1
|
Dery S, Ehinger C, Roudin J, Kakiuchi Y, Gioffrè D, Copéret C. 13C Chemical Shift of N-Heterocyclic Carbenes in Coinage Metal(I) Complexes and Clusters: trans-Influence and Spin-Orbit Coupling. J Am Chem Soc 2025. [PMID: 40378069 DOI: 10.1021/jacs.5c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
N-Heterocyclic carbenes (NHCs) are versatile ligands in organometallic chemistry, prized for their strong σ-donating and tunable electronic properties. They are used to stabilize a wide range of motifs, including clusters and nanoparticles, based in particular on coinage metals─Cu, Ag, and Au. Notably, the carbene 13C NMR isotropic chemical shift (δiso) of NHC-coinage metal complexes varies significantly across these elements, reflecting the nuanced interplay of electronic and structural factors. Here, we study the carbene carbon chemical shift in NHC-Au(I)-X complexes (X = H, OH, halides, CN, N3, and neutral ligands such as pyridine and NHC) compared to the Cu and Ag congeners. Density functional theory calculations are used to analyze the chemical shielding tensor components, revealing that stronger σ-donor X-ligands lead to greater deshielding of δiso through enhanced paramagnetic contributions and, for Au, spin-orbit contributions of comparable magnitude. Moreover, a correlation between the spin-orbit contribution to the chemical shift (σso) and the Au-carbene bond distance highlights the critical role of trans-influence in modulating spin-orbit coupling and the overall chemical shift. Analysis of σso shows that stronger σ-donor ligands, associated with a greater trans-influence and elongated Au-carbene bond, lead to a higher-lying NHC-Au σ-bond and lower-lying π*-orbital, ultimately yielding greater deshielding and higher 13C chemical shift. This work provides insight into how structural and electronic factors govern carbene chemical shifts in NHC-based Au complexes and clusters, establishing a direct link between NMR spectroscopic descriptors and electronic structure, thus opening avenues for developing structure-activity relationships in catalysis and materials science.
Collapse
Affiliation(s)
- Shahar Dery
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Christian Ehinger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Jeremy Roudin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
2
|
Kimball JJ, Schurko RW. Acquisition of 1H-Detected 103Rh and 99Ru Solid-State Nuclear Magnetic Resonance Spectra in Stationary Samples. J Phys Chem Lett 2025; 16:4596-4601. [PMID: 40310694 DOI: 10.1021/acs.jpclett.5c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The platinum group elements (PGEs) are among the most important in the periodic table due to their critical roles in a diverse array of applications. There is great interest in using solid-state nuclear magnetic resonance (SSNMR) for studying the structure and bonding in PGE complexes from the perspective of the metal nuclides, yet this has been limited to date. This is largely due to the inherently low Larmor frequencies of many of the PGE nuclides in addition to factors such as low natural abundances and/or large anisotropic interactions that reduce their receptivity to the NMR experiment. In this work, we demonstrate for the first time the ability to indirectly detect (with 1H, I = 1/2) wideline SSNMR powder patterns from stationary samples of compounds featuring 103Rh (S = 1/2) and 99Ru (S = 5/2) using the recently introduced progressive saturation of the proton reservoir (PROSPR) pulse sequence.
Collapse
Affiliation(s)
- James J Kimball
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
3
|
Gao P, Ji Y, Hou G. Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives. J Am Chem Soc 2025; 147:2919-2937. [PMID: 39807849 PMCID: PMC11783548 DOI: 10.1021/jacs.4c10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries. Herein, we present an overview of the current state of the art from an NMR perspective. We begin with a brief introduction to contemporary ssNMR methodologies. Subsequently, we introduce and provide critical reviews on the applications of different ssNMR techniques in the detailed characterizations of the surface local structures, disorders, defects, active sites, and acidity on metal oxide nanoparticles, as well as the revelation of mechanisms behind some intriguing chemistries that occur on the surfaces, referencing representative recent studies. Finally, we address the challenges beyond the current status and provide perspectives on the future development and application of advanced ssNMR methodologies in this emerging field.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Ji
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
4
|
Kakiuchi Y, Docherty SR, Berkson ZJ, Yakimov AV, Wörle M, Copéret C, Aghazada S. Origin of Reactivity Trends of an Elusive Metathesis Intermediate from NMR Chemical Shift Analysis of Surrogate Analogues. J Am Chem Soc 2024; 146:20168-20182. [PMID: 38980045 DOI: 10.1021/jacs.4c05193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Olefin metathesis has become an efficient tool in synthetic organic chemistry to build carbon-carbon bonds, thanks to the development of Grubbs- and Schrock-type catalysts. Olefin coordination, a key and often rate-determining elementary step for d0 Schrock-type catalysts, has been rarely explored due to the lack of accessible relevant molecular analogues. Herein, we present a fully characterized surrogate of this key olefin-coordination intermediate, namely, a cationic d0 tungsten oxo-methylidene complex bearing two N-heterocyclic carbene ligands─[WO(CH2)Cl(IMes)2](OTf) (1) (IMes = 1,3-dimesitylimidazole-2-ylidene, OTf-triflate counteranion), resulting in a trigonal bipyramidal (TBP) geometry, along with its neutral octahedral analogue [WO(CH2)Cl2(IMes)2] (2)─and an isostructural oxo-methylidyne derivative [WO(CH)Cl(IMes)2] (3). The analysis of their solid-state 13C and 183W MAS NMR signatures, along with computed 17O NMR parameters, helps to correlate their electronic structures with NMR patterns and evidences the importance of the competition among the three equatorial ligands in the TBP complexes. Anchored on experimentally obtained NMR parameters for 1, computational analysis of a series of olefin coordination intermediates highlights the interplay between σ- and π-donating ligands in modulating their stability and further paralleling their reactivity. NMR spectroscopy descriptors reveal the origin for the advantage of the dissymmetry in σ-donating abilities of ancillary ligands in Schrock-type catalysts: weak σ-donors avoid the orbital-competition with the oxo ligand upon formation of a TBP olefin-coordination intermediate, while stronger σ-donors compromise M≡O triple bonding and thus render olefin coordination step energy demanding.
Collapse
Affiliation(s)
- Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sadig Aghazada
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
5
|
Perras FA, Paterson AL. Automatic fitting of multiple-field solid-state NMR spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 131:101935. [PMID: 38603990 PMCID: PMC11959676 DOI: 10.1016/j.ssnmr.2024.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
The NMR lineshapes produced by half-integer quadrupolar nuclei are sensitive to 11 distinct fit parameters per inequivalent site. To date, automatic fitting routines have failed to replace manual parameter insertion and evaluation due to the importance of local minima and the need for fitting multiple-field magic-angle spinning (MAS) and static spectra simultaneously. Herein we introduce a new tool, AMES-Fit (Automatic Multiple Experiment Simulation and Fitting), to automatically find the global best-fit simulation parameters for a series of multiple-field NMR lineshapes. AMES-Fit uses an adaptive step size random search algorithm to dynamically probe parameter space and requires minimal human input. The best fits are obtained in a few minutes of computation time that would otherwise have required several person-hours of work. The program is freely available and open-source.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA, 50011, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011, United States.
| | - Alexander L Paterson
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, United States
| |
Collapse
|
6
|
Kakiuchi Y, Karmakar PS, Roudin J, Tonks IA, Copéret C. Bonding and Reactivity of d 0 Transition Metal Imido Complexes Encoded in Their 15N NMR Signatures. J Am Chem Soc 2024; 146:9860-9870. [PMID: 38534051 PMCID: PMC11059434 DOI: 10.1021/jacs.3c14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Terminal imido complexes containing metal-nitrogen multiple bonds have been widely used in organometallic chemistry and homogeneous catalysis. The role of terminal imido ligands spans from reactive sites to spectator motifs, largely depending on the nature of the metal center and its specific coordination sphere. Aiming at identifying reactivity descriptors for M-N multiple bonds, we herein explore solid-state 15N NMR spectroscopy (ssNMR) on early transition metal terminal imido complexes augmented by computational studies and show that the asymmetry parameter, κ (skew, 1 ≥ κ ≥ -1), readily available from experiments or calculations, is diagnostic for the reactivity of M-N multiple bonds in imido complexes. While inert imido ligands exhibit skew values (κ) close to 1, highly reactive imido moieties display significantly lower skew values (κ ≪ 1) as found in metallocene or bis-imido complexes. Natural chemical shielding analysis shows that skew values away from 1 are associated with an asymmetric development of π-orbitals around the M-N multiple bond of the imido moiety, with a larger double-bond character for reactive imido. Notably, this descriptor does not directly relate to the M-N-C bond angle, illustrating the shortcoming of evaluating bonding and hybridization from geometrical parameters alone. Overall, this descriptor enables to obtain direct experimental evidence for the π-loading effect seen in bis(imido) and related complexes, thus explaining their bonding/reactivity.
Collapse
Affiliation(s)
- Yuya Kakiuchi
- Department of Chemistiy and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Partha Sarathi Karmakar
- Department of Chemistry, University of Minnesota–Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Jérémy Roudin
- Department of Chemistiy and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota–Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Christophe Copéret
- Department of Chemistiy and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
7
|
Yakimov AV, Kaul CJ, Kakiuchi Y, Sabisch S, Bolner FM, Raynaud J, Monteil V, Berruyer P, Copéret C. Well-Defined Ti Surface Sites in Ziegler-Natta Pre-Catalysts from 47/49Ti Solid-State Nuclear Magnetic Resonance Spectroscopy. J Phys Chem Lett 2024; 15:3178-3184. [PMID: 38478985 DOI: 10.1021/acs.jpclett.3c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Treatment of Ziegler-Natta (ZN) catalysts with BCl3 improves their activity by increasing the number of active sites. Here we show how 47/49Ti solid-state nuclear magnetic resonance (NMR) spectroscopy enables us to understand the electronic structure of the Ti surface sites present in such treated ZN pre-catalysts, prior to activation with alkyl aluminum. High-field (21.1 T) and low-temperature (∼100 K) NMR augmented by DFT modeling on the pre-catalyst and corresponding molecular analogues enables the detection of 47/49Ti NMR signatures and a molecular level understanding of the electronic structure of Ti surface sites. The associated Ti surface sites exhibit 49Ti NMR signatures (δiso, exp = -170 ppm; CQ, exp = 9.3 MHz; κ = 0.05) corresponding to well-defined fully chlorinated hexacoordinated Ti sites adsorbed on a distorted surface of the MgCl2 support, formed upon post-treatment with BCl3 and removal of the alkoxo ligands, paralleling the increased polymerization activity.
Collapse
Affiliation(s)
- Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Surface & Interfacial Chemistry, Eidgenössische Technische Hochschule Zürich, HCI, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Christoph J Kaul
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Surface & Interfacial Chemistry, Eidgenössische Technische Hochschule Zürich, HCI, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Surface & Interfacial Chemistry, Eidgenössische Technische Hochschule Zürich, HCI, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Sebastian Sabisch
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Surface & Interfacial Chemistry, Eidgenössische Technische Hochschule Zürich, HCI, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Felipe Morais Bolner
- PolyCatMat Team, UMR 5128 - CP2M (Catalysis, PolymerizationProcesses & Materials), Université de Lyon, CNRS, Université Lyon 1, CPE Lyon, 69616 Villeurbanne, France
| | - Jean Raynaud
- PolyCatMat Team, UMR 5128 - CP2M (Catalysis, PolymerizationProcesses & Materials), Université de Lyon, CNRS, Université Lyon 1, CPE Lyon, 69616 Villeurbanne, France
| | - Vincent Monteil
- PolyCatMat Team, UMR 5128 - CP2M (Catalysis, PolymerizationProcesses & Materials), Université de Lyon, CNRS, Université Lyon 1, CPE Lyon, 69616 Villeurbanne, France
| | - Pierrick Berruyer
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Surface & Interfacial Chemistry, Eidgenössische Technische Hochschule Zürich, HCI, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
8
|
Hansen C, Docherty SR, Cao W, Yakimov AV, Copéret C. 109Ag NMR chemical shift as a descriptor for Brønsted acidity from molecules to materials. Chem Sci 2024; 15:3028-3032. [PMID: 38404381 PMCID: PMC10882518 DOI: 10.1039/d3sc04067d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Molecular-level understanding of the acid/base properties of heterogeneous catalysts requires the development of selective spectroscopic probes to establish structure-activity relationships. In this work we show that substituting the surface protons in oxide supports by isolobal N-heterocyclic carbene (NHC) Ag cations and measuring their 109Ag nuclear magnetic resonance (NMR) signatures enables to probe the speciation and to evaluate the corresponding Brønsted acidity of the substituted OH surface sites. Specifically, a series of silver N-heterocyclic carbene (NHC) Ag(i) complexes of general formula [(NHC)AgX] are synthesized and characterized, showing that the 109Ag NMR chemical shift of the series correlates with the Brønsted acidity of the conjugate acid of X- (i.e., HX), thus establishing an acidity scale based on 109Ag NMR chemical shift. The methodology is then used to evaluate the Brønsted acidity of the OH sites of representative oxide materials using Dynamic Nuclear Polarization (DNP-)enhanced solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Colin Hansen
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1-5 CH-8093 Zurich Switzerland
| | - Scott R Docherty
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1-5 CH-8093 Zurich Switzerland
| | - Weicheng Cao
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1-5 CH-8093 Zurich Switzerland
| | - Alexander V Yakimov
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1-5 CH-8093 Zurich Switzerland
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1-5 CH-8093 Zurich Switzerland
| |
Collapse
|
9
|
Berkson ZJ, Bernhardt M, Copéret C. Solid-State 183W NMR Spectroscopy as a High-Resolution Probe of Polyoxotungstate Structures and Dynamics. J Phys Chem Lett 2024; 15:1950-1955. [PMID: 38346175 DOI: 10.1021/acs.jpclett.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Polyoxometalates such as ammonium paratungstate (APT) constitute an important class of metal oxides with applications for catalysis, (opto)electronics, and functional materials. Structural analyses of solid polyoxometalates mostly rely on X-ray or neutron diffraction techniques, which are largely limited to compounds that can be isolated with long-range crystallographic order. While 183W NMR has been shown to probe polyoxotungstate structures and dynamics in solution, its application to solids has been extremely limited. Here, state-of-the-art methods for the detection of solid-state 183W NMR spectra are tested and compared for APT in different hydration states. The highly resolved solid-state spectra distinguish each crystallographically distinct site in the tungstate structure. Furthermore, the 183W chemical shifts are shown to be highly sensitive to the local structure, dynamics, and symmetry of APT, establishing solid-state 183W NMR spectroscopy as a potent probe for analysis of polyoxotungstates and other tungsten-derived materials to complement solution NMR and diffraction-based techniques.
Collapse
Affiliation(s)
- Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Moritz Bernhardt
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
10
|
Xiong J, Cui R, Li Z, Zhang W, Zhang R, Fu Z, Liu X, Li Z, Chen K, Zheng M. Transfer learning enhanced graph neural network for aldehyde oxidase metabolism prediction and its experimental application. Acta Pharm Sin B 2024; 14:623-634. [PMID: 38322350 PMCID: PMC10840476 DOI: 10.1016/j.apsb.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/07/2023] [Accepted: 10/11/2023] [Indexed: 02/08/2024] Open
Abstract
Aldehyde oxidase (AOX) is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics. AOX-mediated metabolism can result in unexpected outcomes, such as the production of toxic metabolites and high metabolic clearance, which can lead to the clinical failure of novel therapeutic agents. Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability. In this study, we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism. AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction, while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks. AOMP significantly outperformed the benchmark methods in both cross-validation and external testing. Using AOMP, we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability, which were validated through in vitro experiments. Furthermore, for the convenience of the community, we established the first online service for AOX metabolism prediction based on AOMP, which is freely available at https://aomp.alphama.com.cn.
Collapse
Affiliation(s)
- Jiacheng Xiong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojun Li
- College of Computer and Information Engineering, Dezhou University, Dezhou 253023, China
- AI Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215000, China
| | - Wei Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runze Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Liu
- AI Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215000, China
| | - Zhenghao Li
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Gui X, Sorbelli D, Caló FP, Leutzsch M, Patzer M, Fürstner A, Bistoni G, Auer AA. Elucidating the Electronic Nature of Rh-based Paddlewheel Catalysts from 103 Rh NMR Chemical Shifts: Insights from Quantum Mechanical Calculations. Chemistry 2024; 30:e202301846. [PMID: 37721802 DOI: 10.1002/chem.202301846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
The tremendous importance of dirhodium paddlewheel complexes for asymmetric catalysis is largely the result of an empirical optimization of the chiral ligand sphere about the bimetallic core. It was only recently that a H(C)Rh triple resonance 103 Rh NMR experiment provided the long-awaited opportunity to examine - with previously inconceivable accuracy - how variation of the ligands impacts on the electronic structure of such catalysts. The recorded effects are dramatic: formal replacement of only one out of eight O-atoms surrounding the metal centers in a dirhodium tetracarboxylate by an N-atom results in a shielding of the corresponding Rh-site of no less than 1000 ppm. The current paper provides the theoretical framework that allows this and related experimental observations made with a set of 19 representative rhodium complexes to be interpreted. In line with symmetry considerations, it is shown that the shielding tensor responds only to the donor ability of the equatorial ligands along the perpendicular principal axis. Axial ligands, in contrast, have no direct effect on shielding but may come into play via the electronicc i s ${cis}$ -effect that they exert onto the neighboring equatorial sites. On top of these fundamental interactions, charge redistribution within the core as well as the electronict r a n s ${trans}$ -effect of ligands of different donor strengths is reflected in the recorded 103 Rh NMR shifts.
Collapse
Affiliation(s)
- Xin Gui
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Diego Sorbelli
- Dipartmento di Chimica, Biologia e Biotechnologie, Università Degli Studi Di Perugia, 06123, Perugia, Italy
| | - Fabio P Caló
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Michael Patzer
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
- Dipartmento di Chimica, Biologia e Biotechnologie, Università Degli Studi Di Perugia, 06123, Perugia, Italy
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| |
Collapse
|
12
|
Sabisch S, Kakiuchi Y, Docherty SR, Yakimov AV, Copéret C. Geometry and Local Environment of Surface Sites in Vanadium-Based Ziegler-Natta Catalysts from 51V Solid-State NMR Spectroscopy. J Am Chem Soc 2023; 145:25595-25603. [PMID: 37962437 DOI: 10.1021/jacs.3c06200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Since its emergence over 50 years ago, the structure of surface sites in Ziegler-Natta catalysts, which are responsible for a major fraction of the world's supply of polyethylene (PE) and polypropylene (PP), has remained elusive. This is in part due to the complexity of these systems that involve multiple synthetic steps and components, namely, the MgCl2 support, a transition-metal chloride, and several organic modifiers, known as donors, that are used prior and in some instances during the activation step with alkyl aluminum. Due to the favorable nuclear magnetic resonance (NMR) properties of V and its use in Ziegler-Natta catalysts, we utilize 51V solid-state NMR spectroscopy to investigate the structure of VOCl3 on MgCl2(thf)1.5. The resulting catalyst shows ethylene polymerization activity similar to that of its Ti analogues. Using carefully benchmarked density functional theory (DFT) calculations, the experimental 51V NMR signature was analyzed to elucidate the structure of the surface sites. Using this approach, we demonstrate that the 51V NMR signature contains information about the coordination environment, i.e., the type of ancillary ligand, and the morphology of the MgCl2 support. Analysis of the NMR signature shows that the adsorption of VOCl3 on MgCl2(thf)1.5 generates a well-defined hexacoordinated V-oxo species containing one alkoxy and four chloride ligands, whose local geometry results from the interaction with an amorphous MgCl2 surface. This study illustrates how NMR spectroscopy, which is highly sensitive to the local environment of the investigated nuclei, here V, enables us to identify the exact coordination sphere and to address the effect of the support morphology on surface site structures.
Collapse
Affiliation(s)
- Sebastian Sabisch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Lätsch L, Kaul CJ, Yakimov AV, Müller IB, Hassan A, Perrone B, Aghazada S, Berkson ZJ, De Baerdemaeker T, Parvulescu AN, Seidel K, Teles JH, Copéret C. NMR Signatures and Electronic Structure of Ti Sites in Titanosilicalite-1 from Solid-State 47/49Ti NMR Spectroscopy. J Am Chem Soc 2023. [PMID: 37418311 DOI: 10.1021/jacs.2c09867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Although titanosilicalite-1 (TS-1) is among the most successful oxidation catalysts used in industry, its active site structure is still debated. Recent efforts have mostly focused on understanding the role of defect sites and extraframework Ti. Here, we report the 47/49Ti signature of TS-1 and molecular analogues [Ti(OTBOS)4] and [Ti(OTBOS)3(OiPr)] using novel MAS CryoProbe to enhance the sensitivity. While the dehydrated TS-1 displays chemical shifts similar to those of molecular homologues, confirming the tetrahedral environment of Ti consistent with X-ray absorption spectroscopy, it is associated with a distribution of larger quadrupolar coupling constants, indicating an asymmetric environment. Detailed computational studies on cluster models highlights the high sensitivity of the NMR signatures (chemical shift and quadrupolar coupling constant) to small local structural changes. These calculations show that, while it will be difficult to distinguish mono- vs dinuclear sites, the sensitivity of the 47/49Ti NMR signature should enable distinguishing the Ti location among specific T site positions.
Collapse
Affiliation(s)
- Lukas Lätsch
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Christoph J Kaul
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Alexander V Yakimov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Imke B Müller
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Alia Hassan
- Bruker Switzerland, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| | - Barbara Perrone
- Bruker Switzerland, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| | - Sadig Aghazada
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Zachariah J Berkson
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | | | | | - Karsten Seidel
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - J Henrique Teles
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
- Bruker Switzerland, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| |
Collapse
|
14
|
Castro AC, Cascella M, Perutz RN, Raynaud C, Eisenstein O. Solid-State 19F NMR Chemical Shift in Square-Planar Nickel-Fluoride Complexes Linked by Halogen Bonds. Inorg Chem 2023; 62:4835-4846. [PMID: 36920236 PMCID: PMC10052355 DOI: 10.1021/acs.inorgchem.2c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 03/16/2023]
Abstract
The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the 19F SSNMR chemical shifts previously measured in a family of square-planar trans NiII-L2-iodoaryl-fluoride (L = PEt3) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; Chem. Sci. 2018, 9, 3767-3781]. To understand how the 19F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in trans-[NiF(2,3,5,6-C6F4I)(PEt3)2], trans-[NiF(2,3,4,5-C6F4I)(PEt3)2], and trans-[NiF(C6F5)(PEt3)2] in the solid state, where a XB is present in the two former systems but not in the last. We perform the 19F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σNi-F* orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ33) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.
Collapse
Affiliation(s)
- Abril C. Castro
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Michele Cascella
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Robin N. Perutz
- Department
of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom
| | | | - Odile Eisenstein
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
- ICGM,
Université Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
15
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
16
|
Handford RC, Nguyen TT, Teat SJ, Britt RD, Tilley TD. Direct Transformation of SiH 4 to a Molecular L(H) 2Co═Si═Co(H) 2L Silicide Complex. J Am Chem Soc 2023; 145:3031-3039. [PMID: 36696099 DOI: 10.1021/jacs.2c11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The synthesis of bimetallic molecular silicide complexes is reported, based on the use of multiple Si-H bond activations in SiH4 at the metal centers of 14-electron LCoI fragments (L = Tp″, HB(3,5-diisopropylpyrazolyl)3-; [BP2tBuPz], PhB(CH2PtBu2)2(pyrazolyl)). Upon exposure of (Tp″Co)2(μ-N2) (1) to SiH4, a mixture of (Tp″Co)2(μ-H) (2) and (Tp″Co)2(μ-H)2 (3) was formed and no evidence for Si-H oxidative addition products was observed. In contrast, [BP2tBuPz]-supported Co complexes led to Si-H oxidative additions with the generation of silylene and silicide complexes as products. Notably, the reaction of ([BP2tBuPz]Co)2(μ-N2) (5) with SiH4 gave the dicobalt silicide complex [BP2tBuPz](H)2Co═Si═Co(H)2[BP2tBuPz] (8) in high yield, representing the first direct route to a symmetrical bimetallic silicide. The effect of the [BP2tBuPz] ligand on Co-Si bonding in 7 and 8 was explored by analysis of solid-state molecular structures and density functional theory (DFT) investigations. Upon exposure to CO or DMAP (DMAP = 4-dimethylaminopyridine), 8 converted to the corresponding [BP2tBuPz]Co(L)x adducts (L = CO, x = 2; L = DMAP, x = 1) with concomitant loss of SiH4, despite the lack of significant Si-H interactions in the starting complex. On heating to 60 °C, 8 underwent reaction with MeCl to produce small quantities of MexSiH4-x (x = 1-3), demonstrating functionalization of the μ-silicon atom in a molecular silicide to form organosilanes.
Collapse
Affiliation(s)
- Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Trisha T Nguyen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Fernández-Alarcón A, Autschbach J. Relativistic Density Functional NMR Tensors Analyzed with Spin-free Localized Molecular Orbitals. Chemphyschem 2023; 24:e202200667. [PMID: 36169984 DOI: 10.1002/cphc.202200667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Indexed: 01/07/2023]
Abstract
The implementation of fast relativistic methods based on density functional theory, in conjunction with localized molecular orbital (LMO) based analysis, allows straightforward interpretations of NMR parameters in terms of contributions from core shells, lone pairs, and bonds, for compounds containing elements from across the periodic table. We present a conceptual review of a frequently used LMO analysis of NMR parameters calculated in the presence of spin-orbit interactions and other relativistic effects. An accompanying example focuses on the 15 N shielding in a heavy metal complex.
Collapse
Affiliation(s)
- Alberto Fernández-Alarcón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| |
Collapse
|
18
|
Berkson Z, Björgvinsdóttir S, Yakimov A, Gioffrè D, Korzyński MD, Barnes AB, Copéret C. Solid-State NMR Spectra of Protons and Quadrupolar Nuclei at 28.2 T: Resolving Signatures of Surface Sites with Fast Magic Angle Spinning. JACS AU 2022; 2:2460-2465. [PMID: 36465533 PMCID: PMC9709951 DOI: 10.1021/jacsau.2c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/02/2023]
Abstract
Advances in solid-state nuclear magnetic resonance (NMR) methods and hardware offer expanding opportunities for analysis of materials, interfaces, and surfaces. Here, we demonstrate the application of a very high magnetic field strength of 28.2 T and fast magic-angle-spinning rates (MAS, >40 kHz) to surface species relevant to catalysis. Specifically, we present as case studies the 1D and 2D solid-state NMR spectra of important catalyst and support materials, ranging from a well-defined silica-supported organometallic catalyst to dehydroxylated γ-alumina and zeolite solid acids. The high field and fast-MAS measurement conditions substantially improve spectral resolution and narrow NMR signals, which is particularly beneficial for solid-state 1D and 2D NMR analysis of 1H and quadrupolar nuclei such as 27Al at surfaces.
Collapse
Affiliation(s)
- Zachariah
J. Berkson
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Snædís Björgvinsdóttir
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Alexander Yakimov
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Domenico Gioffrè
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Maciej D. Korzyński
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Alexander B. Barnes
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
19
|
Rana R, Vila FD, Kulkarni AR, Bare SR. Bridging the Gap between the X-ray Absorption Spectroscopy and the Computational Catalysis Communities in Heterogeneous Catalysis: A Perspective on the Current and Future Research Directions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Fernando D. Vila
- Department of Physics, University of Washington, Seattle, Washington98195, United States
| | - Ambarish R. Kulkarni
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| |
Collapse
|
20
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen Bonding Directed Reversal of
13
C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022; 61:e202207521. [DOI: 10.1002/anie.202207521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Chinmay Routray
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
21
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen‐Bonding Directed Reversal of 13C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhrakant Jena
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Chinmay Routray
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Juhi Dutta
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Himansu Sekhar Biswal
- National Institute of Science Education and Research School of Chemical Sciences Jatani 752050 Bhubaneswar INDIA
| |
Collapse
|
22
|
Berkson ZJ, Lätsch L, Hillenbrand J, Fürstner A, Copéret C. Classifying and Understanding the Reactivities of Mo-Based Alkyne Metathesis Catalysts from 95Mo NMR Chemical Shift Descriptors. J Am Chem Soc 2022; 144:15020-15025. [PMID: 35969854 DOI: 10.1021/jacs.2c06252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, X3Mo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that 95Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of 95Mo chemical shift tensors extracted from solid-state 95Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking 95Mo chemical shifts to reactivity. In particular, the 95Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo-O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.
Collapse
Affiliation(s)
- Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Lukas Lätsch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | | | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
23
|
Yakimov AV, Ravi M, Verel R, Sushkevich VL, van Bokhoven JA, Copéret C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J Am Chem Soc 2022; 144:10377-10385. [DOI: 10.1021/jacs.2c02212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander V. Yakimov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Manoj Ravi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - René Verel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Jeroen A. van Bokhoven
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| |
Collapse
|
24
|
Nater DF, Kaul CJ, Lätsch L, Tsurugi H, Mashima K, Copéret C. Olefin Metathesis Catalysts Generated In Situ from Molybdenum(VI)-Oxo Complexes by Tuning Pendant Ligands. Chemistry 2022; 28:e202200559. [PMID: 35234311 PMCID: PMC9313794 DOI: 10.1002/chem.202200559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/01/2022]
Abstract
Tailored molybdenum(VI)-oxo complexes of the form MoOCl2 (OR)2 (OEt2 ) catalyse olefin metathesis upon reaction with an organosilicon reducing agent at 70 °C, in the presence of olefins. While this reactivity parallels what has recently been observed for the corresponding classical heterogeneous catalysts based on supported metal oxide under similar conditions, the well-defined nature of our starting molecular systems allows us to understand the influence of structural, spectroscopic and electronic characteristics of the catalytic precursor on the initiation and catalytic proficiency of the final species. The catalytic performances of the pre-catalysts are determined by the highly electron withdrawing (σ-donation) character of alkoxide ligands, Ot BuF9 being the best. This activity correlates with both the 95 Mo chemical shift and the reduction potential that follows the same trend: Ot BuF9 >Ot BuF6 >Ot BuF3 .
Collapse
Affiliation(s)
- Darryl F. Nater
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Christoph J. Kaul
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Lukas Lätsch
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Hayato Tsurugi
- Department of ChemistryGraduate School of Engineering ScienceOsaka University1-3, Machikaneyama-choToyonakaOsaka560-8531Japan
| | - Kazushi Mashima
- Department of ChemistryGraduate School of Engineering ScienceOsaka University1-3, Machikaneyama-choToyonakaOsaka560-8531Japan
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| |
Collapse
|
25
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann-Beckett Method. Angew Chem Int Ed Engl 2022; 61:e202114550. [PMID: 34757692 PMCID: PMC9299668 DOI: 10.1002/anie.202114550] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/03/2023]
Abstract
IUPAC defines Lewis acidity as the thermodynamic tendency for Lewis pair formation. This strength property was recently specified as global Lewis acidity (gLA), and is gauged for example by the fluoride ion affinity. Experimentally, Lewis acidity is usually evaluated by the effect on a bound molecule, such as the induced 31 P NMR shift of triethylphosphine oxide in the Gutmann-Beckett (GB) method. This type of scaling was called effective Lewis acidity (eLA). Unfortunately, gLA and eLA often correlate poorly, but a reason for this is unknown. Hence, the strength and the effect of a Lewis acid are two distinct properties, but they are often granted interchangeably. The present work analyzes thermodynamic, NMR specific, and London dispersion effects on GB numbers for 130 Lewis acids by theory and experiment. The deformation energy of a Lewis acid is identified as the prime cause for the critical deviation between gLA and eLA but its correction allows a unification for the first time.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Department of Chemistry and Biochemistry—Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
26
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department of Chemistry and Biochemistry—Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
27
|
Huynh W, Taylor JW, Harman WH, Conley MP. Solid-state 11B NMR studies of coinage metal complexes containing a phosphine substituted diboraanthracene ligand. Dalton Trans 2021; 50:14855-14863. [PMID: 34604875 DOI: 10.1039/d1dt02981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal interactions with Lewis acids (M → Z linkages) are fundamentally interesting and practically important. The most common Z-type ligands contain boron, which contains an NMR active 11B nucleus. We measured solid-state 11B{1H} NMR spectra of copper, silver, and gold complexes containing a phosphine substituted 9,10-diboraanthracene ligand (B2P2) that contain planar boron centers and weak M → BR3 linkages ([(B2P2)M][BArF4] (M = Cu (1), Ag (2), Au (3)) characterized by large quadrupolar coupling (CQ) values (4.4-4.7 MHz) and large span (Ω) values (93-139 ppm). However, the solid-state 11B{1H} NMR spectrum of K[Au(B2P2)]- (4), which contains tetrahedral borons, is narrow and characterized by small CQ and Ω values. DFT analysis of 1-4 shows that CQ and Ω are expected to be large for planar boron environments and small for tetrahedral boron, and that the presence of a M → BR3 linkage relates to the reduction in CQ and 11B NMR shielding properties. Thus solid-state 11B NMR spectroscopy contains valuable information about M → BR3 linkages in complexes containing the B2P2 ligand.
Collapse
Affiliation(s)
- Winn Huynh
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Jordan W Taylor
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - W Hill Harman
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
28
|
Mames A, Pietrzak M, Bernatowicz P, Kubas A, Luboradzki R, Ratajczyk T. NMR Crystallography Enhanced by Quantum Chemical Calculations and Liquid State NMR Spectroscopy for the Investigation of Se-NHC Adducts*. Chemistry 2021; 27:16477-16487. [PMID: 34606111 DOI: 10.1002/chem.202102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 11/11/2022]
Abstract
N-heterocyclic carbene ligands (NHC) are widely utilized in catalysis and material science. They are characterized by their steric and electronic properties. Steric properties are usually quantified on the basis of their static structure, which can be determined by X-ray diffraction. The electronic properties are estimated in the liquid state; for example, via the 77 Se liquid state NMR of Se-NHC adducts. We demonstrate that 77 Se NMR crystallography can contribute to the characterization of the structural and electronic properties of NHC in solid and liquid states. Selected Se-NHC adducts are investigated via 77 Se solid state NMR and X-ray crystallography, supported by quantum chemical calculations. This investigation reveals a correlation between the molecular structure of adducts and NMR parameters, including not only isotropic chemical shifts but also the other chemical shift tensor components. Afterwards, the liquid state 77 Se NMR data is presented and interpreted in terms of the quantum chemistry modelling. The discrepancy between the structural and electronic properties, and in particular the π-accepting abilities of adducts in the solid and liquid states is discussed. Finally, the 13 C isotropic chemical shift from the liquid state NMR and the 13 C tensor components are also discussed, and compared with their 77 Se counterparts. 77 Se NMR crystallography can deliver valuable information about NHC ligands, and together with liquid state 77 Se NMR can provide an in-depth outlook on the properties of NHC ligands.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piotr Bernatowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
29
|
Pablo Martínez J, Solà M, Poater A. Predictive Catalysis in Olefin Metathesis with Ru-based Catalysts with Annulated C 60 Fullerenes in the N-heterocyclic Carbenes. Chemistry 2021; 27:18074-18083. [PMID: 34523164 DOI: 10.1002/chem.202100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 11/09/2022]
Abstract
Predictive catalysis must be the tool that does not replace experiments, but acts as a selective agent, so that synthetic strategies of maximum profitability are used in the laboratory in a surgical way. Here, nanotechnology has been used in olefin metathesis from homogeneous Ru-NHC catalysts, specifically annulating a C60 fullerene to the NHC ligand. Based on results with the C60 in the backbone, a sterile change with respect to the catalysis of the metal center, an attempt has been made to bring C60 closer to the metal, by attaching it to one of the two C-N bonds of the imidazole group of the SIMes (1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) ligand (reference NHC ligand of the 2nd generation Grubbs catalysts) to increase the steric pressure of C60 in the first sphere of reactivity of the metal. The DFT calculated thermodynamics and the kinetics of SIMes-derived systems show that they are efficient catalysts for olefin metathesis.
Collapse
Affiliation(s)
- Juan Pablo Martínez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| |
Collapse
|
30
|
Caló FP, Bistoni G, Auer AA, Leutzsch M, Fürstner A. Triple Resonance Experiments for the Rapid Detection of 103Rh NMR Shifts: A Combined Experimental and Theoretical Study into Dirhodium and Bismuth-Rhodium Paddlewheel Complexes. J Am Chem Soc 2021; 143:12473-12479. [PMID: 34351134 PMCID: PMC8377716 DOI: 10.1021/jacs.1c06414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A H(C)Rh triple resonance
NMR experiment makes the rapid detection
of 103Rh chemical shifts possible, which were previously
beyond reach. It served to analyze a series of dirhodium and bismuth–rhodium
paddlewheel complexes of the utmost importance for metal–carbene
chemistry. The excellent match between the experimental and computed 103Rh shifts in combination with a detailed analysis of the
pertinent shielding tensors forms a sound basis for a qualitative
and quantitative interpretation of these otherwise (basically) inaccessible
data. The observed trends clearly reflect the influence exerted by
the equatorial ligands (carboxylate versus carboxamidate), the axial
ligands (solvents), and the internal “metalloligand”
(Rh versus Bi) on the electronic estate of the reactive Rh(II) center.
Collapse
Affiliation(s)
- Fabio P Caló
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim, Germany
| | | | | | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim, Germany
| |
Collapse
|
31
|
Docherty SR, Copéret C. Deciphering Metal–Oxide and Metal–Metal Interplay via Surface Organometallic Chemistry: A Case Study with CO2 Hydrogenation to Methanol. J Am Chem Soc 2021; 143:6767-6780. [DOI: 10.1021/jacs.1c02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Scott R. Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| |
Collapse
|