygen, excipients, and manufacturing processes of solid formulations were evaluated for their effect on the formation of •CO2- and other radicals such as •OH.
Collapse
Affiliation(s)
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
10
|
Lupi L, Gallo P. Mode coupling behavior and fragile to strong transition of trehalose in a binary mixture with water upon supercooling. J Chem Phys 2024; 160:244501. [PMID: 38912627 DOI: 10.1063/5.0218369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
We perform molecular dynamics simulations of a binary mixture of water and trehalose with the TIP4P/Ice water model. We analyze the slow dynamics of trehalose molecules in the mildly supercooled region for concentrations of 3.66 and 18.57 wt. %. We previously studied the dynamics of water in the same mixtures. Supercooled TIP4P/Ice water solvating trehalose molecules was found to follow the Mode Coupling Theory (MCT) and to undergo a transition from a fragile to a strong behavior for both concentrations. Here, we show that also the dynamics of trehalose molecules follows the MCT and displays a fragile to strong crossover (FSC). The results show that trehalose in binary mixtures with water shares with it the dynamical behavior typical of glass forming liquids. Moreover, the FSC for trehalose structural relaxation times is found to occur at temperatures close to those previously obtained for water in the same solutions, showing that the dynamics of the solute is strongly coupled to that of the solvent. We also perform a MCT test showing that the trehalose dynamics obeys the MCT time-temperature superposition principle and that the exponents derived from the theory and the ones obtained from fitting procedure of the relaxation times are comparable, confirming that trehalose molecules in supercooled water solutions follow the MCT of glassy dynamics. Moreover, as predicted by the theory, trehalose particles have MCT parameters comparable to those of water in the same mixtures. This is an important result, given that MCT was originally formulated for monoatomic particles.
Collapse
Affiliation(s)
- Laura Lupi
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| |
Collapse
|
11
|
Ruiz-Matus S, Goldstein P. On the universality of viscosity in supersaturated binary aqueous sugar solutions: Cryopreservation by vitrification. Cryobiology 2024; 115:104886. [PMID: 38555011 DOI: 10.1016/j.cryobiol.2024.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Nowadays, the physical nature of supersaturated binary aqueous sugar solutions in the vicinity of the glass transition represents a very important issue due to their biological applications in cryopreservation of cells and tissues, food science and stabilization and storage of nano genetic drugs. We present the construction of the Supplemented Phase Diagram and the non-equilibrium nature of the undersaturated-supersaturated kinetic transition. The description of its thermodynamic nature is achieved through the study of behavior of their viscosity as temperature is lowered and concentration increased. In this work, we find a universal character for the viscosities of several sugar water solutions.
Collapse
Affiliation(s)
- Soledad Ruiz-Matus
- Department of Physics, Faculty of Science, National Autonomous University of México, 04510, Coyoacán, Ciudad de México, Mexico.
| | - Patricia Goldstein
- Department of Physics, Faculty of Science, National Autonomous University of México, 04510, Coyoacán, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Puente EG, Sivasankaran RP, Vinciguerra D, Yang J, Lower HAC, Hevener AL, Maynard HD. Uniform trehalose nanogels for glucagon stabilization. RSC APPLIED POLYMERS 2024; 2:473-482. [PMID: 38800515 PMCID: PMC11114568 DOI: 10.1039/d3lp00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 05/29/2024]
Abstract
Glucagon is a peptide hormone that acts via receptor-mediated signaling predominantly in the liver to raise glucose levels by hepatic glycogen breakdown or conversion of noncarbohydrate, 3 carbon precursors to glucose by gluconeogenesis. Glucagon is administered to reverse severe hypoglycemia, a clinical complication associated with type 1 diabetes. However, due to low stability and solubility at neutral pH, there are limitations in the current formulations of glucagon. Trehalose methacrylate-based nanoparticles were utilized as the stabilizing and solubilizing moiety in the system reported herein. Glucagon was site-selectively modified to contain a cysteine at amino acid number 24 to covalently attach to the methacrylate-based polymer containing pyridyl disulfide side chains. PEG2000 dithiol was employed as the crosslinker to form uniform nanoparticles. Glucagon nanogels were monitored in Dulbecco's phosphate-buffered saline (DPBS) pH 7.4 at various temperatures to determine its long-term stability in solution. Glucagon nanogels were stable up to at least 5 months by size uniformity when stored at -20 °C and 4 °C, up to 5 days at 25 °C, and less than 12 hours at 37 °C. When glucagon stability was studied by either HPLC or thioflavin T assays, the glucagon was intact for at least 5 months at -20 °C and 4 °C within the nanoparticles at -20 °C and 4 °C and up to 2 days at 25 °C. Additionally, the glucagon nanogels were studied for toxicity and efficacy using various assays in vitro. The findings indicate that the nanogels were nontoxic to fibroblast cells and nonhemolytic to red blood cells. The glucagon in the nanogels was as active as glucagon alone. These results demonstrate the utility of trehalose nanogels towards a glucagon formulation with improved stability and solubility in aqueous solutions, particularly useful for storage at cold temperatures.
Collapse
Affiliation(s)
- Ellie G Puente
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Rajalakshmi P Sivasankaran
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Daniele Vinciguerra
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Jane Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Haillie-Ann C Lower
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles Los Angeles CA USA
- Department of Medicine and VA Greater Los Angeles Healthcare System GRECC Los Angeles CA 90073 USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| |
Collapse
|
13
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Tristan Osanlóo D, Mahlin D, Bjerregaard S, Bergenståhl B, Millqvist-Fureby A. Formulation factors affecting foam properties during vacuum foam-drying. Int J Pharm 2024; 652:123803. [PMID: 38218506 DOI: 10.1016/j.ijpharm.2024.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
This paper explores how vacuum foam-drying of a protein is influenced by formulation parameters by investigating the foam structure, physical properties of the foam, and the stability of the protein. Recombinant human bile salt-stimulated lipase was used as a model of a protein drug. The stability of the lipase was evaluated through activity measurements. Two disaccharides (sucrose and trehalose), strongly tending to an amorphous form, were used as matrix formers, and the physical properties were assessed through residual water content, glass transition temperature, and crystalline state. Moreover, some formulations included surfactants with different sizes and structures of the head group. The alkyl chain length was kept constant to only investigate the impact of the surfactant head group, in the presence of the lipase, on the foamability and surface coverage of the lipase. The study demonstrated that the lipase allowed for a dry, solid foam with a foam overrun of up to 2600 %. The wall thickness of the dry, solid foam was estimated to be 20-50 µm. Clear differences between sucrose and trehalose as matrix former were identified. The lipase showed no tendency to lose activity because of the drying and rehydration, despite a proportion of the lipase covering the surfaces of the dry material.
Collapse
Affiliation(s)
- Daniel Tristan Osanlóo
- RISE Research Institutes of Sweden, Box 5604, Stockholm SE-114 86, Sweden; University of Lund, Department of Food Technology, Engineering, and Nutrition, Box 117, Lund SE-221 00, Sweden.
| | - Denny Mahlin
- RISE Research Institutes of Sweden, Box 5604, Stockholm SE-114 86, Sweden.
| | - Simon Bjerregaard
- Ferring Pharmaceuticals A/S, Amager Strandvej 405, Kastrup 2770, Denmark.
| | - Björn Bergenståhl
- University of Lund, Department of Food Technology, Engineering, and Nutrition, Box 117, Lund SE-221 00, Sweden.
| | - Anna Millqvist-Fureby
- RISE Research Institutes of Sweden, Box 5604, Stockholm SE-114 86, Sweden; University of Lund, Department of Food Technology, Engineering, and Nutrition, Box 117, Lund SE-221 00, Sweden.
| |
Collapse
|
15
|
Kang WY, Shin EK, Kim EH, Kang MH, Bang CY, Bang OY, Cha JM. Lyoprotectant Constituents Suited for Lyophilization and Reconstitution of Stem-Cell-Derived Extracellular Vesicles. Biomater Res 2024; 28:0005. [PMID: 38327614 PMCID: PMC10845601 DOI: 10.34133/bmr.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Stem-cell-derived extracellular vesicles (EVs) are emerging as an alternative approach to stem cell therapy. Successful lyophilization of EVs could enable convenient storage and distribution of EV medicinal products at room temperature for long periods, thus considerably increasing the accessibility of EV therapeutics to patients. In this study, we aimed to identify an appropriate lyoprotectant composition for the lyophilization and reconstitution of stem-cell-derived EVs. MSC-derived EVs were lyophilized using different lyoprotectants, such as dimethyl sulfoxide, mannitol, trehalose, and sucrose, at varying concentrations. Our results revealed that a mixture of trehalose and sucrose at high concentrations could support the formation of amorphous ice by enriching the amorphous phase of the solution, which successfully inhibited the acceleration of buffer component crystallization during lyophilization. Lyophilized and reconstituted EVs were thoroughly evaluated for concentration and size, morphology, and protein and RNA content. The therapeutic effects of the reconstituted EVs were examined using a tube formation assay with human umbilical vein endothelial cells. After rehydration of the lyophilized EVs, most of their generic characteristics were well-maintained, and their therapeutic capacity recovered to levels similar to those of freshly collected EVs. The concentrations and morphologies of the lyophilized EVs were similar to the initial features of the fresh EV group until day 30 at room temperature, although their therapeutic capacity appeared to decrease after 7 days. Our study suggests an appropriate composition of lyoprotectants, particularly for EV lyophilization, which could encourage the applications of stem-cell-derived EV therapeutics in the health industry.
Collapse
Affiliation(s)
- Wu Young Kang
- Department of Biomedical & Robotics Engineering, College of Engineering,
Incheon National University, Incheon 22012, Republic of Korea
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology,
Incheon National University, Incheon 22012, Republic of Korea
| | | | - Eun Hee Kim
- S&E bio Co., Ltd., Seoul 06351, Republic of Korea
| | - Min-Ho Kang
- Department of BioMedical-Chemical Engineering (BMCE),
The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology,
The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Chi Young Bang
- Department of Plastic and Reconstructive Surgery,
Kangwon National University Hospital, Chuncheon 24341, Republic of Korea
| | - Oh Young Bang
- S&E bio Co., Ltd., Seoul 06351, Republic of Korea
- Department of Neurology, Samsung Medical Center,
Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jae Min Cha
- Department of Biomedical & Robotics Engineering, College of Engineering,
Incheon National University, Incheon 22012, Republic of Korea
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology,
Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
16
|
Orhan F, Demirci A, Efe D, Aydın R, Bozarı S. Usage of ectoine as a cryoprotectant for cryopreservation of lactic acid bacteria. Folia Microbiol (Praha) 2024; 69:133-144. [PMID: 37917277 DOI: 10.1007/s12223-023-01098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Streptococcus thermophilus, the only Streptococcus species considered "Generally Recognized Safe", has been used widely in the food industry. This bacterium is one of the most valuable industrial lactic acid bacterial species. Due to the importance of this bacterium in industrial applications, it should be stored for a long time without losing its metabolic properties. The present study aimed to investigate the cryoprotectant effect of three compatible solutes (ectoine, trehalose, and sucrose) on bacterial cells stored at different temperatures (frozen at -80 °C or freeze-dried and subsequently stored at +4, -20, and -80 °C) for three months. The bacterial cells were tested for cell viability, bile salt tolerance, and lactic acid production before and after processing. The highest cell viability, bile salt tolerance, and lactic acid production were obtained with ectoine and under frozen (storage at -80 °C) conditions. In freeze-dried and subsequently stored at various temperatures, the best preservation was obtained at -80 °C, followed by -20 °C and +4 °C. Moreover, when ectoine's preservation potential was compared to other cryoprotectants, ectoine showed the highest preservation, followed by trehalose and sucrose. Although ectoine has a variety of qualities that have been proven, in the current work, we have shown for the first time that ectoine has cryoprotectant potential in yogurt starter cultures (S. thermophilus).
Collapse
Affiliation(s)
- Furkan Orhan
- Art and Science Faculty, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, Agri, 4100, Türkiye.
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 4100, Türkiye.
| | - Abdullah Demirci
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 4100, Türkiye
| | - Derya Efe
- Department of Medicinal and Aromatic Plants, Giresun University, Giresun, Türkiye
| | - Rukiye Aydın
- Engineering Faculty, Basic Sciences Department, Samsun University, Samsun, 55420, Türkiye
| | - Sedat Bozarı
- Department of Molecular Biology and Genetics, Mus Alparslan University, Mus, 49250, Türkiye
| |
Collapse
|
17
|
Eggers DK, Le JM, Nham NT, Pham DN, Castellano BM. Dual Effect of Secondary Solutes on Binding Equilibria: Contributions from Solute-Reactant Interactions and Solute-Water Interactions. ACS OMEGA 2024; 9:3017-3027. [PMID: 38250344 PMCID: PMC10795149 DOI: 10.1021/acsomega.3c09329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
This study examines the role of water in binding equilibria with a special focus on secondary solutes (cosolutes) that influence the equilibrium but are not constituents of the final product. Using a thermodynamic framework that includes an explicit term for the release of water molecules upon binding, this investigation reveals how solutes may alter equilibria by changing the activity of the reactants, reflected in ΔG°(obs), and by changing the chemical potential of the solvent, reflected in ΔGS. The framework is applied to four experimental binding systems that differ in the degree of electrostatic contributions. The model systems include the chelation of Ca2+ by EDTA and three host-guest reactions; the pairings of p-sulfonatocalix[4]arene with tetramethylammonium ion, cucurbit[7]uril with N-acetyl-phenylalanine-amide, and β-cyclodextrin with adamantane carboxylate are tested. Each reaction pair is examined by isothermal titration calorimetry at 25 °C in the presence of a common osmolyte, sucrose, and a common chaotrope, urea. Molar solutions of trehalose and phosphate were also tested with selected models. In general, cosolutes that enhance binding tend to reduce the solvation free energy penalty and cosolutes that weaken binding tend to increase the solvation free energy penalty. Notably, the nonpolar-nonpolar interaction between adamantane carboxylate and β-cyclodextrin is characterized by a ΔGS value near zero. The results with β-cyclodextrin, in particular, prompt further discussions of the hydrophobic effect and the biocompatible properties of trehalose. Other investigators are encouraged to test and refine the approach taken here to further our understanding of solvent effects on molecular recognition.
Collapse
Affiliation(s)
- Daryl K. Eggers
- Department of Chemistry, San José State University, San José, California 95192-0101, United
States
| | | | | | - Duc N. Pham
- Department of Chemistry, San José State University, San José, California 95192-0101, United
States
| | | |
Collapse
|
18
|
Jiménez-Amezcua I, López Martínez MI, Ruiz Matute AI, Sanz ML. Natural Deep Eutectic Solvents for Solubility and Selective Fractionation of Bioactive Low Molecular Weight Carbohydrates. Foods 2023; 12:4355. [PMID: 38231866 DOI: 10.3390/foods12234355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Natural deep eutectic solvents (NADESs) have been shown to be selective and environmentally friendly solvents for the extraction of bioactive compounds. However, studies on the solubility of low-molecular-weight carbohydrates (LMWCs) in NADESs are scarce. In this work, new solubility data of LMWCs in NADESs are provided and a new approach based on the use of these solvents for the efficient fractionation of bioactive carbohydrates was explored for the first time. Several mono- and disaccharides and three NADESs based on choline chloride (ChCl) and different donors (2-ethylene glycol (EtG), glycerol (Gly) and ethanedioic acid dihydrate (Eth)) were considered. While the degradation of carbohydrates, mainly ketoses, was detected with ChCl:Eth due to its acidic nature, ChCl:EtG and ChCl:Gly were found to be useful alternatives for selectively separating bioactive ketoses and their corresponding aldoses (e.g., lactulose/lactose and tagatose/galactose) present in equimolar binary mixtures. In addition, the usefulness of ChCl:EtG for the selective enrichment of lactulose to be used as food ingredient or nutraceutical was proven (from a 25% in the reaction mixture to a 56% in the purified sample). NADESs could be used for the selective fractionation of value-added carbohydrates from interfering sugars for several applications, including food science, engineering or pharmaceuticals.
Collapse
Affiliation(s)
- Ignacio Jiménez-Amezcua
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Pharmactive Biotech Products S.L.U., C/Faraday, 7, 28049 Madrid, Spain
| | | | - Ana Isabel Ruiz Matute
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Luz Sanz
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
19
|
Ahlgren K, Olsson C, Ermilova I, Swenson J. New insights into the protein stabilizing effects of trehalose by comparing with sucrose. Phys Chem Chem Phys 2023; 25:21215-21226. [PMID: 37534799 DOI: 10.1039/d3cp02639f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Disaccharides are well known to be efficient stabilizers of proteins, for example in the case of lyophilization or cryopreservation. However, although all disaccharides seem to exhibit bioprotective and stabilizing properties, it is clear that trehalose is generally superior compared to other disaccharides. The aim of this study was to understand this by comparing how the structural and dynamical properties of aqueous trehalose and sucrose solutions influence the protein myoglobin (Mb). The structural studies were based on neutron and X-ray diffraction in combination with empirical potential structure refinement (EPSR) modeling, whereas the dynamical studies were based on quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The results show that the overall differences in the structure and dynamics of the two systems are small, but nevertheless there are some important differences which may explain the superior stabilizing effects of trehalose. It was found that in both systems the protein is preferentially hydrated by water, but that this effect is more pronounced for trehalose, i.e. trehalose forms less hydrogen bonds to the protein surface than sucrose. Furthermore, the rotational motion around dihedrals between the two glucose rings of trehalose is slower than in the case of the dihedrals between the glucose and fructose rings of sucrose. This leads to a less perturbed protein structure in the case of trehalose. The observations indicate that an aqueous environment closest to the protein molecules is beneficial for an efficient bioprotective solution.
Collapse
Affiliation(s)
- Kajsa Ahlgren
- Division of Nano-Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
| | - Christoffer Olsson
- Division of Biomedical imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm SE-114 28, Sweden
| | - Inna Ermilova
- Division of Nano-Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
| | - Jan Swenson
- Division of Nano-Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
| |
Collapse
|
20
|
Miao H, Huang K, Li Y, Li R, Zhou X, Shi J, Tong Z, Sun Z, Yu A. Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA. Int J Pharm 2023; 640:123050. [PMID: 37201764 DOI: 10.1016/j.ijpharm.2023.123050] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Lipid nanoparticles (LNPs) have demonstrated efficacy and safety for mRNA vaccine administration by intramuscular injection; however, the pulmonary delivery of mRNA encapsulated LNPs remains challenging. The atomization process of LNPs will cause shear stress due to dispersed air, air jets, ultrasonication, vibrating mesh etc., leading to the agglomeration or leakage of LNPs, which can be detrimental to transcellular transport and endosomal escape. In this study, the LNP formulation, atomization methods and buffer system were optimized to maintain the LNP stability and mRNA efficiency during the atomization process. Firstly, a suitable LNP formulation for atomization was optimized based on the in vitro results, and the optimized LNP formulation was AX4, DSPC, cholesterol and DMG-PEG2K at a 35/16/46.5/2.5 (%) molar ratio. Subsequently, different atomization methods were compared to find the most suitable method to deliver mRNA-LNP solution. Soft mist inhaler (SMI) was found to be the best for pulmonary delivery of mRNA encapsulated LNPs. The physico-chemical properties such as size and entrapment efficiency (EE) of the LNPs were further improved by adjusting the buffer system with trehalose. Lastly, the in vivo fluorescence imaging of mice demonstrated that SMI with proper LNPs design and buffer system hold promise for inhaled mRNA-LNP therapies.
Collapse
Affiliation(s)
- Hao Miao
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Ke Huang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Yingwen Li
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou, 215000, China
| | - Renjie Li
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Xudong Zhou
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Jingyu Shi
- School of Energy and Environment, Southeast University, Nanjing, 210000, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215000 China
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing, 210000, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215000 China
| | - Zhenhua Sun
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou, 215000, China.
| | - Aibing Yu
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Southeast University-Monash University Joint Research Institute, Suzhou, 215000 China
| |
Collapse
|
21
|
Tran TT, Chua A, Pu S, Park JW, Hadinoto K. Maintaining supersaturation generation and protein integrity of amorphous curcumin-albumin nanoplex during storage by freeze drying with trehalose. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
22
|
Dietary Trehalose as a Bioactive Nutrient. Nutrients 2023; 15:nu15061393. [PMID: 36986123 PMCID: PMC10054017 DOI: 10.3390/nu15061393] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Trehalose is a naturally occurring, non-reducing disaccharide comprising two covalently-linked glucose molecules. It possesses unique physiochemical properties, which account for multiple biological roles in a variety of prokaryotic and eukaryotic organisms. In the past few decades, intensive research on trehalose has uncovered its functions, and extended its uses as a sweetener and stabilizer in the food, medical, pharmaceutical, and cosmetic industries. Further, increased dietary trehalose consumption has sparked research on how trehalose affects the gut microbiome. In addition to its role as a dietary sugar, trehalose has gained attention for its ability to modulate glucose homeostasis, and potentially as a therapeutic agent for diabetes. This review discusses the bioactive effects of dietary trehalose, highlighting its promise in future industrial and scientific contributions.
Collapse
|
23
|
Ćorković I, Rajchl A, Škorpilová T, Pichler A, Šimunović J, Kopjar M. Evaluation of Chokeberry/Carboxymethylcellulose Hydrogels with the Addition of Disaccharides: DART-TOF/MS and HPLC-DAD Analysis. Int J Mol Sci 2022; 24:ijms24010448. [PMID: 36613889 PMCID: PMC9820810 DOI: 10.3390/ijms24010448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
With the growing awareness of the importance of a healthy diet, the need for the development of novel formulations is also on the rise. Chokeberry products are popular among consumers since they are a rich source of polyphenols that are responsible for antioxidant activity and other positive effects on human health. However, other natural food ingredients, such as disaccharides, can affect their stability. The aim of this study was to investigate the influence of disaccharides addition on the polyphenol composition of chokeberry hydrogels. Hydrogels were prepared from chokeberry juice and 2% of carboxymethylcellulose (CMC) with the addition of 30%, 40%, or 50% of disaccharides (sucrose or trehalose). Samples were analyzed using DART-TOF/MS. The method was optimized, and the fingerprints of the mass spectra have been statistically processed using PCA analysis. Prepared samples were evaluated for total polyphenols, monomeric anthocyanins, and antioxidant activity (FRAP, CUPRAC, DPPH, ABTS assays) using spectrophotometric methods. Individual polyphenols were evaluated using HPLC-DAD analysis. Results showed the addition of disaccharides to 2% CMC hydrogels caused a decrease of total polyphenols. These findings confirm proper formulation is important to achieve appropriate retention of polyphenols.
Collapse
Affiliation(s)
- Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Aleš Rajchl
- Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Dejvice, 166 28 Prague, Czech Republic
| | - Tereza Škorpilová
- Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Dejvice, 166 28 Prague, Czech Republic
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-3122-4309
| |
Collapse
|
24
|
The influence of hydrogen bonds on the glass transition in amorphous binary systems. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Driscoll J, Yan IK, Patel T. Development of a Lyophilized Off-the-Shelf Mesenchymal Stem Cell-Derived Acellular Therapeutic. Pharmaceutics 2022; 14:pharmaceutics14040849. [PMID: 35456683 PMCID: PMC9030800 DOI: 10.3390/pharmaceutics14040849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
The therapeutic activities elicited by mesenchymal stem cells (MSC) are in part mediated through paracrine action by the release of extracellular vesicles (EV) and secreted proteins. Collectively, these MSC-derived factors, referred to as the secretome product (SP), are intrinsically therapeutic and represent an attractive alternative to cell-based therapies. Herein, we developed a lyopreservation protocol to extend the shelf-life of the MSC-SP without compromising the structural or functional integrity of the vesicular components. The SP isolated from normoxia- and anoxia-exposed MSC elicited protective effects in an in vitro model of oxidative injury and the bioactivity was retained in the lyophilized samples. Three separate formulations of MSC-SP were isolated by tangential flow filtration using sucrose, trehalose, and mannitol as lyoprotectant agents. The MSC-SPs were lyophilized using a manifold protocol and the structural and functional integrity were assessed. The trehalose formulation of SP exhibited the highest EV and protein recovery after manifold-based lyophilization. To facilitate development as a therapeutic, a shelf lyophilization protocol was developed which markedly enhanced the recovery of EV and proteins. In conclusion, lyophilization represents an efficient method to preserve the structural and functional integrity of the MSC-SP and can be used to develop an off-the-shelf therapeutic.
Collapse
Affiliation(s)
| | | | - Tushar Patel
- Correspondence: ; Tel.: +1-904-956-3257; Fax: +1-904-956-3359
| |
Collapse
|
26
|
Chen J, Ying X, Deng S, Li W, Peng L, Ma L. Trehalose and alginate oligosaccharides enhance the stability of myofibrillar proteins in shrimp (
Litopenaeus vannamei
) muscle during frozen storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiasheng Chen
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
| | - Xiaoguo Ying
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
| | - Shanggui Deng
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Wenjun Li
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 China
| | - Lukai Ma
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| |
Collapse
|
27
|
Influence of the Dispersion Medium and Cryoprotectants on the Physico-Chemical Features of Gliadin- and Zein-Based Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14020332. [PMID: 35214063 PMCID: PMC8878396 DOI: 10.3390/pharmaceutics14020332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The evaluation of the physico-chemical features of nanocarriers is fundamental because the modulation of these parameters can influence their biological and in vivo fate. This work investigated the feasibility of saline, 5% w/v glucose and phosphate-buffered saline solution, as polar media for the development of nanoparticles made up of two vegetal proteins, zein from corn and gliadin from wheat, respectively. The physico-chemical features of the various systems were evaluated using dynamic and multiple light scattering techniques, and the results demonstrate that the 5% w/v glucose solution is a feasible medium to be used for their development. Moreover, the best formulations were characterized by the aforementioned techniques following the freeze-drying procedure. The aggregation of the zein nanoparticles prepared in water or glucose solution was prevented by using various cryoprotectants. Mannose confirmed its crucial role in the cryopreservation of the gliadin nanosystems prepared in both water and glucose solution. Sucrose and glucose emerged as additional useful excipients when they were added to gliadin nanoparticles prepared in a 5% glucose solution. Specifically, their protective effect was in the following order: mannose > sucrose > glucose. The results obtained when using specific aqueous media and cryoprotectants permitted us to develop stable zein or gliadin nanoparticles as suspension or freeze-dried formulations.
Collapse
|
28
|
Shmool TA, Constantinou A, Jirkas A, Zhao C, Georgiou TK, Hallett J. Next Generation Strategy for Tuning the Thermoresponsive Properties of Micellar and Hydrogel Drug Delivery Vehicles Using Ionic Liquids. Polym Chem 2022. [DOI: 10.1039/d2py00053a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amongst the greatest challenges in developing injectable controlled thermoresponsive micellar and hydrogel drug delivery vehicles include tuning the cloud point (CP) and reducing the gelation temperature (Tgel), below 37 °C,...
Collapse
|
29
|
Conformational Consequences for Compatible Osmolytes on Thermal Denaturation. Life (Basel) 2021; 11:life11121394. [PMID: 34947925 PMCID: PMC8708791 DOI: 10.3390/life11121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Compatible osmolytes are a broad class of small organic molecules employed by living systems to combat environmental stress by enhancing the native protein structure. The molecular features that make for a superior biopreservation remain elusive. Through the use of time-resolved and steady-state spectroscopic techniques, in combination with molecular simulation, insight into what makes one molecule a more effective compatible osmolyte can be gained. Disaccharides differing only in their glycosidic bonds can exhibit different degrees of stabilization against thermal denaturation. The degree to which each sugar is preferentially excluded may explain these differences. The present work examines the biopreservation and hydration of trehalose, maltose, and gentiobiose.
Collapse
|
30
|
Wang Y, Milewska M, Foster H, Chapman R, Stenzel MH. The Core-Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules 2021; 22:4569-4581. [PMID: 34617439 DOI: 10.1021/acs.biomac.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trehalose is widely assumed to be the most effective sugar for protein stabilization, but exactly how unique the structure is and the mechanism by which it works are still debated. Herein, we use a polyion complex micelle approach to control the position of trehalose relative to the surface of glucose oxidase within cross-linked and non-cross-linked single-enzyme nanoparticles (SENs). The distribution and density of trehalose molecules in the shell can be tuned by changing the structure of the underlying polymer, poly(N-[3-(dimethylamino)propyl] acrylamide (PDMAPA). SENs in which the trehalose is replaced with sucrose and acrylamide are prepared as well for comparison. Isothermal titration calorimetry, dynamic light scattering, and asymmetric flow field-flow fraction in combination with multiangle light scattering reveal that two to six polymers bind to the enzyme. Binding either trehalose or sucrose close to the enzyme surface has very little effect on the thermal stability of the enzyme. By contrast, encapsulation of the enzyme within a cross-linked polymer shell significantly enhances its thermal stability and increases the unfolding temperature from 70.3 °C to 84.8 °C. Further improvements (up to 92.8 °C) can be seen when trehalose is built into this shell. Our data indicate that the structural confinement of the enzyme is a far more important driver in its thermal stability than the location of any sugar.
Collapse
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Malgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice 44 100, Poland
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
31
|
Alabsi W, Acosta MF, Al-Obeidi FA, Hay M, Polt R, Mansour HM. Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1-7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers. Pharmaceutics 2021; 13:1278. [PMID: 34452239 PMCID: PMC8398878 DOI: 10.3390/pharmaceutics13081278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The peptide hormone Angiotensin (1-7), Ang (1-7) or (Asp-Arg-Val-Tyr-Ile-His-Pro), is an essential component of the renin-angiotensin system (RAS) peripherally and is an agonist of the Mas receptor centrally. Activation of this receptor in the CNS stimulates various biological activities that make the Ang (1-7)/MAS axis a novel therapeutic approach for the treatment of many diseases. The related O-linked glycopeptide, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-D-Glc)-amide (PNA5), is a biousian revision of the native peptide hormone Ang (1-7) and shows enhanced stability in vivo and greater levels of brain penetration. We have synthesized the native Ang (1-7) peptide and the glycopeptide, PNA5, and have formulated them for targeted respiratory delivery as inhalable dry powders. Solid phase peptide synthesis (SPPS) successfully produced Ang (1-7) and PNA5. Measurements of solubility and lipophilicity of raw Ang (1-7) and raw PNA5 using experimental and computational approaches confirmed that both the peptide and glycopeptide have high-water solubility and are amphipathic. Advanced organic solution spray drying was used to engineer the particles and produce spray-dried powders (SD) of both the peptide and the glycopeptide, as well as co-spray-dried powders (co-SD) with the non-reducing sugar and pharmaceutical excipient, trehalose. The native peptide, glycopeptide, SD, and co-SD powders were comprehensively characterized, and exhibited distinct glass transitions (Tg) consistent with the amorphous glassy state formation with Tgs that are compatible with use in vivo. The homogeneous particles displayed small sizes in the nanometer size range and low residual water content in the solid-state. Excellent aerosol dispersion performance with a human DPI device was demonstrated. In vitro human cell viability assays showed that Ang (1-7) and PNA5 are biocompatible and safe for different human respiratory and brain cells.
Collapse
Affiliation(s)
- Wafaa Alabsi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
| | - Maria F. Acosta
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
| | - Fahad A. Al-Obeidi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
| | - Meredith Hay
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Division of Translational & Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
32
|
Kopjar M, Ivić I, Buljeta I, Ćorković I, Vukoja J, Šimunović J, Pichler A. Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081640. [PMID: 34451685 PMCID: PMC8400944 DOI: 10.3390/plants10081640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Citrus fiber/blackberry gels (CBg) can be used for the preparation of various bakery products as well as confectioneries. The objective of this study was to evaluate the influence of the type of disaccharides (sucrose or trehalose) and their percentages (10% or 20%) on volatile compounds as well as phenolics, antioxidant activity and color of formulated CBg. Additionally, CBg were stored at room temperature for 3 months to evaluate their stability. Both disaccharides type and their percentage affected the investigated parameters. Sucrose had a higher positive impact on volatiles after formulation and storage of CBg, while trehalose had a higher positive impact on total phenolics. Amounts of phenolics increased with the increase of disaccharides amount, while the behavior of volatiles also depended on volatiles' properties. Results of this study emphasized the importance of the adequate choice of ingredients for the formulation of high-quality fruit products.
Collapse
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Ivana Ivić
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Josipa Vukoja
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA;
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| |
Collapse
|
33
|
Giuffrida S, Cupane A, Cottone G. "Water Association" Band in Saccharide Amorphous Matrices: Role of Residual Water on Bioprotection. Int J Mol Sci 2021; 22:2496. [PMID: 33801421 PMCID: PMC7958616 DOI: 10.3390/ijms22052496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Saccharides protect biostructures against adverse environmental conditions mainly by preventing large scale motions leading to unfolding. The efficiency of this molecular mechanism, which is higher in trehalose with respect to other sugars, strongly depends on hydration and sugar/protein ratio. Here we report an Infrared Spectroscopy study on dry amorphous matrices of the disaccharides trehalose, maltose, sucrose and lactose, and the trisaccharide raffinose. Samples with and without embedded protein (Myoglobin) are investigated at different sugar/protein ratios, and compared. To inspect matrix properties we analyse the Water Association Band (WAB), and carefully decompose it into sub-bands, since their relative population has been shown to effectively probe water structure and dynamics in different matrices. In this work the analysis is extended to investigate the structure of protein-sugar-water samples, for the first time. Results show that several classes of water molecules can be identified in the protein and sugar environment and that their relative population is dependent on the type of sugar and, most important, on the sugar/protein ratio. This gives relevant information on how the molecular interplay between residual waters, sugar and protein molecules affect the biopreserving properties of saccharides matrices.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Correspondence: (S.G.); (G.C.); Tel.: +39-06-5024-4070 (S.G.); +39-091-238-91713 (G.C.)
| | | | - Grazia Cottone
- Dipartimento di Fisica e Chimica Emilio Segrè, Università di Palermo, Viale delle Scienze 17-18, I-90128 Palermo, Italy;
| |
Collapse
|
34
|
Ojha T, Hu Q, Colombo C, Wit J, van Geijn M, van Steenbergen MJ, Bagheri M, Königs-Werner H, Buhl EM, Bansal R, Shi Y, Hennink WE, Storm G, Rijcken CJF, Lammers T. Lyophilization stabilizes clinical-stage core-crosslinked polymeric micelles to overcome cold chain supply challenges. Biotechnol J 2021; 16:e2000212. [PMID: 33484630 DOI: 10.1002/biot.202000212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND CriPec technology enables the generation of drug-entrapped biodegradable core-crosslinked polymeric micelles (CCPM) with high drug loading capacity, tailorable size, and drug release kinetics. Docetaxel (DTX)-entrapped CCPM, also referred to as CPC634, have demonstrated favorable pharmacokinetics, tolerability, and enhanced tumor uptake in patients. Clinical efficacy evaluation is ongoing. CPC634 is currently stored (shelf life > 5 years) and shipped as a frozen aqueous dispersion at temperatures below -60°C, in order to prevent premature release of DTX and hydrolysis of the core-crosslinks. Consequently, like other aqueous nanomedicine formulations, CPC634 relies on cold chain supply, which is unfavorable for commercialization. Lyophilization can help to bypass this issue. METHODS AND RESULTS Freeze-drying methodology for CCPM was developed by employing CPC634 as a model formulation, and sucrose and trehalose as cryoprotectants. We studied the residual moisture content and reconstitution behavior of the CPC634 freeze-dried cake, as well as the size, polydispersity index, morphology, drug retention, and release kinetics of reconstituted CPC634. Subsequently, the freeze-drying methodology was validated in an industrial setting, yielding a CPC634 freeze-dried cake with a moisture content of less than 0.1 wt%. It was found that trehalose-cryoprotected CPC634 could be rapidly reconstituted in less than 5 min at room temperature. Critical quality attributes such as size, morphology, drug retention, and release kinetics of trehalose-cryoprotected freeze-dried CPC634 upon reconstitution were identical to those of non-freeze-dried CPC634. CONCLUSION Our findings provide proof-of-concept for the lyophilization of drug-containing CCPM and our methodology is readily translatable to large-scale manufacturing for future commercialization.
Collapse
Affiliation(s)
- Tarun Ojha
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.,Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Translational Liver Research, Enschede, The Netherlands
| | - Qizhi Hu
- Cristal Therapeutics, Maastricht, The Netherlands
| | | | - Jan Wit
- Saudade Pharma Consultancy, Eijsden, The Netherlands
| | | | | | - Mahsa Bagheri
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Hiltrud Königs-Werner
- Electron Microscope Facility, University Hospital RWTH, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscope Facility, University Hospital RWTH, RWTH Aachen University, Aachen, Germany
| | - Ruchi Bansal
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Translational Liver Research, Enschede, The Netherlands
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.,Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.,Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
35
|
Vukoja J, Buljeta I, Ivić I, Šimunović J, Pichler A, Kopjar M. Disaccharide Type Affected Phenolic and Volatile Compounds of Citrus Fiber-Blackberry Cream Fillings. Foods 2021; 10:foods10020243. [PMID: 33530336 PMCID: PMC7912440 DOI: 10.3390/foods10020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The food industry is continuously developing ingredients, processing methods and packaging materials to improve the quality of fruit products. The aim of this work was to study the possibility of using citrus fiber in the preparation of blackberry cream fillings in combination with disaccharides (sucrose, maltose and trehalose). Evaluations of the phenolics, proanthocyanidins, antioxidant activity, color and volatiles of blackberry cream fillings were conducted after preparation and after three months of storage. Blackberry cream fillings were prepared from citrus fiber (5%), blackberry juice and disaccharides (50%). Disaccharide type had an effect on all investigated parameters. The highest phenol content was in fillings with trehalose (4.977 g/100 g) and the lowest was in fillings prepared with sucrose (4.249 g/100 g). The same tendency was observed after storage. Fillings with maltose had the highest proanthocyanidins content (473.05 mg/100 g) while fillings with sucrose had the lowest amount (299.03 mg/100 g) of these compounds. Regarding volatile compounds, terpenes and aldehydes and ketones were evaluated in the highest concentration. Terpenes were determined in the highest concentration in fillings with trehalose (358.05 µg/kg), while aldehydes and ketones were highest in fillings with sucrose (250.87 µg/kg). After storage, concentration of volatiles decreased. These results indicate that the selection of adequate disaccharides is very important since it can influence the final quality of the product.
Collapse
Affiliation(s)
- Josipa Vukoja
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Ivana Ivić
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Anita Pichler
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
- Correspondence:
| |
Collapse
|