1
|
Nishide G, Ishibashi T, Lim K, Qiu Y, Hazawa M, Matsushima A, Wong RW. Zooming into Gene Activation: Estrogen Receptor α Dimerization and DNA Binding Visualized by High-Speed Atomic Force Microscopy. ACS NANO 2025; 19:15395-15410. [PMID: 40249907 PMCID: PMC12045019 DOI: 10.1021/acsnano.4c14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
Estrogen receptor α (ERα) is pivotal in gene regulation, particularly in estrogen-responsive cancers. However, the full-length molecular dynamic structure of ERα remains elusive. In this study, we employ high-speed atomic force microscopy (HS-AFM) to visualize ERα interactions with the estrogen response element (ERE) under both ligand-present and ligand-absent conditions. ERα binds to ERE even in the absence of estrogen, although the presence of the ligand significantly enhances binding precision and stability. Our real-time, high-resolution HS-AFM imaging captures ERα structural transitions from monomeric to dimeric forms, elucidating the molecular mechanisms by which estrogen modulates DNA-binding specificity. Based on these findings, we propose a ligand-induced dimerization (LID) model, wherein estrogen facilitates the optimal loading of ERα onto DNA. These insights deepen our understanding of hormone signaling in cancer and hold promise for the development of future therapeutic strategies targeting hormone-related malignancies.
Collapse
Affiliation(s)
- Goro Nishide
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative,
WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoka Ishibashi
- Laboratory
of Structure−Function Biochemistry, Department of Chemistry,
Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keesiang Lim
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Yujia Qiu
- Division
of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Innovative Integrated Bio-Research Core, Institute
for Frontier Science Initiative, Kanazawa
University, Kanazawa 920-1192, Japan
| | - Ayami Matsushima
- Laboratory
of Structure−Function Biochemistry, Department of Chemistry,
Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Richard W. Wong
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Innovative Integrated Bio-Research Core, Institute
for Frontier Science Initiative, Kanazawa
University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Sandira MI, Lim K, Yoshida T, Sajidah ES, Narimatsu S, Imakawa R, Yoshimura K, Nishide G, Qiu Y, Taoka A, Hazawa M, Ando T, Hanayama R, Wong RW. Nanoscopic Profiling of Small Extracellular Vesicles via High-Speed Atomic Force Microscopy (HS-AFM) Videography. J Extracell Vesicles 2025; 14:e270050. [PMID: 40139685 PMCID: PMC11943829 DOI: 10.1002/jev2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025] Open
Abstract
Small extracellular vesicles (sEVs), which carry lipids, proteins and RNAs from their parent cells, serve as biomarkers for specific cell types and biological states. These vesicles, including exosomes and microvesicles, facilitate intercellular communication by transferring cellular components between cells. Current methods, such as ultracentrifugation and Tim-4 affinity method, yield high-purity sEVs. However, despite their small size, purified sEVs remain heterogeneous due to their varied intracellular origins. In this technical note, we used high-speed atomic force microscopy (HS-AFM) in conjunction with exosome markers (IgGCD63 and IgGCD81) to explore the intracellular origins of sEVs at single-sEV resolution. Our results first revealed the nanotopology of HEK293T-derived sEVs under physiological conditions. Larger sEVs (diameter > 100 nm) exhibited greater height fluctuations compared to smaller sEVs (diameter ≤ 100 nm). Next, we found that mouse-origin IgGCD63, and rabbit-origin IgGcontrol and IgGCD81, exhibited the iconic 'Y' conformation, and similar structural dynamics properties. Last, exosome marker antibodies predominantly co-localised with sEVd ≤ 100 nm but not with sEVd > 100 nm, demonstrating the CD63-CD81-enriched sEV and CD63-CD81-depleted sEV subpopulations. In summary, we demonstrate that nanoscopic profiling of surface exosome markers on sEVs using HS-AFM is feasible for characterising distinct sEV subpopulations in a heterogeneous sEV mixture.
Collapse
Affiliation(s)
- Muhammad Isman Sandira
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Keesiang Lim
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Takeshi Yoshida
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyGraduate School of Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
| | | | - Shinnosuke Narimatsu
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Reon Imakawa
- The School of Biological Science and TechnologyCollege of Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Kota Yoshimura
- The School of Biological Science and TechnologyCollege of Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Goro Nishide
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeWISE Program for Nano‐Precision Medicine, Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Yujia Qiu
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Azuma Taoka
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Masaharu Hazawa
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Toshio Ando
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Rikinari Hanayama
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyGraduate School of Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Richard W. Wong
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeWISE Program for Nano‐Precision Medicine, Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
3
|
Nishide G, Lim K, Kobayashi A, Qiu Y, Hazawa M, Ando T, Okada Y, Wong R. Spatiotemporal dynamics of protamine-DNA condensation revealed by high-speed atomic force microscopy. Nucleic Acids Res 2025; 53:gkaf152. [PMID: 40138714 PMCID: PMC11930356 DOI: 10.1093/nar/gkaf152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Protamines (PRMs) play a crucial role in sperm chromatin condensation, replacing histones to form nucleo-PRM structures, specifically PRM-DNA complexes. Despite their importance in reproduction, the detailed mechanisms underlying PRM-mediated DNA condensation have remained elusive. In this study, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the real-time binding dynamics of PRM to DNA under physiological conditions. Our HS-AFM observations reveal that PRM insertion initiating the formation of DNA coils. Further, we observed a heterogeneous spatial distribution of PRM-induced DNA looping. With continuous PRM addition, DNA progresses through a series of folding transitions, forming coiled-like structures that evolve into clockwise spirals, rod-shaped intermediates, and ultimately toroid-like nanostructures. Based on these real-time observations, we propose the CARD (Coil-Assembly-Rod-Doughnut) model to describe the stepwise process of toroid formation during DNA condensation. Our findings underscore the versatility of HS-AFM in capturing the spatiotemporal dynamics of PRM-DNA interactions and provide critical insights into the molecular mechanisms driving PRM-induced chromatin compaction. This study advances our understanding of sperm chromatin architecture and offers a framework for future research into chromatin organization, reproductive biology, and nucleic acid therapeutics.
Collapse
Affiliation(s)
- Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yujia Qiu
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
| | - Richard W Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
4
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Shen Y, Czajkowsky DM, Li B, Hu J, Shao Z, Sun J. Atomic Force Microscopy: Mechanosensor and Mechanotransducer for Probing Biological System from Molecules to Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408387. [PMID: 39614722 DOI: 10.1002/smll.202408387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Indexed: 12/01/2024]
Abstract
Atomic Force Microscopy (AFM) is a powerful technique with widespread applications in various scientific fields, including biology. It operates by precisely detecting the interaction between a sharp tip and a sample surface, providing high-resolution topographical information and mechanical properties at a nanoscale. Through the years, a deeper understanding of this tip-sample interaction and the mechanisms by which it can be more precisely regulated have invariably led to improvements in AFM imaging. Additionally, AFM can serve not only as a sensor but also as a tool for actively manipulating the mechanical properties of biological systems. By applying controlled forces to the sample surface, AFM allows for a deeper understanding of mechanotransduction pathways, the intricate signaling cascades that convert physical cues into biochemical responses. This review, is an extensive overview of the current status of AFM working either as a mechanosensor or a mechanotransducer to probe biological systems across diverse scales, from individual molecules to entire tissues is presented. Challenges are discussed and potential future research directions are elaborated.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daniel M Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Hu
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Materiobiology, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jielin Sun
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Deflandre L, Dauphin-Ducharme P. "Binding" or "Binding and Switching"? A Perspective on Resolving Conformational Changes of Surface-Attached Biomolecular Receptors. ACS Sens 2024; 9:5615-5625. [PMID: 39445451 DOI: 10.1021/acssensors.4c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Understanding the structural reconfiguration of a biomolecular receptor remains a topic of particular interest to the biosensing community. This is because conformationally changing receptors are commonly employed in biosensors to harness their capability to bind specifically to their target. Often, such receptors are attached to surfaces so that binding can be transduced into a measurable response. Doing so, however, can impose constraints on the possible configurations they can adopt. Such constraints can ultimately influence, for example, their receptor-target binding models or their affinity, which is essential to provide the desired analytical performances in biosensors. Motivated by the idea of gaining further insights into the impact of surface attachment on conformationally switching receptors attached to surfaces, we explore here the various surface-based techniques capable of monitoring structural changes. We decided to narrow our survey to techniques that have been applied to the investigation of nucleic acids to provide an overview of their key features. We envision that this will bring a broader perspective of the field and the challenges ahead with the hopes of "finding the switch" in surface-attached biomolecular receptors.
Collapse
Affiliation(s)
- Lisa Deflandre
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | |
Collapse
|
7
|
Roth J, Hoop C, Williams JK, Nanda V, Baum J. Real-time single-molecule observation of incipient collagen fibrillogenesis and remodeling. Proc Natl Acad Sci U S A 2024; 121:e2401133121. [PMID: 39102538 PMCID: PMC11331128 DOI: 10.1073/pnas.2401133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Cody Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jonathan K. Williams
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| |
Collapse
|
8
|
Onoa B, Díaz-Celis C, Cañari-Chumpitaz C, Lee A, Bustamante C. Real-Time Multistep Asymmetrical Disassembly of Nucleosomes and Chromatosomes Visualized by High-Speed Atomic Force Microscopy. ACS CENTRAL SCIENCE 2024; 10:122-137. [PMID: 38292612 PMCID: PMC10823521 DOI: 10.1021/acscentsci.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
During replication, expression, and repair of the eukaryotic genome, cellular machinery must access the DNA wrapped around histone proteins forming nucleosomes. These octameric protein·DNA complexes are modular, dynamic, and flexible and unwrap or disassemble either spontaneously or by the action of molecular motors. Thus, the mechanism of formation and regulation of subnucleosomal intermediates has gained attention genome-wide because it controls DNA accessibility. Here, we imaged nucleosomes and their more compacted structure with the linker histone H1 (chromatosomes) using high-speed atomic force microscopy to visualize simultaneously the changes in the DNA and the histone core during their disassembly when deposited on mica. Furthermore, we trained a neural network and developed an automatic algorithm to track molecular structural changes in real time. Our results show that nucleosome disassembly is a sequential process involving asymmetrical stepwise dimer ejection events. The presence of H1 restricts DNA unwrapping, significantly increases the nucleosomal lifetime, and affects the pathway in which heterodimer asymmetrical dissociation occurs. We observe that tetrasomes are resilient to disassembly and that the tetramer core (H3·H4)2 can diffuse along the nucleosome positioning sequence. Tetrasome mobility might be critical to the proper assembly of nucleosomes and can be relevant during nucleosomal transcription, as tetrasomes survive RNA polymerase passage. These findings are relevant to understanding nucleosome intrinsic dynamics and their modification by DNA-processing enzymes.
Collapse
Affiliation(s)
- Bibiana Onoa
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - César Díaz-Celis
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - Cristhian Cañari-Chumpitaz
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - Antony Lee
- Laboratoire
Photonique Numérique et Nanosciences, LP2N UMR 5298, Université de Bordeaux, Institut d’Optique,
CNRS, F-33400 Talence, France
| | - Carlos Bustamante
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
van Ewijk C, Maity S, Roos WH. Visualizing Molecular Dynamics by High-Speed Atomic Force Microscopy. Methods Mol Biol 2024; 2694:355-372. [PMID: 37824013 DOI: 10.1007/978-1-0716-3377-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Dynamic processes and structural changes of biological molecules are essential to life. While conventional atomic force microscopy (AFM) is able to visualize molecules and supramolecular assemblies at sub-nanometer resolution, it cannot capture dynamics because of its low imaging rate. The introduction of high-speed atomic force microscopy (HS-AFM) solved this problem by providing a large increase in imaging velocity. Using HS-AFM, one is able to visualize dynamic molecular events with high spatiotemporal resolution under near-to physiological conditions. This approach opened new windows as finally dynamics of biomolecules at sub-nanometer resolution could be studied. Here we describe the working principles and an operation protocol for HS-AFM imaging and characterization of biological samples in liquid.
Collapse
Affiliation(s)
- Chris van Ewijk
- Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Mekonnen G, Djaja N, Yuan X, Myong S. Advanced imaging techniques for studying protein phase separation in living cells and at single-molecule level. Curr Opin Chem Biol 2023; 76:102371. [PMID: 37523989 PMCID: PMC10528199 DOI: 10.1016/j.cbpa.2023.102371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
Protein-protein and protein-RNA interactions are essential for cell function and survival. These interactions facilitate the formation of ribonucleoprotein complexes and biomolecular condensates via phase separation. Such assembly is involved in transcription, splicing, translation and stress response. When dysregulated, proteins and RNA can undergo irreversible aggregation which can be cytotoxic and pathogenic. Despite technical advances in investigating biomolecular condensates, achieving the necessary spatiotemporal resolution to deduce the parameters that govern their assembly and behavior has been challenging. Many laboratories have applied advanced microscopy methods for imaging condensates. For example, single molecule imaging methods have enabled the detection of RNA-protein interaction, protein-protein interaction, protein conformational dynamics, and diffusional motion of molecules that report on the intrinsic molecular interactions underlying liquid-liquid phase separation. This review will outline advances in both microscopy and spectroscopy techniques which allow single molecule detection and imaging, and how these techniques can be used to probe unique aspects of biomolecular condensates.
Collapse
Affiliation(s)
- Gemechu Mekonnen
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Nathalie Djaja
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Xincheng Yuan
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sua Myong
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Nishide G, Lim K, Tamura M, Kobayashi A, Zhao Q, Hazawa M, Ando T, Nishida N, Wong RW. Nanoscopic Elucidation of Spontaneous Self-Assembly of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Open Reading Frame 6 (ORF6) Protein. J Phys Chem Lett 2023; 14:8385-8396. [PMID: 37707320 PMCID: PMC10544025 DOI: 10.1021/acs.jpclett.3c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Open reading frame 6 (ORF6), the accessory protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that suppresses host type-I interferon signaling, possesses amyloidogenic sequences. ORF6 amyloidogenic peptides self-assemble to produce cytotoxic amyloid fibrils. Currently, the molecular properties of the ORF6 remain elusive. Here, we investigate the structural dynamics of the full-length ORF6 protein in a near-physiological environment using high-speed atomic force microscopy. ORF6 oligomers were ellipsoidal and readily assembled into ORF6 protofilaments in either a circular or a linear pattern. The formation of ORF6 protofilaments was enhanced at higher temperatures or on a lipid substrate. ORF6 filaments were sensitive to aliphatic alcohols, urea, and SDS, indicating that the filaments were predominantly maintained by hydrophobic interactions. In summary, ORF6 self-assembly could be necessary to sequester host factors and causes collateral damage to cells via amyloid aggregates. Nanoscopic imaging unveiled the innate molecular behavior of ORF6 and provides insight into drug repurposing to treat amyloid-related coronavirus disease 2019 complications.
Collapse
Affiliation(s)
- Goro Nishide
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative,
WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Maiki Tamura
- Graduate
School of Pharmaceutical Sciences, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Kobayashi
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Qingci Zhao
- Graduate
School of Pharmaceutical Sciences, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masaharu Hazawa
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noritaka Nishida
- Graduate
School of Pharmaceutical Sciences, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Richard W. Wong
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
12
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
13
|
Lim K, Nishide G, Sajidah ES, Yamano T, Qiu Y, Yoshida T, Kobayashi A, Hazawa M, Ando T, Hanayama R, Wong RW. Nanoscopic Assessment of Anti-SARS-CoV-2 Spike Neutralizing Antibody Using High-Speed AFM. NANO LETTERS 2023; 23:619-628. [PMID: 36641798 PMCID: PMC9881159 DOI: 10.1021/acs.nanolett.2c04270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Anti-spike neutralizing antibodies (S NAbs) have been developed for prevention and treatment against COVID-19. The nanoscopic characterization of the dynamic interaction between spike proteins and S NAbs remains difficult. By using high-speed atomic force microscopy (HS-AFM), we elucidate the molecular property of an S NAb and its interaction with spike proteins. The S NAb appeared as monomers with a Y conformation at low density and formed hexameric oligomers at high density. The dynamic S NAb-spike protein interaction at RBD induces neither RBD opening nor S1 subunit shedding. Furthermore, the interaction was stable at endosomal pH. These findings indicated that the S NAb could have a negligible risk of antibody-dependent enhancement. Dynamic movement of spike proteins on small extracellular vesicles (S sEV) resembled that on SARS-CoV-2. The sensitivity of variant S sEVs to S NAb could be evaluated using HS-AFM. Altogether, we demonstrate a nanoscopic assessment platform for evaluating the binding property of S NAbs.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative,
WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Elma Sakinatus Sajidah
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoyoshi Yamano
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujia Qiu
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takeshi Yoshida
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Akiko Kobayashi
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W. Wong
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
14
|
Sajidah ES, Lim K, Yamano T, Nishide G, Qiu Y, Yoshida T, Wang H, Kobayashi A, Hazawa M, Dewi FRP, Hanayama R, Ando T, Wong RW. Spatiotemporal tracking of small extracellular vesicle nanotopology in response to physicochemical stresses revealed by HS-AFM. J Extracell Vesicles 2022; 11:e12275. [PMID: 36317784 PMCID: PMC9623819 DOI: 10.1002/jev2.12275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Small extracellular vesicles (sEVs) play a crucial role in local and distant cell communication. The intrinsic properties of sEVs make them compatible biomaterials for drug delivery, vaccines, and theranostic nanoparticles. Although sEV proteomics have been robustly studied, a direct instantaneous assessment of sEV structure dynamics remains difficult. Here, we use the high-speed atomic force microscopy (HS-AFM) to evaluate nanotopological changes of sEVs with respect to different physicochemical stresses including thermal stress, pH, and osmotic stress. The sEV structure is severely altered at high-temperature, high-pH, or hypertonic conditions. Surprisingly, the spherical shape of the sEVs is maintained in acidic or hypotonic environments. Real-time observation by HS-AFM imaging reveals an irreversible structural change in the sEVs during transition of pH or osmolarity. HS-AFM imaging provides both qualitative and quantitative data at high spatiotemporal resolution (nanoscopic and millisecond levels). In summary, our study demonstrates the feasibility of HS-AFM for structural characterization and assessment of nanoparticles.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Keesiang Lim
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Tomoyoshi Yamano
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Yujia Qiu
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Takeshi Yoshida
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hanbo Wang
- Cell‐Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Akiko Kobayashi
- Cell‐Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Masaharu Hazawa
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Firli R. P. Dewi
- Cell‐Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Rikinari Hanayama
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Toshio Ando
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
15
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
16
|
Mostofian B, McFarland R, Estelle A, Howe J, Barbar E, Reichow SL, Zuckerman DM. Continuum dynamics and statistical correction of compositional heterogeneity in multivalent IDP oligomers resolved by single-particle EM. J Mol Biol 2022; 434:167520. [PMID: 35245498 PMCID: PMC9050902 DOI: 10.1016/j.jmb.2022.167520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 12/29/2022]
Abstract
Multivalent intrinsically disordered protein (IDP) complexes are prevalent in biology and act in regulation of diverse processes, including transcription, signaling events, and the assembly and disassembly of complex macromolecular architectures. These systems pose significant challenges to structural investigation, due to continuum dynamics imparted by the IDP and compositional heterogeneity resulting from characteristic low-affinity interactions. Here, we developed a modular pipeline for automated single-particle electron microscopy (EM) distribution analysis of common but relatively understudied semi-ordered systems: 'beads-on-a-string' assemblies, composed of IDPs bound at multivalent sites to the ubiquitous ∼20 kDa cross-linking hub protein LC8. This approach quantifies conformational geometries and compositional heterogeneity on a single-particle basis, and statistically corrects spurious observations arising from random proximity of bound and unbound LC8. The statistical correction is generically applicable to oligomer characterization and not specific to our pipeline. Following validation, the approach was applied to the nuclear pore IDP Nup159 and the transcription factor ASCIZ. This analysis unveiled significant compositional and conformational diversity in both systems that could not be obtained from ensemble single particle EM class-averaging strategies, and new insights for exploring how these architectural properties might contribute to their physiological roles in supramolecular assembly and transcriptional regulation. We expect that this approach may be adopted to many other intrinsically disordered systems that have evaded traditional methods of structural characterization.
Collapse
Affiliation(s)
- Barmak Mostofian
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Russell McFarland
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Aidan Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Jesse Howe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| | - Steve L Reichow
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
17
|
Lim K, Nishide G, Yoshida T, Watanabe‐Nakayama T, Kobayashi A, Hazawa M, Hanayama R, Ando T, Wong RW. Millisecond dynamic of SARS-CoV-2 spike and its interaction with ACE2 receptor and small extracellular vesicles. J Extracell Vesicles 2021; 10:e12170. [PMID: 34874124 PMCID: PMC8650025 DOI: 10.1002/jev2.12170] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 spike protein (S) binds to human angiotensin-converting enzyme 2 (hACE2), allowing virus to dock on cell membrane follow by viral entry. Here, we use high-speed atomic force microscopy (HS-AFM) for real-time visualization of S, and its interaction with hACE2 and small extracellular vesicles (sEVs). Results show conformational heterogeneity of S, flexibility of S stalk and receptor-binding domain (RBD), and pH/temperature-induced conformational change of S. S in an S-ACE2 complex appears as an all-RBD up conformation. The complex acquires a distinct topology upon acidification. S and S2 subunit demonstrate different membrane docking mechanisms on sEVs. S-hACE2 interaction facilitates S to dock on sEVs, implying the feasibility of ACE2-expressing sEVs for viral neutralization. In contrary, S2 subunit docks on lipid layer and enters sEV using its fusion peptide, mimicking the viral entry scenario. Altogether, our study provides a platform that is suitable for real-time visualization of various entry inhibitors, neutralizing antibodies, and sEV-based decoy in blocking viral entry. Teaser: Comprehensive observation of SARS-CoV-2 spike and its interaction with receptor ACE2 and sEV-based decoy in real time using HS-AFM.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeWISE Program for Nano‐Precision MedicineScience and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Takeshi Yoshida
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | | | - Akiko Kobayashi
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Masaharu Hazawa
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Rikinari Hanayama
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Toshio Ando
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Richard W. Wong
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
18
|
Abstract
Nuclear pore complexes (NPCs) at the surface of nuclear membranes play a critical role in regulating the transport of both small molecules and macromolecules between the cell nucleus and cytoplasm via their multilayered spiderweb-like central channel. During mitosis, nuclear envelope breakdown leads to the rapid disintegration of NPCs, allowing some NPC proteins to play crucial roles in the kinetochore structure, spindle bipolarity, and centrosome homeostasis. The aberrant functioning of nucleoporins (Nups) and NPCs has been associated with autoimmune diseases, viral infections, neurological diseases, cardiomyopathies, and cancers, especially leukemia. This Special Issue highlights several new contributions to the understanding of NPC proteostasis.
Collapse
|
19
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|