1
|
Moncomble A, Alloyeau D, Moreaud M, Khelfa A, Wang G, Ortiz-Peña N, Amara H, Gatti R, Moreau R, Ricolleau C, Nelayah J. aquaDenoising: AI-enhancement of in situ liquid phase STEM video for automated quantification of nanoparticles growth. Ultramicroscopy 2025; 271:114121. [PMID: 40058164 DOI: 10.1016/j.ultramic.2025.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Automatic processing and full analysis of in situ liquid phase scanning transmission electron microscopy (LP-STEM) acquisitions are yet to be achievable with available techniques. This is particularly true for the extraction of information related to the nucleation and growth of nanoparticles (NPs) in liquid as several parasitic processes degrade the signal of interest. These degradations hinder the use of classical or state-of-the-art techniques making the understanding of NPs formation difficult to access. In this context, we propose aquaDenoising, a novel simulation-based deep neural framework to address the challenges of denoising LP-STEM images and videos. Trained on synthetic pairs of clean and noisy images obtained from kinematic-model-based simulations, we show that our model is able to achieve a fifteen-fold improvement in the signal-to-noise ratio of videos of gold NPs growing in water. The enhanced data unleash unprecedented possibilities for automatic segmentation and extraction of structures at different scales, from assemblies of objects down to the individual NPs with the same precision as manual segmentation performed by experts, but with higher throughput. The present denoising method can be easily adapted to other nanomaterials imaged in liquid media. All the codes developed in the present work are open and freely available.
Collapse
Affiliation(s)
- Adrien Moncomble
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Damien Alloyeau
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France.
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3 69360 Solaize, France
| | - Abdelali Khelfa
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Guillaume Wang
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Nathaly Ortiz-Peña
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Hakim Amara
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France; Université Paris-Saclay, ONERA, CNRS, Laboratoire d'étude des microstructures (LEM), F-92322 Châtillon, France
| | - Riccardo Gatti
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'étude des microstructures (LEM), F-92322 Châtillon, France
| | - Romain Moreau
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'étude des microstructures (LEM), F-92322 Châtillon, France
| | - Christian Ricolleau
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Jaysen Nelayah
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France.
| |
Collapse
|
2
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415728. [PMID: 39981755 PMCID: PMC11962711 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| | - Serin Lee
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Körner
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergImmerwahrstraße 2a91054ErlangenGermany
| | | | - Frances M. Ross
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| |
Collapse
|
3
|
Dobrynin D, Zlotver I, Polishchuk I, Kauffmann Y, Suharenko S, Koifman R, Kuhrts L, Katsman A, Sosnik A, Pokroy B. Controlled Synthesis of Bimetallic Gold-Silver Nanostars: Atomic Insights and Predictive Formation Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410152. [PMID: 40099665 DOI: 10.1002/smll.202410152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The nucleation and growth of bimetallic gold-silver nanostars (GNSs) are investigated to elucidate their atomic-scale formation mechanism. Motivated by the increasing demand for nanomaterials with enhanced optical and catalytic properties, particularly for applications in biosensing, bioimaging, and photothermal therapy, this work focuses on understanding the factors governing GNSs formation. GNSs are synthesized by reducing HAuCl₄ with ascorbic acid in the presence of AgNO₃, exploring the influence of temperature, delay time in AgNO₃ introduction, and AgNO3 concentration. High-resolution electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution X-ray photoelectron spectroscopy, and synchrotron-based powder X-ray diffraction are used to characterize their morphology, size, composition, and stability. These findings reveal that AgNO₃ promotes anisotropic growth through the formation of metallic Ag and AgCl on GNSs surfaces, leading to thorn-like structures. A detailed analysis of kinetics, particle concentration, and nucleation barriers enables the development of a theoretical model to predict optimal synthesis conditions. This work provides new insights into controlling GNSs morphology and properties, which are critical for optimizing their performance in catalysis, sensing, and biomedical applications. The novelty lies in the discovery of the role of AgCl in directing GNSs growth and the formulation of a predictive model for synthesis optimization.
Collapse
Affiliation(s)
- Daniela Dobrynin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ivan Zlotver
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yaron Kauffmann
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sharon Suharenko
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ron Koifman
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Lucas Kuhrts
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Alexander Katsman
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- Russell Berrie Nanotechnology Institute The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
4
|
Nguyen AL, Griffin QJ, Wang A, Zou S, Jing H. Optimization of the Surfactant Ratio in the Formation of Penta-Twinned Seeds for Precision Synthesis of Gold Nanobipyramids with Tunable Plasmon Resonances. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:4303-4312. [PMID: 40041389 PMCID: PMC11873936 DOI: 10.1021/acs.jpcc.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The synthesis of high-purity gold nano bipyramids (Au NBPs) with a narrow size distribution and tunable plasmon resonances is of great significance for plasmon resonance-related applications. However, the synthesis Au NBP approach involves multiple steps with many parameters that can affect the purity of the final product. In this work, we were devoted to studying the effect of the molar ratio between hexadecyltrimethylammonium chloride (CTAC) and sodium citrate tribasic dihydrate (CiNa3) on the seed formation stage. The results showed that the yield of Au NBP product has dramatically increased with the seed solution made from the molar ratio of CTAC:CiNa3 at 21:1. Furthermore, using this optimal seed, we can efficiently synthesize Au NBPs with various sizes by adjusting the concentration of the seed but keeping the rest of the parameters constant. In this study, the longitudinal localized surface plasmon resonances (LSPRs) of Au NBPs exhibit tunability beyond 450 nm across the visible and near-infrared regions from 774 to 1224 nm. We were able to successfully fine-tune the LSPRs of Au NBPs in the spectral region to become resonant with the excitation wavelengths of an 808 nm near-infrared (NIR) laser. The photothermal activities of Au NBPs were studied under 808 nm laser irradiation at ambient conditions. The present work demonstrates a paradigm for the synthesis of Au NBPs with tunable LSPRs in a precise and controllable manner, achieved by examining the surfactant ratios in the formation of penta-twinned seeds.
Collapse
Affiliation(s)
- Au Lac Nguyen
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| | - Quinn J. Griffin
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| | - Ankai Wang
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Hao Jing
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| |
Collapse
|
5
|
Lyu J, Matthews L, Zinn T, Alloyeau D, Hamon C, Constantin D. Two-Step Reshaping of Acicular Gold Nanoparticles. NANO LETTERS 2025; 25:1544-1549. [PMID: 39807773 DOI: 10.1021/acs.nanolett.4c05601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications. We followed in real time the spontaneous reshaping of gold nanotetrapods in solution via optical absorbance spectroscopy, revealing a two-step kinetics (fast tip flattening into {110} facets, followed by slow arm shortening) with characteristic times a factor of 6 apart but sharing an activation energy around 1 eV. Synchrotron-based X-ray scattering confirms this time evolution, which is much faster in solution than in the dry state, highlighting the importance of the aqueous medium and supporting a dissolution-redeposition mechanism or facilitated surface diffusion. High-temperature transmission electron microscopy of the dry particles validates the solution kinetics.
Collapse
Affiliation(s)
- Jieli Lyu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Lauren Matthews
- The European Synchrotron Radiation Facility, 38043 Grenoble CEDEX 9, France
| | - Thomas Zinn
- The European Synchrotron Radiation Facility, 38043 Grenoble CEDEX 9, France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité - CNRS, 75013 Paris, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Doru Constantin
- Institut Charles Sadron, Université de Strasbourg and CNRS, 67034 Strasbourg, France
| |
Collapse
|
6
|
Dong M, Pan Y, Zhu J, Jia H, Dong H, Xu F. Real-time imaging reveal anisotropic dissolution behaviors of silver nanorods. NANOTECHNOLOGY 2024; 35:275703. [PMID: 38574465 DOI: 10.1088/1361-6528/ad3a6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The morphology and size control of anisotropic nanocrystals are critical for tuning shape-dependent physicochemical properties. Although the anisotropic dissolution process is considered to be an effective means to precisely control the size and morphology of nanocrystals, the anisotropic dissolution mechanism remains poorly understood. Here, usingin situliquid cell transmission electron microscopy, we investigate the anisotropic etching dissolution behaviors of polyvinylpyrrolidone (PVP)-stabilized Ag nanorods in NaCl solution. Results show that etching dissolution occurs only in the longitudinal direction of the nanorod at low chloride concentration (0.2 mM), whereas at high chloride concentration (1 M), the lateral and longitudinal directions of the nanorods are dissolved. First-principles calculations demonstrate that PVP is selectively adsorbed on the {100} crystal plane of silver nanorods, making the tips of nanorods the only reaction sites in the anisotropic etching process. When the chemical potential difference of the Cl-concentration is higher than the diffusion barrier (0.196 eV) of Cl-in the PVP molecule, Cl-penetrates the PVP molecular layer of {100} facets on the side of the Ag nanorods. These findings provide an in-depth insight into the anisotropic etching mechanisms and lay foundations for the controlled preparation and rational design of nanostructures.
Collapse
Affiliation(s)
- Meng Dong
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuchen Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Jingfang Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Haiyang Jia
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hui Dong
- School of Mechanical Engineering, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Feng Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
7
|
Goldmann C, Chaâbani W, Hotton C, Impéror-Clerc M, Moncomble A, Constantin D, Alloyeau D, Hamon C. Confinement Effects on the Structure of Entropy-Induced Supercrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303380. [PMID: 37386818 DOI: 10.1002/smll.202303380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Depletion-induced self-assembly is routinely used to separate plasmonic nanoparticles (NPs) of different shapes, but less often for its ability to create supercrystals (SCs) in suspension. Therefore, these plasmonic assemblies have not yet reached a high level of maturity and their in-depth characterization by a combination of in situ techniques is still very much needed. In this work, gold triangles (AuNTs) and silver nanorods (AgNRs) are assembled by depletion-induced self-assembly. Small Angle X-ray Scattering (SAXS) and scanning electron microscopy (SEM) analysis shows that the AuNTs and AgNRs form 3D and 2D hexagonal lattices in bulk, respectively. The colloidal crystals are also imaged by in situ Liquid-Cell Transmission Electron Microscopy. Under confinement, the affinity of the NPs for the liquid cell windows reduces their ability to stack perpendicularly to the membrane and lead to SCs with a lower dimensionality than their bulk counterparts. Moreover, extended beam irradiation leads to disassembly of the lattices, which is well described by a model accounting for the desorption kinetics highlighting the key role of the NP-membrane interaction in the structural properties of SCs in the liquid-cell. The results shed light on the reconfigurability of NP superlattices obtained by depletion-induced self-assembly, which can rearrange under confinement.
Collapse
Affiliation(s)
- Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Wajdi Chaâbani
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Claire Hotton
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Marianne Impéror-Clerc
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Adrien Moncomble
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, Strasbourg, 67034, France
| | - Damien Alloyeau
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| |
Collapse
|
8
|
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chem Commun (Camb) 2023; 59:12830-12846. [PMID: 37807847 DOI: 10.1039/d3cc03723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) has enabled unprecedented direct real time imaging of physicochemical processes during solution phase synthesis of metallic nanoparticles. LPTEM primarily provides images of nanometer scale, and sometimes atomic scale, metal nanoparticle crystallization processes, but provides little chemical information about organic surface ligands, metal-ligand complexes and reaction intermediates, and redox reactions. Likewise, complex electron beam-solvent interactions during LPTEM make it challenging to pinpoint the chemical processes, some involving exotic highly reactive radicals, impacting nanoparticle formation. Pairing LPTEM with correlative solution synthesis, ex situ chemical analysis, and theoretical modeling represents a powerful approach to gain a holistic understanding of the chemical processes involved in nanoparticle synthesis. In this feature article, we review recent work by our lab and others that has focused on elucidating chemical processes during nanoparticle synthesis using LPTEM and correlative chemical characterization and modeling, including mass and optical spectrometry, fluorescence microscopy, solution chemistry, and reaction kinetic modeling. In particular, we show how these approaches enable investigating redox chemistry during LPTEM, polymeric and organic capping ligands, metal deposition mechanisms on plasmonic nanoparticles, metal clusters and complexes, and multimetallic nanoparticle formation. Future avenues of research are discussed, including moving beyond electron beam induced nanoparticle formation by using light and thermal stimuli during LPTEM. We discuss prospects for real time LPTEM imaging and online chemical analysis of reaction intermediates using microfluidic flow reactors.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, College Park, MD 20742, USA
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Wei A, OuYang J, Guo Y, Jiang S, Chen F, Huang J, Xiao Q, Wu Z. Controlled synthesis of monodisperse gold nanorods with a small diameter of around 10 nm and largest plasmon wavelength of 1200 nm. Phys Chem Chem Phys 2023; 25:20843-20853. [PMID: 37503681 DOI: 10.1039/d3cp02203j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gold nanorods have been widely used in various fields due to their tunable anisotropic localized surface plasmon resonance (SPR) property. The facile preparation of gold nanorods with a tunable SPR wavelength extending to a near-infrared window, and at the same time, a relatively small particle size for facilitating applications especially in the biomedical field is of great value yet highly challenging. In this work, a new reducing agent, 1,6-dihydroxynaphthalene, is proposed for the synthesis of gold nanorods. The results indicate that gold nanorods with good monodispersity, high shape yield, maximum SPR wavelength of 1200 nm, and especially small diameter of around 10 nm can be acquired simultaneously. In terms of spectral and size controls, by respectively varying the experimental parameters including the amount of silver ions, reducing agents, and gold seeds not only can a good linear correlation be acquired corresponding to a SPR wavelength ranging from around 600 nm to 1200 nm, but a regular change in the particle diameter from 10.5 nm to 7.5 nm could also be observed. The structural and morphological evolutions of the particle for each changed parameter were carefully studied, and insights were gained into the growth mechanism based on the detailed analysis of particle evolution at a specific stage of the growth process.
Collapse
Affiliation(s)
- Anhua Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jingfang OuYang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yuyang Guo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Suju Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Feifei Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
10
|
Fritsch B, Körner A, Couasnon T, Blukis R, Taherkhani M, Benning LG, Jank MPM, Spiecker E, Hutzler A. Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid-Base Correlation beyond pH. J Phys Chem Lett 2023; 14:4644-4651. [PMID: 37167107 DOI: 10.1021/acs.jpclett.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| | - Thaïs Couasnon
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Roberts Blukis
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Mehran Taherkhani
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Liane G Benning
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Michael P M Jank
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Chen A, Leff AC, Forcherio GT, Boltersdorf J, Woehl TJ. Examining Silver Deposition Pathways onto Gold Nanorods with Liquid-Phase Transmission Electron Microscopy. J Phys Chem Lett 2023; 14:1379-1388. [PMID: 36729066 DOI: 10.1021/acs.jpclett.2c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid-phase transmission electron microscopy (LP-TEM) enables one to directly visualize the formation of plasmonic nanoparticles and their postsynthetic modification, but the relative contributions of plasmonic hot electrons and radiolysis to metal precursor reduction remain unclear. Here we show silver deposition onto plasmonic gold nanorods (AuNRs) during LP-TEM is dominated by water radiolysis-induced chemical reduction. Silver was observed with LP-TEM to form bipyramidal shells at higher surfactant coverage and tip-preferential lobes at lower surfactant coverage. Ex situ silver photodeposition formed nanometer-thick shells on AuNRs with preferential deposition in inter-rod gaps, while chemical reduction deposited silver at AuNR tips at low surfactant coverage and formed pyramidal shells at higher surfactant coverage, consistent with LP-TEM. Silver deposition locations during LP-TEM were inconsistent with simulated near-field enhancement and hot electron generation hot spots. Collectively, the results indicate chemical reduction dominated during LP-TEM, indicating observation of plasmonic hot electron-induced photoreduction will necessitate suppression of radiolysis.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Asher C Leff
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783, United States
- General Technical Services, LLC, Wall Township, New Jersey 07727, United States
| | - Gregory T Forcherio
- Electrooptic Technology Division, Naval Surface Warfare Center, Crane, Indiana 47522, United States
| | - Jonathan Boltersdorf
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
13
|
Dikkumbura A, Hamal P, Chen M, Babayode DA, Ranasinghe JC, Lopata K, Haber LH. Growth Dynamics of Colloidal Silver-Gold Core-Shell Nanoparticles Studied by In Situ Second Harmonic Generation and Extinction Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:25615-25623. [PMID: 34868446 PMCID: PMC8631735 DOI: 10.1021/acs.jpcc.1c06094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/29/2021] [Indexed: 05/11/2023]
Abstract
The in situ growth dynamics of colloidal silver-gold core-shell (Ag@Au CS) nanoparticles (NPs) in water are monitored in a stepwise synthesis approach using time-dependent second harmonic generation (SHG) and extinction spectroscopy. Three sequential additions of chloroauric acid, sodium citrate, and hydroquinone are added to the silver nanoparticle solution to grow a gold shell around a silver core. The first addition produces a stable urchin-like surface morphology, while the second and third additions continue to grow the gold shell thickness as the surface becomes more smooth and uniform, as determined using transmission electron microscopy. The extinction spectra after each addition are compared to finite-difference time-domain (FDTD) calculations, showing large deviations for the first and second additions due to the bumpy surface morphology and plasmonic hotspots while showing general agreement after the third addition reaches equilibrium. The in situ SHG signal is dominated by the NP surface, providing complementary information on the growth time scales due to changes to the surface morphology. This combined approach of synthesis and characterization of Ag@Au CS nanoparticles with in situ SHG spectroscopy, extinction spectroscopy, and FDTD calculations provides a detailed foundation for investigating complex colloidal nanoparticle growth mechanisms and dynamics in developing enhanced plasmonic nanomaterial technologies.
Collapse
Affiliation(s)
- Asela
S. Dikkumbura
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Prakash Hamal
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Min Chen
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel A. Babayode
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeewan C. Ranasinghe
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Center
for Computation and Technology, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Louis H. Haber
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Sun M, Cheng Z, Chen W, Jones M. Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursors. ACS NANO 2021; 15:15953-15961. [PMID: 34554725 DOI: 10.1021/acsnano.1c04056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vast majority of single crystalline metal nanoparticles adopt shapes in the Oh point group as a consequence of the symmetry of the underlying face-centered cubic (FCC) crystal lattice. Tetrahedra are a notable exception to this rule, and although they have been observed in several syntheses, their growth mechanism, and the symmetry-reduction process that necessarily characterizes it, is poorly understood. Here, a symmetry breaking mechanism is revealed by in situ liquid flow cell transmission electron microscopy (TEM) observation of seeded growth in which tetrahedra nanoparticles are formed from higher symmetry seeds. Real-time observation of the growth demonstrates a kinetically driven pathway during which rhombic dodecahedra nanoparticles transition to tetrahedra through tristetrahedra intermediates, with an accompanying surface facet evolution from {110} to {111} via {hhl} (where h > l), respectively. On the basis of these data, we propose a mechanism that relies on a rapid loss of inversion symmetry in the initial stages of the reaction, followed by differential reactivity of tips vs faces under conditions of relatively high supersaturation and moderate ligand concentration. The application of these insights to ex situ synthesis conditions allowed for an improved yield of tetrahedra nanoparticles. This work sheds an important mechanistic light on the crystallographic underpinnings of nanoparticle shape and symmetry transformations and highlights the importance of single-particle characterization tools for monitoring nanoscale phenomena.
Collapse
|
15
|
Khelfa A, Nelayah J, Amara H, Wang G, Ricolleau C, Alloyeau D. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102514. [PMID: 34338365 DOI: 10.1002/adma.202102514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Understanding temperature effects in nanochemistry requires real-time in situ measurements because this key parameter of wet-chemical synthesis simultaneously influences the kinetics of chemical reactions and the thermodynamic equilibrium of nanomaterials in solution. Here, temperature-controlled liquid cell transmission electron microscopy is exploited to directly image the radiolysis-driven formation of gold nanoparticles between 25 °C and 85 °C and provide a deeper understanding of the atomic-scale processes determining the size and shape of gold colloids. By quantitatively comparing the nucleation and growth rates of colloidal assemblies with classical models for nanocrystal formation, it is shown that the increase of the molecular diffusion and the solubility of gold governs the drastic changes in the formation dynamics of nanostructures in solution with temperature. In contraction with the common view of coarsening processes in solution, it is also demonstrated that the dissolution of nanoparticles and thus the Ostwald ripening is not only driven by size effects. Furthermore, visualizing thermal effects on faceting processes at the single nanoparticle level reveals how the competition between the growth speed and the surface diffusion dictates the final shape of nanocrystals.
Collapse
Affiliation(s)
- Abdelali Khelfa
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Jaysen Nelayah
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Hakim Amara
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
- Laboratoire d'Études des Microstructures, ONERA - CNRS - Université Paris Saclay, Chatillon, 92320, France
| | - Guillaume Wang
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Christian Ricolleau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| |
Collapse
|
16
|
Nguyen TT, Mammeri F, Ammar S, Nguyen TBN, Nguyen TN, Nghiem THL, Thuy NT, Ho TA. Preparation of Fe 3O 4-Ag Nanocomposites with Silver Petals for SERS Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1288. [PMID: 34068287 PMCID: PMC8153338 DOI: 10.3390/nano11051288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g-1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10-10 M) of Rhodamine 6G (R6G), at room temperature.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
- Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (T.B.N.N.); (T.N.N.); (T.H.L.N.)
| | - Fayna Mammeri
- ITODYS, Université de Paris, CNRS, UMR 7086, 15 rue J-A de Baïf, 75013 Paris, France; (F.M.); (S.A.)
| | - Souad Ammar
- ITODYS, Université de Paris, CNRS, UMR 7086, 15 rue J-A de Baïf, 75013 Paris, France; (F.M.); (S.A.)
| | - Thi Bich Ngoc Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (T.B.N.N.); (T.N.N.); (T.H.L.N.)
| | - Trong Nghia Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (T.B.N.N.); (T.N.N.); (T.H.L.N.)
| | - Thi Ha Lien Nghiem
- Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (T.B.N.N.); (T.N.N.); (T.H.L.N.)
| | - Nguyen Thi Thuy
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam;
| | - Thi Anh Ho
- Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam;
| |
Collapse
|
17
|
Wang M, Leff AC, Li Y, Woehl TJ. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis. ACS NANO 2021; 15:2578-2588. [PMID: 33496576 DOI: 10.1021/acsnano.0c07131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal synthesis of alloyed multimetallic nanocrystals with precise composition control remains a challenge and a critical missing link in theory-driven rational design of functional nanomaterials. Liquid-phase transmission electron microscopy (LP-TEM) enables direct visualization of nanocrystal formation mechanisms that can inform discovery of design rules for nanocrystal synthesis, but it remains unclear whether the salient flask synthesis chemistry is preserved under electron beam irradiation during LP-TEM. Here, we demonstrate controlled in situ LP-TEM synthesis of alloyed AuCu nanocrystals while maintaining the molecular structure of electron beam sensitive metal thiolate precursor complexes. Ex situ flask synthesis experiments formed alloyed nanocrystals containing on average 70 atomic% Au using heteronuclear metal thiolate complexes as a precursor, while gold-rich alloys with nearly no copper formed in their absence. Systematic dose rate-controlled in situ LP-TEM synthesis experiments established a range of electron beam synthesis conditions that formed alloyed AuCu nanocrystals that had statistically indistinguishable alloy composition, aggregation state, and particle size distribution shape compared to ex situ flask synthesis, indicating the flask synthesis chemistry was preserved under these conditions. Reaction kinetic simulations of radical-ligand reactions revealed that polymer capping ligands acted as effective hydroxyl radical scavengers during LP-TEM synthesis and prevented oxidation of metal thiolate complexes at low dose rates. Our results revealed a key role of the capping ligands aside from their well-known functions, which was to prevent copper oxidation and facilitate formation of prenucleation cluster intermediates via formation of metal thiolate complexes. This work demonstrates that complex ion precursor chemistry can be maintained during LP-TEM imaging, enabling probing nonclassical nanocrystal formation mechanisms with LP-TEM under reaction conditions representative of ex situ flask synthesis.
Collapse
Affiliation(s)
- Mei Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Asher C Leff
- Sensors and Electron Devices Directorate, Combat Capabilities Development Command, United States Army Research Laboratory, Adelphi, Maryland 20783, United States
- General Technical Services, LLC, Wall Township, New Jersey 07727, United States
| | - Yue Li
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|