1
|
Qiao Z, Jiang R, Xu H, Cao D, Zeng XC. A General Descriptor for Single-Atom Catalysts with Axial Ligands. Angew Chem Int Ed Engl 2024; 63:e202407812. [PMID: 38771728 DOI: 10.1002/anie.202407812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Decoration of an axial coordination ligand (ACL) on the active metal site is a highly effective and versatile strategy to tune activity of single-atom catalysts (SACs). However, the regulation mechanism of ACLs on SACs is still incompletely known. Herein, we investigate diversified combinations of ACL-SACs, including all 3d-5d transition metals and ten prototype ACLs. We identify that ACLs can weaken the adsorption capability of the metal atom (M) by raising the bonding energy levels of the M-O bond while enhancing dispersity of the d orbital of M. Through examination of various local configurations and intrinsic parameters of ACL-SACs, a general structure descriptor σ is constructed to quantify the structure-activity relationship of ACL-SACs which solely based on a few key intrinsic features. Importantly, we also identified the axial ligand descriptor σACL, as a part of σ, which can serve as a potential descriptor to determine the rate-limiting steps (RLS) of ACL-SACs in experiment. And we predicted several ACL-SACs, namely, CrN4-, FeN4-, CoN4-, RuN4-, RhN4-, OsN4-, IrN4- and PtN4-ACLs, that entail markedly higher activities than the benchmark catalysts of Pt and IrO2 for oxygen reduction reaction and oxygen evolution reaction, respectively, thereby supporting that the general descriptor σ can provide a simple and cost-effective method to assess efficient electrocatalysts.
Collapse
Affiliation(s)
- Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 99977, Hong Kong
| |
Collapse
|
2
|
Sinha S, Vegge T, Winther KT, Hansen HA. Understanding the Electronic and Structural Effects in ORR Intermediate Binding on Anion-Substituted Zirconia Surfaces. Chemphyschem 2024; 25:e202300865. [PMID: 38391116 DOI: 10.1002/cphc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
For oxygen reduction reaction (ORR), the surface adsorption energies of O and OH* intermediates are key descriptors for catalytic activity. In this work, we investigate anion-substituted zirconia catalyst surfaces and determine that adsorption energies of O and OH* intermediates is governed by both structural and electronic effects. When the adsorption energies are not influenced by the structural effects of the catalyst surface, they exhibit a linear correlation with integrated crystal orbital Hamiltonian population (ICOHP) of the adsorbate-surface bond. The influence of structural effects, due to the re-optimisation slab geometry after adsorption of intermediate species, leads to stronger adsorption of intermediates. Our calculations show that there is a change in the bond order to accommodate the incoming adsorbate species which leads to stronger adsorption when both structural and electronic effects influence the adsorption phenomena. The insights into the catalyst-adsorbate interactions can guide the design of future ORR catalysts.
Collapse
Affiliation(s)
- Sukanya Sinha
- Department of Energy Storage and Conversion, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Storage and Conversion, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Kirsten T Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, United States
| | - Heine Anton Hansen
- Department of Energy Storage and Conversion, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| |
Collapse
|
3
|
Liu J, Han L, Xiao S, Zhu A, Zhang Y, Zeng X, Dong P. Metal-Organic-Framework-Derived Nitrogen-Doped Carbon-Matrix-Encapsulating Co 0.5Ni 0.5 Alloy as a Bifunctional Oxygen Electrocatalyst for Zinc-Air Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2629. [PMID: 38893893 PMCID: PMC11173693 DOI: 10.3390/ma17112629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
The development of low-cost, high-performance oxygen electrocatalysts is of great significance for energy conversion and storage. As a potential substitute for precious metal electrocatalysts, the construction of efficient and cost-effective oxygen electrocatalysts is conducive to promoting the widespread application of zinc-air batteries. Herein, CoxNiyMOF nanoparticles encapsulated within a carbon matrix were synthesized and employed as cathode catalysts in zinc-air batteries. Co0.5Ni0.5MOF exhibits superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance and durability. The zinc-air battery assembled with Co0.5Ni0.5MOF as the air cathode exhibits a maximum power density of 138.6 mW·cm-2. These improvements are mainly attributed to the optimized metal composition of the cobalt-nickel alloy, which increases the specific surface area of the material and optimizes its pore structure. Significantly, the optimization of the electronic structure and active sites within the material has led to amplified ORR/OER activity and better zinc-air battery performance. This study underscores the immense promise of Co0.5Ni0.5MOF catalysts as feasible substitutes for commercial Pt/C catalysts in zinc-air batteries.
Collapse
Affiliation(s)
- Jinglin Liu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China; (J.L.); (S.X.); (A.Z.); (Y.Z.); (X.Z.)
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650031, China
| | - Lina Han
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China; (J.L.); (S.X.); (A.Z.); (Y.Z.); (X.Z.)
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650031, China
| | - Shicai Xiao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China; (J.L.); (S.X.); (A.Z.); (Y.Z.); (X.Z.)
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650031, China
| | - Anqi Zhu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China; (J.L.); (S.X.); (A.Z.); (Y.Z.); (X.Z.)
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650031, China
| | - Yingjie Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China; (J.L.); (S.X.); (A.Z.); (Y.Z.); (X.Z.)
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650031, China
| | - Xiaoyuan Zeng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China; (J.L.); (S.X.); (A.Z.); (Y.Z.); (X.Z.)
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650031, China
| | - Peng Dong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China; (J.L.); (S.X.); (A.Z.); (Y.Z.); (X.Z.)
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650031, China
| |
Collapse
|
4
|
Goswami A, Ghosh D, Garai A, Pradhan D, Biradha K. Bimetallic Organic Frameworks via In Situ Solvothermal Sol-Gel-Crystal and Sol-Crystal Transformation as Durable Electrocatalysts for Oxygen Reduction Reaction. Inorg Chem 2024; 63:7303-7313. [PMID: 38597285 DOI: 10.1021/acs.inorgchem.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The in situ solvothermal conversion of metal-organic gels (MOGs) to crystalline metal-organic frameworks (MOFs) represents a versatile and ingenious strategy that has been employed for the synthesis of MOF materials with specific morphologies, high yield, and improved functional properties. Herein, we have adopted an in situ solvothermal conversion of bimetallic MOGs to crystalline bimetallic MOFs with the aim of introducing a redox-active metal heterogeneity into the monometallic counterpart. The formation of bimetallic NiZn-MOF and CoZn-MOF via in situ solvothermal sol-gel-crystal and sol-crystal transformation is found to depend on the solvent systems used. The sol-to-gel-to-crystal transformation of NiZn-MOF via the formation of NiZn-MOG is found to occur through the gradual disruption of gel fibers leading to subsequent formation of microcrystals and single crystals of NiZn-MOF. These bimetallic MOFs and MOGs serve as promising electrocatalysts for oxygen reduction reaction (ORR) with an excellent methanol tolerance property, which can be attributed to the enhanced mass and charge transfer, higher oxygen vacancies, and bimetallic synergistic interactions among the heterometals. This work demonstrates a convenient strategy for producing bimetallic MOGs to MOFs through the introduction of a redox-active metal heterogeneity in the inorganic hybrid functional materials for fundamental and applied research. Our results connect MOGs and MOFs which have been regarded as having opposite physical states, that is, soft vs hard, and provide promising structural correlation between MOGs and MOFs at the molecular level.
Collapse
Affiliation(s)
- Anindita Goswami
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Debanjali Ghosh
- Materials Science Centre, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Abhijit Garai
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Debabrata Pradhan
- Materials Science Centre, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Kumar Biradha
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| |
Collapse
|
5
|
Xie Z, Xu S, Li L, Gong S, Wu X, Xu D, Mao B, Zhou T, Chen M, Wang X, Shi W, Song S. Well-defined diatomic catalysis for photosynthesis of C 2H 4 from CO 2. Nat Commun 2024; 15:2422. [PMID: 38499562 PMCID: PMC10948895 DOI: 10.1038/s41467-024-46745-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.
Collapse
Affiliation(s)
- Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaojie Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
6
|
Pedersen A, Bagger A, Barrio J, Maillard F, Stephens IEL, Titirici MM. Atomic metal coordinated to nitrogen-doped carbon electrocatalysts for proton exchange membrane fuel cells: a perspective on progress, pitfalls and prospectives. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:23211-23222. [PMID: 38013915 PMCID: PMC10629202 DOI: 10.1039/d3ta04711c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells require reduced construction costs to improve commercial viability, which can be fueled by elimination of platinum as the O2 reduction electrocatalyst. The past 10 years has seen significant developments in synthesis, characterisation, and electrocatalytic performance of the most promising alternative electrocatalyst; single metal atoms coordinated to nitrogen-doped carbon (M-N-C). In this Perspective we recap some of the important achievements of M-N-Cs in the last decade, as well as discussing current knowledge gaps and future research directions for the community. We provide a new outlook on M-N-C stability and atomistic understanding with a set of original density functional theory simulations.
Collapse
Affiliation(s)
- Angus Pedersen
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Alexander Bagger
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Physics, Technical University of Denmark Kongens Lyngby 2800 Denmark
| | - Jesús Barrio
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Frédéric Maillard
- University Grenoble Alpes, University Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University 2-1-1 Katahira, Aobaku Sendai Miyagi 980-8577 Japan
| |
Collapse
|
7
|
Zhao H, Lv X, Wang Y. Realistic Modeling of the Electrocatalytic Process at Complex Solid-Liquid Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303677. [PMID: 37749877 PMCID: PMC10646274 DOI: 10.1002/advs.202303677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H-bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces, and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure-activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xinmao Lv
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yang‐Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
8
|
Goldman N, Fried LE, Lindsey RK, Pham CH, Dettori R. Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials. J Chem Phys 2023; 158:144112. [PMID: 37061479 DOI: 10.1063/5.0141616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a systematic approach for their development. In this work, we discuss the use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to create rapidly parameterized DFTB models, which exhibit strong transferability due to the inclusion of many-body interactions that might otherwise be inaccurate. We apply our modeling approach to silicon polymorphs and review previous work on titanium hydride. We also review the creation of a general purpose DFTB/ChIMES model for organic molecules and compounds that approaches hybrid functional and coupled cluster accuracy with two orders of magnitude fewer parameters than similar neural network approaches. In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method with orders of magnitude improvement in computational cost. Our developments provide a way to create computationally efficient and highly accurate simulations over varying extreme thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly, and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Rebecca K Lindsey
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - C Huy Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Dettori
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
9
|
Cepitis R, Kongi N, Rossmeisl J, Ivaništšev V. Surface Curvature Effect on Dual-Atom Site Oxygen Electrocatalysis. ACS ENERGY LETTERS 2023; 8:1330-1335. [PMID: 36937790 PMCID: PMC10013177 DOI: 10.1021/acsenergylett.3c00068] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Improved oxygen electrocatalysis is crucial for the ever-growing energy demand. Metal-nitrogen-carbon (M-N-C) materials are promising candidates for catalysts. Their activity is tunable via varying electronic and geometric properties, such as porosity. Because of the difficulty in modeling porosity, M-N-Cs with variable surface curvature remained largely unexplored. In this work, we developed a realistic in-pore dual-atom site M-N-C model and applied density functional theory to investigate the surface curvature effect on oxygen reduction and evolution reactions. We show that surface curving tailors both scaling relations and energy barriers. Thus, we predict that adjusting the surface curvature can improve the catalytic activity toward mono- and bifunctional oxygen electrocatalysis.
Collapse
Affiliation(s)
- Ritums Cepitis
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Nadezda Kongi
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jan Rossmeisl
- Department
of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Vladislav Ivaništšev
- Department
of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
11
|
Exner KS. Steering Selectivity in the Four-Electron and Two-Electron Oxygen Reduction Reactions: On the Importance of the Volcano Slope. ACS PHYSICAL CHEMISTRY AU 2023; 3:190-198. [PMID: 36968451 PMCID: PMC10037446 DOI: 10.1021/acsphyschemau.2c00054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
In the last decade, trends for competing electrocatalytic processes have been largely captured by volcano plots, which can be constructed by the analysis of adsorption free energies as derived from electronic structure theory in the density functional theory approximation. One prototypical example refers to the four-electron and two-electron oxygen reduction reactions (ORRs), resulting in the formation of water and hydrogen peroxide, respectively. The conventional thermodynamic volcano curve illustrates that the four-electron and two-electron ORRs reveal the same slopes at the volcano legs. This finding is related to two facts, namely, that only a single mechanistic description is considered in the model, and electrocatalytic activity is assessed by the concept of the limiting potential, a simple thermodynamic descriptor evaluated at the equilibrium potential. In the present contribution, the selectivity challenge of the four-electron and two-electron ORRs is analyzed, thereby accounting for two major expansions. First, different reaction mechanisms are included into the analysis, and second, G max(U), a potential-dependent activity measure that factors overpotential and kinetic effects into the evaluation of adsorption free energies, is applied for approximation of electrocatalytic activity. It is illustrated that the slope of the four-electron ORR is not constant at the volcano legs but rather is prone to change as soon as another mechanistic pathway is energetically preferred or another elementary step becomes the limiting one. Due to the varying slope of the four-electron ORR volcano, a trade-off between activity and selectivity for hydrogen peroxide formation is observed. It is demonstrated that the two-electron ORR is energetically preferred at the left and right volcano legs, thus opening a new strategy for the selective formation of H2O2 by an environmentally benign route.
Collapse
Affiliation(s)
- Kai S. Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
12
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Wordsworth J, Benedetti TM, Somerville SV, Schuhmann W, Tilley RD, Gooding JJ. The Influence of Nanoconfinement on Electrocatalysis. Angew Chem Int Ed Engl 2022; 61:e202200755. [PMID: 35403340 PMCID: PMC9401583 DOI: 10.1002/anie.202200755] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/02/2023]
Abstract
The use of nanoparticles and nanostructured electrodes are abundant in electrocatalysis. These nanometric systems contain elements of nanoconfinement in different degrees, depending on the geometry, which can have a much greater effect on the activity and selectivity than often considered. In this Review, we firstly identify the systems containing different degrees of nanoconfinement and how they can affect the activity and selectivity of electrocatalytic reactions. Then we follow with a fundamental understanding of how electrochemistry and electrocatalysis are affected by nanoconfinement, which is beginning to be uncovered, thanks to the development of new, atomically precise manufacturing and fabrication techniques as well as advances in theoretical modeling. The aim of this Review is to help us look beyond using nanostructuring as just a way to increase surface area, but also as a way to break the scaling relations imposed on electrocatalysis by thermodynamics.
Collapse
Affiliation(s)
- Johanna Wordsworth
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| | - Tania M. Benedetti
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| | - Samuel V. Somerville
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätstrasse 15044780BochumGermany
| | - Richard D. Tilley
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydney2052Australia
| | - J. Justin Gooding
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| |
Collapse
|
14
|
Wordsworth J, Benedetti TM, Somerville SV, Schuhmann W, Tilley RD, Gooding JJ. The Influence of Nanoconfinement on Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Wolfgang Schuhmann
- Ruhr-Universitat Bochum Analytische Chemie Universitätsstr 150 44780 Bochum GERMANY
| | - Richard D. Tilley
- UNSW: University of New South Wales Electron Microscopy Unit AUSTRALIA
| | | |
Collapse
|
15
|
Rosen AS, Notestein JM, Snurr RQ. Realizing the data-driven, computational discovery of metal-organic framework catalysts. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
17
|
Oppenheim JJ, Mancuso JL, Wright AM, Rieth AJ, Hendon CH, Dincǎ M. Divergent Adsorption Behavior Controlled by Primary Coordination Sphere Anions in the Metal-Organic Framework Ni 2X 2BTDD. J Am Chem Soc 2021; 143:16343-16347. [PMID: 34596390 DOI: 10.1021/jacs.1c07449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CO, ethylene, and H2 demonstrate divergent adsorption enthalpies upon interaction with a series of anion-exchanged Ni2X2BTDD materials (X = OH, F, Cl, Br; H2BTDD = bis(1H-1,2,3-triazolo[4,5-b][4',5'-i])dibenzo[1,4]dioxin)). The dissimilar responses of these conventional π-acceptor gaseous ligands are in contrast with the typical behavior that may be expected for gas sorption in metal-organic frameworks (MOFs), which generally follows similar periodic trends for a given set of systematic changes to the host MOF structure. A combination of computational and spectroscopic data reveals that the divergent behavior, especially between CO and ethylene, stems from a predominantly σ-donor interaction between the former and Ni2+ and a π-acceptor interaction for the latter. These findings will facilitate further deliberate postsynthetic modifications of MOFs with open metal sites to control the equilibrium selectivity of gas sorption.
Collapse
Affiliation(s)
- Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| | - Jenna L Mancuso
- Materials Science Institute, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Ashley M Wright
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| | - Adam J Rieth
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| | - Christopher H Hendon
- Materials Science Institute, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Lucchetti LE, Almeida MO, de Almeida JM, Autreto PA, Honorio KM, Santos MC. Density functional theory studies of oxygen reduction reaction for hydrogen peroxide generation on Graphene-Based catalysts. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Vennelakanti V, Nandy A, Kulik HJ. The Effect of Hartree-Fock Exchange on Scaling Relations and Reaction Energetics for C–H Activation Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01482-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal 2021. [DOI: 10.1038/s41929-021-00650-w] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Goldman N, Kweon KE, Sadigh B, Heo TW, Lindsey RK, Pham CH, Fried LE, Aradi B, Holliday K, Jeffries JR, Wood BC. Semi-Automated Creation of Density Functional Tight Binding Models through Leveraging Chebyshev Polynomial-Based Force Fields. J Chem Theory Comput 2021; 17:4435-4448. [PMID: 34128678 DOI: 10.1021/acs.jctc.1c00172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional tight binding (DFTB) is an attractive method for accelerated quantum simulations of condensed matter due to its enhanced computational efficiency over standard density functional theory (DFT) approaches. However, DFTB models can be challenging to determine for individual systems of interest, especially for metallic and interfacial systems where different bonding arrangements can lead to significant changes in electronic states. In this regard, we have created a rapid-screening approach for determining systematically improvable DFTB interaction potentials that can yield transferable models for a variety of conditions. Our method leverages a recent reactive molecular dynamics force field where many-body interactions are represented by linear combinations of Chebyshev polynomials. This allows for the efficient creation of multi-center representations with relative ease, requiring only a small investment in initial DFT calculations. We have focused our workflow on TiH2 as a model system and show that a relatively small training set based on unit-cell-sized calculations yields a model accurate for both bulk and surface properties. Our approach is easy to implement and can yield reliable DFTB models over a broad range of thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Kyoung E Kweon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Babak Sadigh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tae Wook Heo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rebecca K Lindsey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - C Huy Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, P.O.B. 330440, Bremen D-28334, Germany
| | - Kiel Holliday
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jason R Jeffries
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Brandon C Wood
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
22
|
Wu F, Zhan S, Yang L, Zhuo Z, Wang X, Li X, Luo Y, Jiang J. Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction. J Phys Chem Lett 2021; 12:2252-2258. [PMID: 33635648 DOI: 10.1021/acs.jpclett.1c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A major bottleneck of large-scale water splitting for hydrogen production is the lack of catalysts for the oxygen evolution reaction (OER) with low cost and high efficiency. In this work, we proposed an electrocatalyst of a curved carbon nanocone embedded with two TMN4 active sites (TM = transition metal) and used first-principles calculations to investigate their OER mechanisms and catalytic activities. In the particular spatial confinement of a curved nanocone, we found that the distance between intermediates adsorbed on two active sites is shorter than the distance between these two active sites. This finding can be used to enhance OER activity by distance-dependent interaction between intermediates through two different mechanisms. The first mechanism in which an O2 molecule is generated from two neighboring *O intermediates exhibits a linear activity trend, and the lowest overpotential is 0.27 V for the FeN4 system. In the second mechanism, selective stabilization of the *OOH intermediate is realized, leading to a new scaling relationship (ΔG*OOH = ΔG*OH + 3.04 eV) associated with a modified OER activity volcano (theoretical volcano apex at 0.29 V). The studied mechanisms of the spatial confinement of a carbon nanocone provide a new perspective for designing efficient OER catalysts.
Collapse
Affiliation(s)
- Fan Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaoqi Zhan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Li Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Zhiwen Zhuo
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|