1
|
Shi Y, Kashiwaya S, Lu J, Dahlqvist M, Sangiovanni DG, Rogoz V, Magnuson M, Greczynski G, Andersson M, Rosen J, Hultman L. Synthesis of Ti 4Au 3C 3 and its derivative trilayer goldene through chemical exfoliation. SCIENCE ADVANCES 2025; 11:eadt7999. [PMID: 40153494 PMCID: PMC11952097 DOI: 10.1126/sciadv.adt7999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Achieving large two-dimensional (2D) sheets of any metal is challenging due to their tendency to coalescence or cluster into 3D shapes. Recently, single-atom-thick gold sheets, termed goldene, was reported. Here, we ask if goldene can be extended to include multiple layers. The answer is yes, and trilayer goldene is the magic number, for reasons of electronegativity. Experiments are made to synthesize the atomically laminated phase Ti4Au3C3 through substitutional intercalation of Si layers in Ti4SiC3 for Au. Density functional theory calculations suggest that it is energetically favorable to insert three layers of Au into Ti4SiC3, compared to inserting a monolayer, a bilayer, or more than three layers. Isolated trilayer goldene sheets, ~100 nanometers wide and 6.7 angstroms thick, were obtained by chemically etching the Ti4C3 layers from Ti4Au3C3 templates. Furthermore, trilayer goldene is found in both hcp and fcc forms, where the hcp is ~50 milli-electron volts per atom more stable at room temperature from ab initio molecular dynamic simulations.
Collapse
Affiliation(s)
- Yuchen Shi
- Materials Design Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Shun Kashiwaya
- Materials Design Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Jun Lu
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Martin Dahlqvist
- Materials Design Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Davide G. Sangiovanni
- Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Vladyslav Rogoz
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Martin Magnuson
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Grzegorz Greczynski
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Mike Andersson
- Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Johanna Rosen
- Materials Design Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Lars Hultman
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
2
|
Ravipati M, Chahal S, Badhulika S. Ultrafast Microwave-Synthesized 2D/1D MnO 2/Carbon Nanotube Hybrid for Bilirubin Detection in Simulated Blood Serum. ACS APPLIED BIO MATERIALS 2025; 8:166-176. [PMID: 39688574 DOI: 10.1021/acsabm.4c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hybridization of carbon nanotubes (CNTs) and manganese dioxide (MnO2) integrates the biocompatibility and outstanding electrocatalytic activity of MnO2 with the exceptional conductivity of CNTs, thus providing a superior synergistic sensing platform for the detection of biomolecules. However, the existing methods for synthesizing MnO2/CNT hybrids are complex and inefficient, resulting in low yields and limited surface functionalities. Hence, in this study, we present a low-cost and ultrafast solid-phase synthesis of the MnO2/CNT hybrid using a facile microwave technique to detect a crucial biomolecule bilirubin. The successful synthesis of the MnO2/CNT hybrid is confirmed through characteristic Raman and X-ray diffraction peaks, while morphology is analyzed by imaging techniques such as FESEM and HRTEM. The MnO2/CNT/nickel foam (NF) sensor is thereafter used for the electrochemical detection of bilirubin. The sensor demonstrates a wide linear detection range from 10 nM to 1 mM, with a sensitivity of 6.87 mA nM-1 cm-2 toward bilirubin, as determined through the differential pulse voltammetry technique. The lower limit of detection is noted at 3.3 nM (=3.3 S/m). Furthermore, the as-fabricated sensor showcases high selectivity against the interfering species. Real-time analysis conducted in simulated blood serum using the standard addition method reveals an outstanding recovery percentage of approximately 98%. The conductive MnO2/CNT hybrid interacts robustly with bilirubin, aided by the porous NF substrate for stability, catalytic activity, and rapid electron transfer, enabling sensitive bilirubin detection. The work provides an ultrafast, low-cost, and high-yield solid-phase microwave synthesis of MnO2/CNT hybrid material and broadens its application in the detection of biological specimens for clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Manaswini Ravipati
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Sumit Chahal
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| |
Collapse
|
3
|
Morey MM, Bahadur R, Li Z, Dharmarajan NP, Fawaz M, Bandyopadhyay A, Chahal S, Ansah S, Singh Raman RK, Terrones M, Kumar P, Vinu A. Experimental Realization of Fluoroborophene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407763. [PMID: 39479754 DOI: 10.1002/smll.202407763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Indexed: 01/11/2025]
Abstract
Borophene, an anisotropic metallic Dirac material exhibits superlative physical and chemical properties. While the lack of bandgap restricts its electronic chip applications, insufficient charge carrier density and electrochemical/catalytically active sites, restricts its energy storage and catalysis applications. Fluorination of borophene can induce bandgap and yield local electron injection within its crystallographic lattice. Herein, a facile synthesis of fluoroborophene with tunable fluorine content through potassium fluoride-assisted solvothermal-sonochemical combinatorial approach is reported. Fluoroborophene monolayers with lateral dimension 50 nm-5 µm are synthesized having controlled fluorine content (12-35%). Fluoroborophene exhibits inter-twinned crystallographic structure, with fluorination-tunable visible-range bandgap ≈1.5-2.5 eV, and density functional theory calculations also corroborate it. Fluoroborophene is explored for electrocatalytic oxygen evolution reaction in an alkaline medium and bestow a good stability. Tunable bandgap, electrophilicity and molecular anchoring capability of fluoroborophene will open opportunities for novel electronic/optoelectronic/spintronic chips, energy storage devices, and in numerous catalytic applications.
Collapse
Affiliation(s)
- Mukul M Morey
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nithinraj P Dharmarajan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammed Fawaz
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Arkamita Bandyopadhyay
- Institut für Physik, Theoretische Physik, Martin-Luther-Universität Halle-Wittenber, 06120, Halle, Germany
| | - Sumit Chahal
- Department of Physics, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Solomon Ansah
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - R K Singh Raman
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mauricio Terrones
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Ranjan P, Li Z, Ansari A, Ahmed S, Siddiqui MA, Zhang S, Patole SP, Cheng GJ, Sadki EHS, Vinu A, Kumar P. 2D Materials for Potable Water Application: Basic Nanoarchitectonics and Recent Progresses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407160. [PMID: 39390843 DOI: 10.1002/smll.202407160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Water polluted by toxic chemicals due to waste from chemical/pharmaceuticals and harmful microbes such as E. Coli bacteria causes several fatal diseases; and therefore, water filtration is crucial for accessing clean and safe water necessary for good health. Conventional water filtration technologies include activated carbon filters, reverse osmosis, and ultrafiltration. However, they face several challenges, including high energy consumption, fouling, limited selectivity, inefficiencies in removing certain contaminants, dimensional control of pores, and structural/chemical changes at higher thermal conditions and upon prolonged usage of water filter. Recently, the advent of 2D materials such as graphene, BN, MoS2, MXenes, and so on opens new avenues for advanced water filtration systems. This review delves into the nanoarchitectonics of 2D materials for water filtration applications. The current state of water filtration technologies is explored, the inherent challenges they face are outlines, and the unique properties and advantages of 2D materials are highlighted. Furthermore, the scope of this review is discussed, which encompasses the synthesis, characterization, and application of various 2D materials in water filtration, providing insights into future research directions and potential industrial applications.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Arshiya Ansari
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Shahzad Ahmed
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Moin Ali Siddiqui
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Shizhuo Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shashikant P Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - El Hadi S Sadki
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, 15551, UAE
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
5
|
Chahal S, Sahay T, Li Z, Sharma RK, Kumari E, Bandyopadhyay A, Kumari P, Jyoti Ray S, Vinu A, Kumar P. Graphene via Microwave Expansion of Graphite Followed by Cryo-Quenching and its Application in Electrostatic Droplet Switching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404337. [PMID: 38958089 DOI: 10.1002/smll.202404337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high-purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few-layered graphene sheets (200-12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ-synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications.
Collapse
Affiliation(s)
- Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Indian Institute of Technology Hyderabad, Kandi, Hyderabad, 502284, India
| | - Trisha Sahay
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| | - Raju Kumar Sharma
- Department of Mechanical Engineering, Government Engineering College Sheohar, Chhatauna Bisunpur, Block- Piprahi, Sheohar, Bihar, 843329, India
| | - Ekta Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Arkamita Bandyopadhyay
- Institut für Physik, Theoretische Physik, Martin-Luther-Universität Halle-Wittenber, 06120, Halle, Germany
| | - Puja Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
6
|
Li Z, Guan X, Pandey G, Chahal S, Bandyopadhyay A, Awasthi K, Kumar P, Vinu A. Microwave Doping of Sulfur and Iron in β 12 Borophene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307610. [PMID: 38342695 DOI: 10.1002/smll.202307610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/19/2024] [Indexed: 02/13/2024]
Abstract
Borophene, a 2D material exhibiting unique crystallographic phases like the anisotropic atomic lattices of β12 and X3 phases, has attracted considerable attention due to its intriguing Dirac nature and metallic attributes. Despite surpassing graphene in electronic mobility, borophene's potential in energy storage and catalysis remains untapped due to its inherent electrochemical and catalytic limitations. Elemental doping emerges as a promising strategy to introduce charge carriers, enabling localized electrochemical and catalytic functionalities. However, effective doping of borophene has been a complex and underexplored challenge. Here, an innovative, one-pot microwave-assisted doping method, tailored for the β12 phase of borophene is introduced. By subjecting dispersed β12 borophene in dimethylformamide to controlled microwave exposure with sulfur powder and FeCl3 as doping precursors, S- and Fe doping in borophene can be controlled. Employing advanced techniques including high-resolution transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, confirm successful sulfur and iron dopant incorporation onto β12 borophene is confirmed, achieving doping levels of up to 11 % and 13 %, respectively. Remarkably, S- and Fe-doped borophene exhibit exceptional supercapacitive behavior, with specific capacitances of 202 and 120 F g-1, respectively, at a moderate current density of 0.25 A g-1.
Collapse
Affiliation(s)
- Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gaurav Pandey
- Malviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India
| | - Sumit Chahal
- Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Hyderabad, Telangalana, 502285, India
| | - Arkamita Bandyopadhyay
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany
| | - Kamalendra Awasthi
- Malviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Kumar P, Singh G, Guan X, Roy S, Lee J, Kim IY, Li X, Bu F, Bahadur R, Iyengar SA, Yi J, Zhao D, Ajayan PM, Vinu A. The Rise of Xene Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403881. [PMID: 38899836 DOI: 10.1002/adma.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Xenes, mono-elemental atomic sheets, exhibit Dirac/Dirac-like quantum behavior. When interfaced with other 2D materials such as boron nitride, transition metal dichalcogenides, and metal carbides/nitrides/carbonitrides, it enables them with unique physicochemical properties, including structural stability, desirable bandgap, efficient charge carrier injection, flexibility/breaking stress, thermal conductivity, chemical reactivity, catalytic efficiency, molecular adsorption, and wettability. For example, BN acts as an anti-oxidative shield, MoS2 injects electrons upon laser excitation, and MXene provides mechanical flexibility. Beyond precise compositional modulations, stacking sequences, and inter-layer coupling controlled by parameters, achieving scalability and reproducibility in hybridization is crucial for implementing these quantum materials in consumer applications. However, realizing the full potential of these hybrid materials faces challenges such as air gaps, uneven interfaces, and the formation of defects and functional groups. Advanced synthesis techniques, a deep understanding of quantum behaviors, precise control over interfacial interactions, and awareness of cross-correlations among these factors are essential. Xene-based hybrids show immense promise for groundbreaking applications in quantum computing, flexible electronics, energy storage, and catalysis. In this timely perspective, recent discoveries of novel Xenes and their hybrids are highlighted, emphasizing correlations among synthetic parameters, structure, properties, and applications. It is anticipated that these insights will revolutionize diverse industries and technologies.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - In Young Kim
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xiaomin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
8
|
Ji Z, Yuan M, He Z, Wei H, Wang X, Song J, Jiang L. Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties. Molecules 2024; 29:708. [PMID: 38338452 PMCID: PMC10856655 DOI: 10.3390/molecules29030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have successfully synthesized porphyrin-based lanthanide bimetallic nanosheets (Tb-Eu-TCPP) using a household microwave oven. In addition, it is tested and experimentally evident that these nanosheets have a thinner thickness, a larger BET surface area, and higher photogenerated carrier separation efficiency than bulk porphyrin-based bimetallic materials, thus exhibiting enhanced photocatalytic activity and n-type semiconductor properties. Furthermore, the prepared Tb-Eu-TCPP nanomaterials are more efficient in generating single-linear state oxygen under visible light irradiation compared to pristine monometallic nanosheets due to the generation of bimetallic nodes. The significant increase in catalytic activity is attributed to the improved separation and transfer efficiency of photogenerated carriers. This study not only deepens our understanding of lanthanide bimetallic nanosheet materials but also introduces an innovative approach to improve the photocatalytic performance of MOFs.
Collapse
Affiliation(s)
- Zhiqiang Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Mengnan Yuan
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Zhaoqin He
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Hao Wei
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Xuemin Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Jianxin Song
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Lisha Jiang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| |
Collapse
|
9
|
Sahu TK, Kumar N, Chahal S, Jana R, Paul S, Mukherjee M, Tavabi AH, Datta A, Dunin-Borkowski RE, Valov I, Nayak A, Kumar P. Microwave synthesis of molybdenene from MoS 2. NATURE NANOTECHNOLOGY 2023; 18:1430-1438. [PMID: 37666941 PMCID: PMC10716048 DOI: 10.1038/s41565-023-01484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/06/2023] [Indexed: 09/06/2023]
Abstract
Dirac materials are characterized by the emergence of massless quasiparticles in their low-energy excitation spectrum that obey the Dirac Hamiltonian. Known examples of Dirac materials are topological insulators, d-wave superconductors, graphene, and Weyl and Dirac semimetals, representing a striking range of fundamental properties with potential disruptive applications. However, none of the Dirac materials identified so far shows metallic character. Here, we present evidence for the formation of free-standing molybdenene, a two-dimensional material composed of only Mo atoms. Using MoS2 as a precursor, we induced electric-field-assisted molybdenene growth under microwave irradiation. We observe the formation of millimetre-long whiskers following screw-dislocation growth, consisting of weakly bonded molybdenene sheets, which, upon exfoliation, show metallic character, with an electrical conductivity of ~940 S m-1. Molybdenene when hybridized with two-dimensional h-BN or MoS2, fetch tunable optical and electronic properties. As a proof of principle, we also demonstrate applications of molybdenene as a surface-enhanced Raman spectroscopy platform for molecular sensing, as a substrate for electron imaging and as a scanning probe microscope cantilever.
Collapse
Affiliation(s)
- Tumesh Kumar Sahu
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
- Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - Nishant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
| | - Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Sumana Paul
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Moumita Mukherjee
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| | - Ayan Datta
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| | - Ilia Valov
- Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich, Jülich, Germany.
- Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Bihar, India.
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, India.
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Newcastle, New South Wales, Australia.
| |
Collapse
|
10
|
Edwards PJ, Stuart S, Farmer JT, Shi R, Long R, Prezhdo OV, Kresin VV. Substrate-Selective Adhesion of Metal Nanoparticles to Graphene Devices. J Phys Chem Lett 2023:6414-6421. [PMID: 37432861 PMCID: PMC10364134 DOI: 10.1021/acs.jpclett.3c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Nanostructured electronic devices, such as those based on graphene, are typically grown on top of the insulator SiO2. Their exposure to a flux of small size-selected silver nanoparticles has revealed remarkably selective adhesion: the graphene channel can be made fully metallized, while the insulating substrate remains coverage-free. This conspicuous contrast derives from the low binding energy between the metal nanoparticles and a contaminant-free passivated silica surface. In addition to providing physical insight into nanoparticle adhesion, this effect may be of value in applications involving deposition of metallic layers on device working surfaces: it eliminates the need for masking the insulating region and the associated extensive and potentially deleterious pre- and postprocessing.
Collapse
Affiliation(s)
- Patrick J Edwards
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
- Physical Sciences Laboratories, The Aerospace Corporation, 355 S. Douglas St., El Segundo, California 90245, United States
| | - Sean Stuart
- Physical Sciences Laboratories, The Aerospace Corporation, 355 S. Douglas St., El Segundo, California 90245, United States
| | - James T Farmer
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
| | - Ran Shi
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Vitaly V Kresin
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
| |
Collapse
|
11
|
Xu T, Wang Y, Xiong Z, Wang Y, Zhou Y, Li X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. NANO-MICRO LETTERS 2022; 15:6. [PMID: 36472760 PMCID: PMC9727130 DOI: 10.1007/s40820-022-00976-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
Collapse
Affiliation(s)
- Tianjie Xu
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yujin Zhou
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Center for International Cooperation On Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|