1
|
Xiao T, Diao P. Quantifying Localized Surface Plasmon Resonance Induced Enhancement on Metal@Cu 2O Composites for Photoelectrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501069. [PMID: 40244077 DOI: 10.1002/adma.202501069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/30/2025] [Indexed: 04/18/2025]
Abstract
The localized surface plasmon resonance (LSPR) of metal nanoparticles can substantially enhance the activity of photoelectrocatalytic (PEC) reactions. However, quantifying the respective contributions of different LSPR mechanisms to the enhancement of PEC performance remains an urgent challenge. In this work, Cu@Cu2O composites prepared by annealing Cu2O under an inert atmosphere and electrodeposited metal@Cu2O composites (MED@Cu2O, MED = CuED, AuED, AgED, PdED, PtED) are employed as platform materials to investigate the LSPR effect on the PEC hydrogen evolution reaction (HER). All the composites exhibited remarkably LSPR-enhanced activity toward PEC HER. The contributions of two LSPR mechanisms, plasmon induced resonance energy transfer (PIRET) and hot electron transfer (HET), to the photocurrent on Cu@Cu2O and CuED@Cu2O are quantified by using different bands of incident light. Moreover, using MED@Cu2O composites, the effects of both the metal species and the applied potential on HET are quantitatively investigated. The results reveal that a pronounced HET enhancement occurs only when the LSPR peak energy is lower than the semiconductor bandgap energy (Eg) and that HET strengthens as the applied potential becomes more negative for PEC HER. This work therefore provides a quantitative understanding of the roles of PIRET and HET in boosting PEC activity.
Collapse
Affiliation(s)
- Tiantian Xiao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Peng Diao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Sarkar A, Koble MM, Frontiera RR. Plasmon-Driven Chemistry. Annu Rev Phys Chem 2025; 76:129-152. [PMID: 40258241 DOI: 10.1146/annurev-physchem-082423-031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Plasmonic nanomaterials are promising photocatalysts due to their large optical cross sections and facile generation of nanoscale hotspot regions. They have been used to drive a range of photochemical reactions, including H2 dissociation, CO2 reduction, and ammonia synthesis, offering an exciting approach to light-driven chemistry. Deepening our understanding of how energy can be controllably transferred from the plasmonic nanomaterial to proximal reactants should lead to improvements in the efficiency and selectivity in plasmonic photocatalysis. Here we provide a comprehensive overview of plasmonic properties and explore different energy partitioning pathways. We focus on the importance of mapping molecular potential energy landscapes to understand reactivity and describe recent advancements in spectroscopic techniques, such as ultrafast surface-enhanced Raman spectroscopy, electron microscopy, and electrochemistry, that can aid in understanding how plasmonic nanomaterials can be used to shape potential energy surfaces and modify chemical outcomes. Additionally, we explore innovative hybrid plasmonic nanostructures such as antenna-reactor complexes, plasmonic single-atom catalysts, plasmonic picocavities, and chiral plasmonic substrates, all of which show great promise in advancing the field of plasmon-driven chemistry.
Collapse
Affiliation(s)
- Arghya Sarkar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - MaKenna M Koble
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
3
|
Du X, Wang T, Li Y, Zhu A, Hu Y, Du A, Zhao Y, Xie W. Monitoring Hot Holes in Plasmonic Catalysis on Silver Nanoparticles by Using an Ion Label. NANO LETTERS 2024; 24:11648-11653. [PMID: 39225486 DOI: 10.1021/acs.nanolett.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Energetic carriers generated by localized surface plasmon resonance (LSPR) provide an efficient way to drive chemical reactions. However, their dynamics and impact on surface reactions remain unknown due to the challenge in observing hot holes. This makes it difficult to correlate the reduction and oxidation half-reactions involving hot electrons and holes, respectively. Here we detect hot holes in their chemical form, Ag(I), on a Ag surface using surface-enhanced Raman scattering (SERS) of SO32- as a hole-specific label. It allows us to determine the dynamic correlations of hot electrons and holes. We find that the equilibrium of holes is the key factor of the surface chemistry, and the wavelength-dependent plasmonic chemical anode refilling (PCAR) effect plays an important role, in addition to the LSPR, in promoting the electron transfer. This method paves the way for visualizing hot holes with nanoscale spatial resolution toward the rational design of a plasmonic catalytic platform.
Collapse
Affiliation(s)
- Xiaomeng Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Aonan Zhu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanfang Hu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Aoxuan Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Kohila Rani K, Xiao YH, Devasenathipathy R, Gao K, Wang J, Kang X, Zhu C, Chen H, Jiang L, Liu Q, Qiao F, Li Z, Wu DY, Lu G. Raman Monitoring of the Electro-Optical Synergy-Induced Enhancements in Carbon-Bromine Bond Cleavage, Reaction Rate, and Product Selectivity of p-Bromothiophenol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27831-27840. [PMID: 38757708 DOI: 10.1021/acsami.4c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Electro-optical synergy has recently been targeted to improve the separation of hot carriers and thereby further improve the efficiency of plasmon-mediated chemical reactions (PMCRs). However, the electro-optical synergy in PMCRs needs to be more deeply understood, and its contribution to bond dissociation and product selectivity needs to be clarified. Herein, the electro-optical synergy in plasmon-mediated reduction of p-bromothiophenol (PBTP) was studied on a plasmonic nanostructured silver electrode using in situ Raman spectroscopy and theoretical calculations. It was found that the electro-optical synergy-induced enhancements in the cleavage of carbon-bromine bonds, reaction rate, and product selectivity (4,4'-biphenyl dithiol vs thiophenol) were largely affected by the applied bias, laser wavelength, and laser power. The theoretical simulation further clarified that the strong electro-optical synergy is attributed to the matching of energy band diagrams of the plasmonic silver with those of the adsorbed PBTP molecules. A deep understanding of the electro-optical synergy in PBTP reduction and the clarification of the mechanism will be highly beneficial for the development of other highly efficient PMCRs.
Collapse
Affiliation(s)
- Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Kun Gao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jiazheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Xing Kang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengcheng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haonan Chen
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Lu Jiang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qinghua Liu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Furong Qiao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| |
Collapse
|
5
|
Palmer LD, Lee W, Dong CL, Liu RS, Wu N, Cushing SK. Determining Quasi-Equilibrium Electron and Hole Distributions of Plasmonic Photocatalysts Using Photomodulated X-ray Absorption Spectroscopy. ACS NANO 2024; 18:9344-9353. [PMID: 38498940 PMCID: PMC10993415 DOI: 10.1021/acsnano.3c08181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Most photocatalytic and photovoltaic devices operate under broadband, constant illumination. Electron and hole dynamics in these devices, however, are usually measured by using ultrafast pulsed lasers in a narrow wavelength range. In this work, we use excited-state X-ray theory originally developed for transient X-ray experiments to study steady-state photomodulated X-ray spectra. We use this method to attempt to extract electron and hole distributions from spectra collected at a nontime-resolved synchrotron beamline. A set of plasmonic metal core-shell nanoparticles is designed as the control experiment because they can systematically isolate photothermal, hot electron, and thermalized electron-hole pairs in a TiO2 shell. Steady-state changes in the Ti L2,3 edge are measured with and without continuous-wave illumination of the nanoparticle's localized surface plasmon resonance. The results suggest that within error the quasi-equilibrium carrier distribution can be determined even from relatively noisy data with mixed excited-state phenomena. Just as importantly, the theoretical analysis of noisy data is used to provide guidelines for the beamline development of photomodulated steady-state spectroscopy.
Collapse
Affiliation(s)
- Levi Daniel Palmer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| | - Wonseok Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| | - Chung-Li Dong
- Department
of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Ru-Shi Liu
- Department
of Chemistry, National Taiwan University
and Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| | - Nianqiang Wu
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst 01003−9303, Massachusetts, United States
| | - Scott Kevin Cushing
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| |
Collapse
|
6
|
Warkentin CL, Frontiera RR. Quantifying the ultrafast and steady-state molecular reduction potential of a plasmonic photocatalyst. Proc Natl Acad Sci U S A 2023; 120:e2305932120. [PMID: 37874859 PMCID: PMC10623017 DOI: 10.1073/pnas.2305932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from [Formula: see text]3.1 to [Formula: see text]4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material-molecule interactions for efficient plasmon-driven photocatalysis.
Collapse
|
7
|
Farooq U, Qureshi AK, Noor H, Farhan M, Khan ME, Hamed OA, Bashiri AH, Zakri W. Plant Extract-Based Fabrication of Silver Nanoparticles and Their Effective Role in Antibacterial, Anticancer, and Water Treatment Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2337. [PMID: 37375962 DOI: 10.3390/plants12122337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Ammi visnaga is a biennial or annual herbaceous plant belonging to the family Apiaceae. For the first time, silver nanoparticles were synthesized using an extract of this plant. Biofilms are a rich source of many pathogenic organisms and, thus, can be the genesis of various disease outbreaks. In addition, the treatment of cancer is still a critical drawback for mankind. The primary purpose of this research work was to comparatively analyze antibiofilms against Staphylococcus aureus, photocatalytic activity against Eosin Y, and in vitro anticancer activity against the HeLa cell line of silver nanoparticles and Ammi visnaga plant extract. The systematic characterization of synthesized nanoparticles was carried out using UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), dynamic light scattering (DLS), zeta potential, and X-ray diffraction microscopy (XRD). The initial characterization was performed with UV-Vis spectroscopy, where a peak appeared at 435 nm, which indicated the SPR band of the silver nanoparticles. AFM and SEM were performed to determine the morphology and shape of the nanoparticles, while EDX confirmed the presence of Ag in the spectra. The crystalline character of the silver nanoparticles was concluded with XRD. The synthesized nanoparticles were then subjected to biological activities. The antibacterial activity was evaluated by determining the inhibition of the initial biofilm formation with Staphylococcus aureus using a crystal violet assay. The response of the AgNPs against cellular growth and biofilm formation was found to be dose dependent. Green-synthesized nanoparticles showed 99% inhibition against biofilm and bacteria, performed excellent anticancer assay with an IC50 concentration of 17.1 ± 0.6 µg/mL and 100% inhibition, and photodegradation of the toxic organic dye Eosin Y up to 50%. Moreover, the effect of the pH and dosage of the photocatalyst was also measured to optimize the reaction conditions and maximum photocatalytic potential. Therefore, synthesized silver nanoparticles can be used in the treatment of wastewater contaminated with toxic dyes, pathogenic biofilms, and the treatment of cancer cell lines.
Collapse
Affiliation(s)
- Umar Farooq
- Department of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur 63100, Pakistan
| | | | - Hadia Noor
- Centre of Excellence in Solids State Physics, University of the Punjab, Quaid Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Farhan
- Centre of Excellence in Solids State Physics, University of the Punjab, Quaid Azam Campus, Lahore 54590, Pakistan
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A Hamed
- Department of Mechanical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullateef H Bashiri
- Department of Mechanical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Waleed Zakri
- Department of Mechanical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|